StackProtector.cpp 22.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
//===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass inserts stack protectors into functions which need them. A variable
// with a random value in it is stored onto the stack before the local variables
// are allocated. Upon exiting the block, the stored value is checked. If it's
// changed, then there was some sort of violation and the program aborts.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/StackProtector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "stack-protector"

STATISTIC(NumFunProtected, "Number of functions protected");
STATISTIC(NumAddrTaken, "Number of local variables that have their address"
                        " taken.");

static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
                                          cl::init(true), cl::Hidden);

char StackProtector::ID = 0;

StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) {
  initializeStackProtectorPass(*PassRegistry::getPassRegistry());
}

INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
                      "Insert stack protectors", false, true)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
                    "Insert stack protectors", false, true)

FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }

void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<TargetPassConfig>();
  AU.addPreserved<DominatorTreeWrapperPass>();
}

bool StackProtector::runOnFunction(Function &Fn) {
  F = &Fn;
  M = F->getParent();
  DominatorTreeWrapperPass *DTWP =
      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  DT = DTWP ? &DTWP->getDomTree() : nullptr;
  TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
  Trip = TM->getTargetTriple();
  TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
  HasPrologue = false;
  HasIRCheck = false;

  Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
  if (Attr.isStringAttribute() &&
      Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
    return false; // Invalid integer string

  if (!RequiresStackProtector())
    return false;

  // TODO(etienneb): Functions with funclets are not correctly supported now.
  // Do nothing if this is funclet-based personality.
  if (Fn.hasPersonalityFn()) {
    EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
    if (isFuncletEHPersonality(Personality))
      return false;
  }

  ++NumFunProtected;
  return InsertStackProtectors();
}

/// \param [out] IsLarge is set to true if a protectable array is found and
/// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
/// multiple arrays, this gets set if any of them is large.
bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
                                              bool Strong,
                                              bool InStruct) const {
  if (!Ty)
    return false;
  if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
    if (!AT->getElementType()->isIntegerTy(8)) {
      // If we're on a non-Darwin platform or we're inside of a structure, don't
      // add stack protectors unless the array is a character array.
      // However, in strong mode any array, regardless of type and size,
      // triggers a protector.
      if (!Strong && (InStruct || !Trip.isOSDarwin()))
        return false;
    }

    // If an array has more than SSPBufferSize bytes of allocated space, then we
    // emit stack protectors.
    if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
      IsLarge = true;
      return true;
    }

    if (Strong)
      // Require a protector for all arrays in strong mode
      return true;
  }

  const StructType *ST = dyn_cast<StructType>(Ty);
  if (!ST)
    return false;

  bool NeedsProtector = false;
  for (StructType::element_iterator I = ST->element_begin(),
                                    E = ST->element_end();
       I != E; ++I)
    if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
      // If the element is a protectable array and is large (>= SSPBufferSize)
      // then we are done.  If the protectable array is not large, then
      // keep looking in case a subsequent element is a large array.
      if (IsLarge)
        return true;
      NeedsProtector = true;
    }

  return NeedsProtector;
}

bool StackProtector::HasAddressTaken(const Instruction *AI,
                                     uint64_t AllocSize) {
  const DataLayout &DL = M->getDataLayout();
  for (const User *U : AI->users()) {
    const auto *I = cast<Instruction>(U);
    // If this instruction accesses memory make sure it doesn't access beyond
    // the bounds of the allocated object.
    Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
    if (MemLoc.hasValue() && MemLoc->Size.hasValue() &&
        MemLoc->Size.getValue() > AllocSize)
      return true;
    switch (I->getOpcode()) {
    case Instruction::Store:
      if (AI == cast<StoreInst>(I)->getValueOperand())
        return true;
      break;
    case Instruction::AtomicCmpXchg:
      // cmpxchg conceptually includes both a load and store from the same
      // location. So, like store, the value being stored is what matters.
      if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
        return true;
      break;
    case Instruction::PtrToInt:
      if (AI == cast<PtrToIntInst>(I)->getOperand(0))
        return true;
      break;
    case Instruction::Call: {
      // Ignore intrinsics that do not become real instructions.
      // TODO: Narrow this to intrinsics that have store-like effects.
      const auto *CI = cast<CallInst>(I);
      if (!isa<DbgInfoIntrinsic>(CI) && !CI->isLifetimeStartOrEnd())
        return true;
      break;
    }
    case Instruction::Invoke:
      return true;
    case Instruction::GetElementPtr: {
      // If the GEP offset is out-of-bounds, or is non-constant and so has to be
      // assumed to be potentially out-of-bounds, then any memory access that
      // would use it could also be out-of-bounds meaning stack protection is
      // required.
      const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
      unsigned TypeSize = DL.getIndexTypeSizeInBits(I->getType());
      APInt Offset(TypeSize, 0);
      APInt MaxOffset(TypeSize, AllocSize);
      if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.ugt(MaxOffset))
        return true;
      // Adjust AllocSize to be the space remaining after this offset.
      if (HasAddressTaken(I, AllocSize - Offset.getLimitedValue()))
        return true;
      break;
    }
    case Instruction::BitCast:
    case Instruction::Select:
    case Instruction::AddrSpaceCast:
      if (HasAddressTaken(I, AllocSize))
        return true;
      break;
    case Instruction::PHI: {
      // Keep track of what PHI nodes we have already visited to ensure
      // they are only visited once.
      const auto *PN = cast<PHINode>(I);
      if (VisitedPHIs.insert(PN).second)
        if (HasAddressTaken(PN, AllocSize))
          return true;
      break;
    }
    case Instruction::Load:
    case Instruction::AtomicRMW:
    case Instruction::Ret:
      // These instructions take an address operand, but have load-like or
      // other innocuous behavior that should not trigger a stack protector.
      // atomicrmw conceptually has both load and store semantics, but the
      // value being stored must be integer; so if a pointer is being stored,
      // we'll catch it in the PtrToInt case above.
      break;
    default:
      // Conservatively return true for any instruction that takes an address
      // operand, but is not handled above.
      return true;
    }
  }
  return false;
}

/// Search for the first call to the llvm.stackprotector intrinsic and return it
/// if present.
static const CallInst *findStackProtectorIntrinsic(Function &F) {
  for (const BasicBlock &BB : F)
    for (const Instruction &I : BB)
      if (const auto *II = dyn_cast<IntrinsicInst>(&I))
        if (II->getIntrinsicID() == Intrinsic::stackprotector)
          return II;
  return nullptr;
}

/// Check whether or not this function needs a stack protector based
/// upon the stack protector level.
///
/// We use two heuristics: a standard (ssp) and strong (sspstrong).
/// The standard heuristic which will add a guard variable to functions that
/// call alloca with a either a variable size or a size >= SSPBufferSize,
/// functions with character buffers larger than SSPBufferSize, and functions
/// with aggregates containing character buffers larger than SSPBufferSize. The
/// strong heuristic will add a guard variables to functions that call alloca
/// regardless of size, functions with any buffer regardless of type and size,
/// functions with aggregates that contain any buffer regardless of type and
/// size, and functions that contain stack-based variables that have had their
/// address taken.
bool StackProtector::RequiresStackProtector() {
  bool Strong = false;
  bool NeedsProtector = false;
  HasPrologue = findStackProtectorIntrinsic(*F);

  if (F->hasFnAttribute(Attribute::SafeStack))
    return false;

  // We are constructing the OptimizationRemarkEmitter on the fly rather than
  // using the analysis pass to avoid building DominatorTree and LoopInfo which
  // are not available this late in the IR pipeline.
  OptimizationRemarkEmitter ORE(F);

  if (F->hasFnAttribute(Attribute::StackProtectReq)) {
    ORE.emit([&]() {
      return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
             << "Stack protection applied to function "
             << ore::NV("Function", F)
             << " due to a function attribute or command-line switch";
    });
    NeedsProtector = true;
    Strong = true; // Use the same heuristic as strong to determine SSPLayout
  } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
    Strong = true;
  else if (HasPrologue)
    NeedsProtector = true;
  else if (!F->hasFnAttribute(Attribute::StackProtect))
    return false;

  for (const BasicBlock &BB : *F) {
    for (const Instruction &I : BB) {
      if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
        if (AI->isArrayAllocation()) {
          auto RemarkBuilder = [&]() {
            return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
                                      &I)
                   << "Stack protection applied to function "
                   << ore::NV("Function", F)
                   << " due to a call to alloca or use of a variable length "
                      "array";
          };
          if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
            if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
              // A call to alloca with size >= SSPBufferSize requires
              // stack protectors.
              Layout.insert(std::make_pair(AI,
                                           MachineFrameInfo::SSPLK_LargeArray));
              ORE.emit(RemarkBuilder);
              NeedsProtector = true;
            } else if (Strong) {
              // Require protectors for all alloca calls in strong mode.
              Layout.insert(std::make_pair(AI,
                                           MachineFrameInfo::SSPLK_SmallArray));
              ORE.emit(RemarkBuilder);
              NeedsProtector = true;
            }
          } else {
            // A call to alloca with a variable size requires protectors.
            Layout.insert(std::make_pair(AI,
                                         MachineFrameInfo::SSPLK_LargeArray));
            ORE.emit(RemarkBuilder);
            NeedsProtector = true;
          }
          continue;
        }

        bool IsLarge = false;
        if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
          Layout.insert(std::make_pair(AI, IsLarge
                                       ? MachineFrameInfo::SSPLK_LargeArray
                                       : MachineFrameInfo::SSPLK_SmallArray));
          ORE.emit([&]() {
            return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
                   << "Stack protection applied to function "
                   << ore::NV("Function", F)
                   << " due to a stack allocated buffer or struct containing a "
                      "buffer";
          });
          NeedsProtector = true;
          continue;
        }

        if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize(
                                              AI->getAllocatedType()))) {
          ++NumAddrTaken;
          Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
          ORE.emit([&]() {
            return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
                                      &I)
                   << "Stack protection applied to function "
                   << ore::NV("Function", F)
                   << " due to the address of a local variable being taken";
          });
          NeedsProtector = true;
        }
        // Clear any PHIs that we visited, to make sure we examine all uses of
        // any subsequent allocas that we look at.
        VisitedPHIs.clear();
      }
    }
  }

  return NeedsProtector;
}

/// Create a stack guard loading and populate whether SelectionDAG SSP is
/// supported.
static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
                            IRBuilder<> &B,
                            bool *SupportsSelectionDAGSP = nullptr) {
  if (Value *Guard = TLI->getIRStackGuard(B))
    return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");

  // Use SelectionDAG SSP handling, since there isn't an IR guard.
  //
  // This is more or less weird, since we optionally output whether we
  // should perform a SelectionDAG SP here. The reason is that it's strictly
  // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
  // mutating. There is no way to get this bit without mutating the IR, so
  // getting this bit has to happen in this right time.
  //
  // We could have define a new function TLI::supportsSelectionDAGSP(), but that
  // will put more burden on the backends' overriding work, especially when it
  // actually conveys the same information getIRStackGuard() already gives.
  if (SupportsSelectionDAGSP)
    *SupportsSelectionDAGSP = true;
  TLI->insertSSPDeclarations(*M);
  return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
}

/// Insert code into the entry block that stores the stack guard
/// variable onto the stack:
///
///   entry:
///     StackGuardSlot = alloca i8*
///     StackGuard = <stack guard>
///     call void @llvm.stackprotector(StackGuard, StackGuardSlot)
///
/// Returns true if the platform/triple supports the stackprotectorcreate pseudo
/// node.
static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
                           const TargetLoweringBase *TLI, AllocaInst *&AI) {
  bool SupportsSelectionDAGSP = false;
  IRBuilder<> B(&F->getEntryBlock().front());
  PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
  AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");

  Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
  B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
               {GuardSlot, AI});
  return SupportsSelectionDAGSP;
}

/// InsertStackProtectors - Insert code into the prologue and epilogue of the
/// function.
///
///  - The prologue code loads and stores the stack guard onto the stack.
///  - The epilogue checks the value stored in the prologue against the original
///    value. It calls __stack_chk_fail if they differ.
bool StackProtector::InsertStackProtectors() {
  // If the target wants to XOR the frame pointer into the guard value, it's
  // impossible to emit the check in IR, so the target *must* support stack
  // protection in SDAG.
  bool SupportsSelectionDAGSP =
      TLI->useStackGuardXorFP() ||
      (EnableSelectionDAGSP && !TM->Options.EnableFastISel &&
       !TM->Options.EnableGlobalISel);
  AllocaInst *AI = nullptr;       // Place on stack that stores the stack guard.

  for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
    BasicBlock *BB = &*I++;
    ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
    if (!RI)
      continue;

    // Generate prologue instrumentation if not already generated.
    if (!HasPrologue) {
      HasPrologue = true;
      SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
    }

    // SelectionDAG based code generation. Nothing else needs to be done here.
    // The epilogue instrumentation is postponed to SelectionDAG.
    if (SupportsSelectionDAGSP)
      break;

    // Find the stack guard slot if the prologue was not created by this pass
    // itself via a previous call to CreatePrologue().
    if (!AI) {
      const CallInst *SPCall = findStackProtectorIntrinsic(*F);
      assert(SPCall && "Call to llvm.stackprotector is missing");
      AI = cast<AllocaInst>(SPCall->getArgOperand(1));
    }

    // Set HasIRCheck to true, so that SelectionDAG will not generate its own
    // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
    // instrumentation has already been generated.
    HasIRCheck = true;

    // Generate epilogue instrumentation. The epilogue intrumentation can be
    // function-based or inlined depending on which mechanism the target is
    // providing.
    if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
      // Generate the function-based epilogue instrumentation.
      // The target provides a guard check function, generate a call to it.
      IRBuilder<> B(RI);
      LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
      CallInst *Call = B.CreateCall(GuardCheck, {Guard});
      Call->setAttributes(GuardCheck->getAttributes());
      Call->setCallingConv(GuardCheck->getCallingConv());
    } else {
      // Generate the epilogue with inline instrumentation.
      // If we do not support SelectionDAG based tail calls, generate IR level
      // tail calls.
      //
      // For each block with a return instruction, convert this:
      //
      //   return:
      //     ...
      //     ret ...
      //
      // into this:
      //
      //   return:
      //     ...
      //     %1 = <stack guard>
      //     %2 = load StackGuardSlot
      //     %3 = cmp i1 %1, %2
      //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
      //
      //   SP_return:
      //     ret ...
      //
      //   CallStackCheckFailBlk:
      //     call void @__stack_chk_fail()
      //     unreachable

      // Create the FailBB. We duplicate the BB every time since the MI tail
      // merge pass will merge together all of the various BB into one including
      // fail BB generated by the stack protector pseudo instruction.
      BasicBlock *FailBB = CreateFailBB();

      // Split the basic block before the return instruction.
      BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return");

      // Update the dominator tree if we need to.
      if (DT && DT->isReachableFromEntry(BB)) {
        DT->addNewBlock(NewBB, BB);
        DT->addNewBlock(FailBB, BB);
      }

      // Remove default branch instruction to the new BB.
      BB->getTerminator()->eraseFromParent();

      // Move the newly created basic block to the point right after the old
      // basic block so that it's in the "fall through" position.
      NewBB->moveAfter(BB);

      // Generate the stack protector instructions in the old basic block.
      IRBuilder<> B(BB);
      Value *Guard = getStackGuard(TLI, M, B);
      LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
      Value *Cmp = B.CreateICmpEQ(Guard, LI2);
      auto SuccessProb =
          BranchProbabilityInfo::getBranchProbStackProtector(true);
      auto FailureProb =
          BranchProbabilityInfo::getBranchProbStackProtector(false);
      MDNode *Weights = MDBuilder(F->getContext())
                            .createBranchWeights(SuccessProb.getNumerator(),
                                                 FailureProb.getNumerator());
      B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
    }
  }

  // Return if we didn't modify any basic blocks. i.e., there are no return
  // statements in the function.
  return HasPrologue;
}

/// CreateFailBB - Create a basic block to jump to when the stack protector
/// check fails.
BasicBlock *StackProtector::CreateFailBB() {
  LLVMContext &Context = F->getContext();
  BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
  IRBuilder<> B(FailBB);
  B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram()));
  if (Trip.isOSOpenBSD()) {
    FunctionCallee StackChkFail = M->getOrInsertFunction(
        "__stack_smash_handler", Type::getVoidTy(Context),
        Type::getInt8PtrTy(Context));

    B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
  } else {
    FunctionCallee StackChkFail =
        M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));

    B.CreateCall(StackChkFail, {});
  }
  B.CreateUnreachable();
  return FailBB;
}

bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
  return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
}

void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
  if (Layout.empty())
    return;

  for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
    if (MFI.isDeadObjectIndex(I))
      continue;

    const AllocaInst *AI = MFI.getObjectAllocation(I);
    if (!AI)
      continue;

    SSPLayoutMap::const_iterator LI = Layout.find(AI);
    if (LI == Layout.end())
      continue;

    MFI.setObjectSSPLayout(I, LI->second);
  }
}