Symtab.cpp 38.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
//===-- Symtab.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include <map>
#include <set>

#include "Plugins/Language/ObjC/ObjCLanguage.h"

#include "lldb/Core/Module.h"
#include "lldb/Core/RichManglingContext.h"
#include "lldb/Core/Section.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Symbol/Symtab.h"
#include "lldb/Utility/RegularExpression.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/Timer.h"

#include "llvm/ADT/StringRef.h"

using namespace lldb;
using namespace lldb_private;

Symtab::Symtab(ObjectFile *objfile)
    : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this),
      m_name_to_index(), m_mutex(), m_file_addr_to_index_computed(false),
      m_name_indexes_computed(false) {}

Symtab::~Symtab() {}

void Symtab::Reserve(size_t count) {
  // Clients should grab the mutex from this symbol table and lock it manually
  // when calling this function to avoid performance issues.
  m_symbols.reserve(count);
}

Symbol *Symtab::Resize(size_t count) {
  // Clients should grab the mutex from this symbol table and lock it manually
  // when calling this function to avoid performance issues.
  m_symbols.resize(count);
  return m_symbols.empty() ? nullptr : &m_symbols[0];
}

uint32_t Symtab::AddSymbol(const Symbol &symbol) {
  // Clients should grab the mutex from this symbol table and lock it manually
  // when calling this function to avoid performance issues.
  uint32_t symbol_idx = m_symbols.size();
  m_name_to_index.Clear();
  m_file_addr_to_index.Clear();
  m_symbols.push_back(symbol);
  m_file_addr_to_index_computed = false;
  m_name_indexes_computed = false;
  return symbol_idx;
}

size_t Symtab::GetNumSymbols() const {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  return m_symbols.size();
}

void Symtab::SectionFileAddressesChanged() {
  m_name_to_index.Clear();
  m_file_addr_to_index_computed = false;
}

void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order,
                  Mangled::NamePreference name_preference) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  //    s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
  s->Indent();
  const FileSpec &file_spec = m_objfile->GetFileSpec();
  const char *object_name = nullptr;
  if (m_objfile->GetModule())
    object_name = m_objfile->GetModule()->GetObjectName().GetCString();

  if (file_spec)
    s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
              file_spec.GetPath().c_str(), object_name ? "(" : "",
              object_name ? object_name : "", object_name ? ")" : "",
              (uint64_t)m_symbols.size());
  else
    s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());

  if (!m_symbols.empty()) {
    switch (sort_order) {
    case eSortOrderNone: {
      s->PutCString(":\n");
      DumpSymbolHeader(s);
      const_iterator begin = m_symbols.begin();
      const_iterator end = m_symbols.end();
      for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
        s->Indent();
        pos->Dump(s, target, std::distance(begin, pos), name_preference);
      }
    } break;

    case eSortOrderByName: {
      // Although we maintain a lookup by exact name map, the table isn't
      // sorted by name. So we must make the ordered symbol list up ourselves.
      s->PutCString(" (sorted by name):\n");
      DumpSymbolHeader(s);

      std::multimap<llvm::StringRef, const Symbol *> name_map;
      for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
           pos != end; ++pos) {
        const char *name = pos->GetName().AsCString();
        if (name && name[0])
          name_map.insert(std::make_pair(name, &(*pos)));
      }

      for (const auto &name_to_symbol : name_map) {
        const Symbol *symbol = name_to_symbol.second;
        s->Indent();
        symbol->Dump(s, target, symbol - &m_symbols[0], name_preference);
      }
    } break;

    case eSortOrderByAddress:
      s->PutCString(" (sorted by address):\n");
      DumpSymbolHeader(s);
      if (!m_file_addr_to_index_computed)
        InitAddressIndexes();
      const size_t num_entries = m_file_addr_to_index.GetSize();
      for (size_t i = 0; i < num_entries; ++i) {
        s->Indent();
        const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
        m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference);
      }
      break;
    }
  } else {
    s->PutCString("\n");
  }
}

void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes,
                  Mangled::NamePreference name_preference) const {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  const size_t num_symbols = GetNumSymbols();
  // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
  s->Indent();
  s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
            (uint64_t)indexes.size(), (uint64_t)m_symbols.size());
  s->IndentMore();

  if (!indexes.empty()) {
    std::vector<uint32_t>::const_iterator pos;
    std::vector<uint32_t>::const_iterator end = indexes.end();
    DumpSymbolHeader(s);
    for (pos = indexes.begin(); pos != end; ++pos) {
      size_t idx = *pos;
      if (idx < num_symbols) {
        s->Indent();
        m_symbols[idx].Dump(s, target, idx, name_preference);
      }
    }
  }
  s->IndentLess();
}

void Symtab::DumpSymbolHeader(Stream *s) {
  s->Indent("               Debug symbol\n");
  s->Indent("               |Synthetic symbol\n");
  s->Indent("               ||Externally Visible\n");
  s->Indent("               |||\n");
  s->Indent("Index   UserID DSX Type            File Address/Value Load "
            "Address       Size               Flags      Name\n");
  s->Indent("------- ------ --- --------------- ------------------ "
            "------------------ ------------------ ---------- "
            "----------------------------------\n");
}

static int CompareSymbolID(const void *key, const void *p) {
  const user_id_t match_uid = *(const user_id_t *)key;
  const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
  if (match_uid < symbol_uid)
    return -1;
  if (match_uid > symbol_uid)
    return 1;
  return 0;
}

Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  Symbol *symbol =
      (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
                          sizeof(m_symbols[0]), CompareSymbolID);
  return symbol;
}

Symbol *Symtab::SymbolAtIndex(size_t idx) {
  // Clients should grab the mutex from this symbol table and lock it manually
  // when calling this function to avoid performance issues.
  if (idx < m_symbols.size())
    return &m_symbols[idx];
  return nullptr;
}

const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
  // Clients should grab the mutex from this symbol table and lock it manually
  // when calling this function to avoid performance issues.
  if (idx < m_symbols.size())
    return &m_symbols[idx];
  return nullptr;
}

static bool lldb_skip_name(llvm::StringRef mangled,
                           Mangled::ManglingScheme scheme) {
  switch (scheme) {
  case Mangled::eManglingSchemeItanium: {
    if (mangled.size() < 3 || !mangled.startswith("_Z"))
      return true;

    // Avoid the following types of symbols in the index.
    switch (mangled[2]) {
    case 'G': // guard variables
    case 'T': // virtual tables, VTT structures, typeinfo structures + names
    case 'Z': // named local entities (if we eventually handle
              // eSymbolTypeData, we will want this back)
      return true;

    default:
      break;
    }

    // Include this name in the index.
    return false;
  }

  // No filters for this scheme yet. Include all names in indexing.
  case Mangled::eManglingSchemeMSVC:
    return false;

  // Don't try and demangle things we can't categorize.
  case Mangled::eManglingSchemeNone:
    return true;
  }
  llvm_unreachable("unknown scheme!");
}

void Symtab::InitNameIndexes() {
  // Protected function, no need to lock mutex...
  if (!m_name_indexes_computed) {
    m_name_indexes_computed = true;
    static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
    Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
    // Create the name index vector to be able to quickly search by name
    const size_t num_symbols = m_symbols.size();
    m_name_to_index.Reserve(num_symbols);

    // The "const char *" in "class_contexts" and backlog::value_type::second
    // must come from a ConstString::GetCString()
    std::set<const char *> class_contexts;
    std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog;
    backlog.reserve(num_symbols / 2);

    // Instantiation of the demangler is expensive, so better use a single one
    // for all entries during batch processing.
    RichManglingContext rmc;
    for (uint32_t value = 0; value < num_symbols; ++value) {
      Symbol *symbol = &m_symbols[value];

      // Don't let trampolines get into the lookup by name map If we ever need
      // the trampoline symbols to be searchable by name we can remove this and
      // then possibly add a new bool to any of the Symtab functions that
      // lookup symbols by name to indicate if they want trampolines.
      if (symbol->IsTrampoline())
        continue;

      // If the symbol's name string matched a Mangled::ManglingScheme, it is
      // stored in the mangled field.
      Mangled &mangled = symbol->GetMangled();
      if (ConstString name = mangled.GetMangledName()) {
        m_name_to_index.Append(name, value);

        if (symbol->ContainsLinkerAnnotations()) {
          // If the symbol has linker annotations, also add the version without
          // the annotations.
          ConstString stripped = ConstString(
              m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
          m_name_to_index.Append(stripped, value);
        }

        const SymbolType type = symbol->GetType();
        if (type == eSymbolTypeCode || type == eSymbolTypeResolver) {
          if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name))
            RegisterMangledNameEntry(value, class_contexts, backlog, rmc);
        }
      }

      // Symbol name strings that didn't match a Mangled::ManglingScheme, are
      // stored in the demangled field.
      if (ConstString name = mangled.GetDemangledName()) {
        m_name_to_index.Append(name, value);

        if (symbol->ContainsLinkerAnnotations()) {
          // If the symbol has linker annotations, also add the version without
          // the annotations.
          name = ConstString(
              m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
          m_name_to_index.Append(name, value);
        }

        // If the demangled name turns out to be an ObjC name, and is a category
        // name, add the version without categories to the index too.
        ObjCLanguage::MethodName objc_method(name.GetStringRef(), true);
        if (objc_method.IsValid(true)) {
          m_selector_to_index.Append(objc_method.GetSelector(), value);

          if (ConstString objc_method_no_category =
                  objc_method.GetFullNameWithoutCategory(true))
            m_name_to_index.Append(objc_method_no_category, value);
        }
      }
    }

    for (const auto &record : backlog) {
      RegisterBacklogEntry(record.first, record.second, class_contexts);
    }

    m_name_to_index.Sort();
    m_name_to_index.SizeToFit();
    m_selector_to_index.Sort();
    m_selector_to_index.SizeToFit();
    m_basename_to_index.Sort();
    m_basename_to_index.SizeToFit();
    m_method_to_index.Sort();
    m_method_to_index.SizeToFit();
  }
}

void Symtab::RegisterMangledNameEntry(
    uint32_t value, std::set<const char *> &class_contexts,
    std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog,
    RichManglingContext &rmc) {
  // Only register functions that have a base name.
  rmc.ParseFunctionBaseName();
  llvm::StringRef base_name = rmc.GetBufferRef();
  if (base_name.empty())
    return;

  // The base name will be our entry's name.
  NameToIndexMap::Entry entry(ConstString(base_name), value);

  rmc.ParseFunctionDeclContextName();
  llvm::StringRef decl_context = rmc.GetBufferRef();

  // Register functions with no context.
  if (decl_context.empty()) {
    // This has to be a basename
    m_basename_to_index.Append(entry);
    // If there is no context (no namespaces or class scopes that come before
    // the function name) then this also could be a fullname.
    m_name_to_index.Append(entry);
    return;
  }

  // Make sure we have a pool-string pointer and see if we already know the
  // context name.
  const char *decl_context_ccstr = ConstString(decl_context).GetCString();
  auto it = class_contexts.find(decl_context_ccstr);

  // Register constructors and destructors. They are methods and create
  // declaration contexts.
  if (rmc.IsCtorOrDtor()) {
    m_method_to_index.Append(entry);
    if (it == class_contexts.end())
      class_contexts.insert(it, decl_context_ccstr);
    return;
  }

  // Register regular methods with a known declaration context.
  if (it != class_contexts.end()) {
    m_method_to_index.Append(entry);
    return;
  }

  // Regular methods in unknown declaration contexts are put to the backlog. We
  // will revisit them once we processed all remaining symbols.
  backlog.push_back(std::make_pair(entry, decl_context_ccstr));
}

void Symtab::RegisterBacklogEntry(
    const NameToIndexMap::Entry &entry, const char *decl_context,
    const std::set<const char *> &class_contexts) {
  auto it = class_contexts.find(decl_context);
  if (it != class_contexts.end()) {
    m_method_to_index.Append(entry);
  } else {
    // If we got here, we have something that had a context (was inside
    // a namespace or class) yet we don't know the entry
    m_method_to_index.Append(entry);
    m_basename_to_index.Append(entry);
  }
}

void Symtab::PreloadSymbols() {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  InitNameIndexes();
}

void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
                                    bool add_demangled, bool add_mangled,
                                    NameToIndexMap &name_to_index_map) const {
  if (add_demangled || add_mangled) {
    static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
    Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
    std::lock_guard<std::recursive_mutex> guard(m_mutex);

    // Create the name index vector to be able to quickly search by name
    const size_t num_indexes = indexes.size();
    for (size_t i = 0; i < num_indexes; ++i) {
      uint32_t value = indexes[i];
      assert(i < m_symbols.size());
      const Symbol *symbol = &m_symbols[value];

      const Mangled &mangled = symbol->GetMangled();
      if (add_demangled) {
        if (ConstString name = mangled.GetDemangledName())
          name_to_index_map.Append(name, value);
      }

      if (add_mangled) {
        if (ConstString name = mangled.GetMangledName())
          name_to_index_map.Append(name, value);
      }
    }
  }
}

uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
                                             std::vector<uint32_t> &indexes,
                                             uint32_t start_idx,
                                             uint32_t end_index) const {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  uint32_t prev_size = indexes.size();

  const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);

  for (uint32_t i = start_idx; i < count; ++i) {
    if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
      indexes.push_back(i);
  }

  return indexes.size() - prev_size;
}

uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
    SymbolType symbol_type, uint32_t flags_value,
    std::vector<uint32_t> &indexes, uint32_t start_idx,
    uint32_t end_index) const {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  uint32_t prev_size = indexes.size();

  const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);

  for (uint32_t i = start_idx; i < count; ++i) {
    if ((symbol_type == eSymbolTypeAny ||
         m_symbols[i].GetType() == symbol_type) &&
        m_symbols[i].GetFlags() == flags_value)
      indexes.push_back(i);
  }

  return indexes.size() - prev_size;
}

uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
                                             Debug symbol_debug_type,
                                             Visibility symbol_visibility,
                                             std::vector<uint32_t> &indexes,
                                             uint32_t start_idx,
                                             uint32_t end_index) const {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  uint32_t prev_size = indexes.size();

  const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);

  for (uint32_t i = start_idx; i < count; ++i) {
    if (symbol_type == eSymbolTypeAny ||
        m_symbols[i].GetType() == symbol_type) {
      if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
        indexes.push_back(i);
    }
  }

  return indexes.size() - prev_size;
}

uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
  if (!m_symbols.empty()) {
    const Symbol *first_symbol = &m_symbols[0];
    if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
      return symbol - first_symbol;
  }
  return UINT32_MAX;
}

struct SymbolSortInfo {
  const bool sort_by_load_addr;
  const Symbol *symbols;
};

namespace {
struct SymbolIndexComparator {
  const std::vector<Symbol> &symbols;
  std::vector<lldb::addr_t> &addr_cache;

  // Getting from the symbol to the Address to the File Address involves some
  // work. Since there are potentially many symbols here, and we're using this
  // for sorting so we're going to be computing the address many times, cache
  // that in addr_cache. The array passed in has to be the same size as the
  // symbols array passed into the member variable symbols, and should be
  // initialized with LLDB_INVALID_ADDRESS.
  // NOTE: You have to make addr_cache externally and pass it in because
  // std::stable_sort
  // makes copies of the comparator it is initially passed in, and you end up
  // spending huge amounts of time copying this array...

  SymbolIndexComparator(const std::vector<Symbol> &s,
                        std::vector<lldb::addr_t> &a)
      : symbols(s), addr_cache(a) {
    assert(symbols.size() == addr_cache.size());
  }
  bool operator()(uint32_t index_a, uint32_t index_b) {
    addr_t value_a = addr_cache[index_a];
    if (value_a == LLDB_INVALID_ADDRESS) {
      value_a = symbols[index_a].GetAddressRef().GetFileAddress();
      addr_cache[index_a] = value_a;
    }

    addr_t value_b = addr_cache[index_b];
    if (value_b == LLDB_INVALID_ADDRESS) {
      value_b = symbols[index_b].GetAddressRef().GetFileAddress();
      addr_cache[index_b] = value_b;
    }

    if (value_a == value_b) {
      // The if the values are equal, use the original symbol user ID
      lldb::user_id_t uid_a = symbols[index_a].GetID();
      lldb::user_id_t uid_b = symbols[index_b].GetID();
      if (uid_a < uid_b)
        return true;
      if (uid_a > uid_b)
        return false;
      return false;
    } else if (value_a < value_b)
      return true;

    return false;
  }
};
}

void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
                                      bool remove_duplicates) const {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
  Timer scoped_timer(func_cat, LLVM_PRETTY_FUNCTION);
  // No need to sort if we have zero or one items...
  if (indexes.size() <= 1)
    return;

  // Sort the indexes in place using std::stable_sort.
  // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly
  // for performance, not correctness.  The indexes vector tends to be "close"
  // to sorted, which the stable sort handles better.

  std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);

  SymbolIndexComparator comparator(m_symbols, addr_cache);
  std::stable_sort(indexes.begin(), indexes.end(), comparator);

  // Remove any duplicates if requested
  if (remove_duplicates) {
    auto last = std::unique(indexes.begin(), indexes.end());
    indexes.erase(last, indexes.end());
  }
}

uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
                                             std::vector<uint32_t> &indexes) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
  Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
  if (symbol_name) {
    if (!m_name_indexes_computed)
      InitNameIndexes();

    return m_name_to_index.GetValues(symbol_name, indexes);
  }
  return 0;
}

uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
                                             Debug symbol_debug_type,
                                             Visibility symbol_visibility,
                                             std::vector<uint32_t> &indexes) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
  Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
  if (symbol_name) {
    const size_t old_size = indexes.size();
    if (!m_name_indexes_computed)
      InitNameIndexes();

    std::vector<uint32_t> all_name_indexes;
    const size_t name_match_count =
        m_name_to_index.GetValues(symbol_name, all_name_indexes);
    for (size_t i = 0; i < name_match_count; ++i) {
      if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
                             symbol_visibility))
        indexes.push_back(all_name_indexes[i]);
    }
    return indexes.size() - old_size;
  }
  return 0;
}

uint32_t
Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name,
                                           SymbolType symbol_type,
                                           std::vector<uint32_t> &indexes) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
    std::vector<uint32_t>::iterator pos = indexes.begin();
    while (pos != indexes.end()) {
      if (symbol_type == eSymbolTypeAny ||
          m_symbols[*pos].GetType() == symbol_type)
        ++pos;
      else
        pos = indexes.erase(pos);
    }
  }
  return indexes.size();
}

uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
    ConstString symbol_name, SymbolType symbol_type,
    Debug symbol_debug_type, Visibility symbol_visibility,
    std::vector<uint32_t> &indexes) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
                                  symbol_visibility, indexes) > 0) {
    std::vector<uint32_t>::iterator pos = indexes.begin();
    while (pos != indexes.end()) {
      if (symbol_type == eSymbolTypeAny ||
          m_symbols[*pos].GetType() == symbol_type)
        ++pos;
      else
        pos = indexes.erase(pos);
    }
  }
  return indexes.size();
}

uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
    const RegularExpression &regexp, SymbolType symbol_type,
    std::vector<uint32_t> &indexes) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  uint32_t prev_size = indexes.size();
  uint32_t sym_end = m_symbols.size();

  for (uint32_t i = 0; i < sym_end; i++) {
    if (symbol_type == eSymbolTypeAny ||
        m_symbols[i].GetType() == symbol_type) {
      const char *name = m_symbols[i].GetName().AsCString();
      if (name) {
        if (regexp.Execute(name))
          indexes.push_back(i);
      }
    }
  }
  return indexes.size() - prev_size;
}

uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
    const RegularExpression &regexp, SymbolType symbol_type,
    Debug symbol_debug_type, Visibility symbol_visibility,
    std::vector<uint32_t> &indexes) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  uint32_t prev_size = indexes.size();
  uint32_t sym_end = m_symbols.size();

  for (uint32_t i = 0; i < sym_end; i++) {
    if (symbol_type == eSymbolTypeAny ||
        m_symbols[i].GetType() == symbol_type) {
      if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
        continue;

      const char *name = m_symbols[i].GetName().AsCString();
      if (name) {
        if (regexp.Execute(name))
          indexes.push_back(i);
      }
    }
  }
  return indexes.size() - prev_size;
}

Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
                                   Debug symbol_debug_type,
                                   Visibility symbol_visibility,
                                   uint32_t &start_idx) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  const size_t count = m_symbols.size();
  for (size_t idx = start_idx; idx < count; ++idx) {
    if (symbol_type == eSymbolTypeAny ||
        m_symbols[idx].GetType() == symbol_type) {
      if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
        start_idx = idx;
        return &m_symbols[idx];
      }
    }
  }
  return nullptr;
}

void
Symtab::FindAllSymbolsWithNameAndType(ConstString name,
                                      SymbolType symbol_type,
                                      std::vector<uint32_t> &symbol_indexes) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
  Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
  // Initialize all of the lookup by name indexes before converting NAME to a
  // uniqued string NAME_STR below.
  if (!m_name_indexes_computed)
    InitNameIndexes();

  if (name) {
    // The string table did have a string that matched, but we need to check
    // the symbols and match the symbol_type if any was given.
    AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
  }
}

void Symtab::FindAllSymbolsWithNameAndType(
    ConstString name, SymbolType symbol_type, Debug symbol_debug_type,
    Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
  Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
  // Initialize all of the lookup by name indexes before converting NAME to a
  // uniqued string NAME_STR below.
  if (!m_name_indexes_computed)
    InitNameIndexes();

  if (name) {
    // The string table did have a string that matched, but we need to check
    // the symbols and match the symbol_type if any was given.
    AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
                                       symbol_visibility, symbol_indexes);
  }
}

void Symtab::FindAllSymbolsMatchingRexExAndType(
    const RegularExpression &regex, SymbolType symbol_type,
    Debug symbol_debug_type, Visibility symbol_visibility,
    std::vector<uint32_t> &symbol_indexes) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
                                          symbol_visibility, symbol_indexes);
}

Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name,
                                               SymbolType symbol_type,
                                               Debug symbol_debug_type,
                                               Visibility symbol_visibility) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
  Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
  if (!m_name_indexes_computed)
    InitNameIndexes();

  if (name) {
    std::vector<uint32_t> matching_indexes;
    // The string table did have a string that matched, but we need to check
    // the symbols and match the symbol_type if any was given.
    if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
                                           symbol_visibility,
                                           matching_indexes)) {
      std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
      for (pos = matching_indexes.begin(); pos != end; ++pos) {
        Symbol *symbol = SymbolAtIndex(*pos);

        if (symbol->Compare(name, symbol_type))
          return symbol;
      }
    }
  }
  return nullptr;
}

typedef struct {
  const Symtab *symtab;
  const addr_t file_addr;
  Symbol *match_symbol;
  const uint32_t *match_index_ptr;
  addr_t match_offset;
} SymbolSearchInfo;

// Add all the section file start address & size to the RangeVector, recusively
// adding any children sections.
static void AddSectionsToRangeMap(SectionList *sectlist,
                                  RangeVector<addr_t, addr_t> &section_ranges) {
  const int num_sections = sectlist->GetNumSections(0);
  for (int i = 0; i < num_sections; i++) {
    SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
    if (sect_sp) {
      SectionList &child_sectlist = sect_sp->GetChildren();

      // If this section has children, add the children to the RangeVector.
      // Else add this section to the RangeVector.
      if (child_sectlist.GetNumSections(0) > 0) {
        AddSectionsToRangeMap(&child_sectlist, section_ranges);
      } else {
        size_t size = sect_sp->GetByteSize();
        if (size > 0) {
          addr_t base_addr = sect_sp->GetFileAddress();
          RangeVector<addr_t, addr_t>::Entry entry;
          entry.SetRangeBase(base_addr);
          entry.SetByteSize(size);
          section_ranges.Append(entry);
        }
      }
    }
  }
}

void Symtab::InitAddressIndexes() {
  // Protected function, no need to lock mutex...
  if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
    m_file_addr_to_index_computed = true;

    FileRangeToIndexMap::Entry entry;
    const_iterator begin = m_symbols.begin();
    const_iterator end = m_symbols.end();
    for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
      if (pos->ValueIsAddress()) {
        entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
        entry.SetByteSize(pos->GetByteSize());
        entry.data = std::distance(begin, pos);
        m_file_addr_to_index.Append(entry);
      }
    }
    const size_t num_entries = m_file_addr_to_index.GetSize();
    if (num_entries > 0) {
      m_file_addr_to_index.Sort();

      // Create a RangeVector with the start & size of all the sections for
      // this objfile.  We'll need to check this for any FileRangeToIndexMap
      // entries with an uninitialized size, which could potentially be a large
      // number so reconstituting the weak pointer is busywork when it is
      // invariant information.
      SectionList *sectlist = m_objfile->GetSectionList();
      RangeVector<addr_t, addr_t> section_ranges;
      if (sectlist) {
        AddSectionsToRangeMap(sectlist, section_ranges);
        section_ranges.Sort();
      }

      // Iterate through the FileRangeToIndexMap and fill in the size for any
      // entries that didn't already have a size from the Symbol (e.g. if we
      // have a plain linker symbol with an address only, instead of debug info
      // where we get an address and a size and a type, etc.)
      for (size_t i = 0; i < num_entries; i++) {
        FileRangeToIndexMap::Entry *entry =
            m_file_addr_to_index.GetMutableEntryAtIndex(i);
        if (entry->GetByteSize() == 0) {
          addr_t curr_base_addr = entry->GetRangeBase();
          const RangeVector<addr_t, addr_t>::Entry *containing_section =
              section_ranges.FindEntryThatContains(curr_base_addr);

          // Use the end of the section as the default max size of the symbol
          addr_t sym_size = 0;
          if (containing_section) {
            sym_size =
                containing_section->GetByteSize() -
                (entry->GetRangeBase() - containing_section->GetRangeBase());
          }

          for (size_t j = i; j < num_entries; j++) {
            FileRangeToIndexMap::Entry *next_entry =
                m_file_addr_to_index.GetMutableEntryAtIndex(j);
            addr_t next_base_addr = next_entry->GetRangeBase();
            if (next_base_addr > curr_base_addr) {
              addr_t size_to_next_symbol = next_base_addr - curr_base_addr;

              // Take the difference between this symbol and the next one as
              // its size, if it is less than the size of the section.
              if (sym_size == 0 || size_to_next_symbol < sym_size) {
                sym_size = size_to_next_symbol;
              }
              break;
            }
          }

          if (sym_size > 0) {
            entry->SetByteSize(sym_size);
            Symbol &symbol = m_symbols[entry->data];
            symbol.SetByteSize(sym_size);
            symbol.SetSizeIsSynthesized(true);
          }
        }
      }

      // Sort again in case the range size changes the ordering
      m_file_addr_to_index.Sort();
    }
  }
}

void Symtab::CalculateSymbolSizes() {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  // Size computation happens inside InitAddressIndexes.
  InitAddressIndexes();
}

Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);
  if (!m_file_addr_to_index_computed)
    InitAddressIndexes();

  const FileRangeToIndexMap::Entry *entry =
      m_file_addr_to_index.FindEntryStartsAt(file_addr);
  if (entry) {
    Symbol *symbol = SymbolAtIndex(entry->data);
    if (symbol->GetFileAddress() == file_addr)
      return symbol;
  }
  return nullptr;
}

Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  if (!m_file_addr_to_index_computed)
    InitAddressIndexes();

  const FileRangeToIndexMap::Entry *entry =
      m_file_addr_to_index.FindEntryThatContains(file_addr);
  if (entry) {
    Symbol *symbol = SymbolAtIndex(entry->data);
    if (symbol->ContainsFileAddress(file_addr))
      return symbol;
  }
  return nullptr;
}

void Symtab::ForEachSymbolContainingFileAddress(
    addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
  std::lock_guard<std::recursive_mutex> guard(m_mutex);

  if (!m_file_addr_to_index_computed)
    InitAddressIndexes();

  std::vector<uint32_t> all_addr_indexes;

  // Get all symbols with file_addr
  const size_t addr_match_count =
      m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
                                                       all_addr_indexes);

  for (size_t i = 0; i < addr_match_count; ++i) {
    Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
    if (symbol->ContainsFileAddress(file_addr)) {
      if (!callback(symbol))
        break;
    }
  }
}

void Symtab::SymbolIndicesToSymbolContextList(
    std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
  // No need to protect this call using m_mutex all other method calls are
  // already thread safe.

  const bool merge_symbol_into_function = true;
  size_t num_indices = symbol_indexes.size();
  if (num_indices > 0) {
    SymbolContext sc;
    sc.module_sp = m_objfile->GetModule();
    for (size_t i = 0; i < num_indices; i++) {
      sc.symbol = SymbolAtIndex(symbol_indexes[i]);
      if (sc.symbol)
        sc_list.AppendIfUnique(sc, merge_symbol_into_function);
    }
  }
}

void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask,
                                 SymbolContextList &sc_list) {
  std::vector<uint32_t> symbol_indexes;

  // eFunctionNameTypeAuto should be pre-resolved by a call to
  // Module::LookupInfo::LookupInfo()
  assert((name_type_mask & eFunctionNameTypeAuto) == 0);

  if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
    std::vector<uint32_t> temp_symbol_indexes;
    FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);

    unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
    if (temp_symbol_indexes_size > 0) {
      std::lock_guard<std::recursive_mutex> guard(m_mutex);
      for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
        SymbolContext sym_ctx;
        sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
        if (sym_ctx.symbol) {
          switch (sym_ctx.symbol->GetType()) {
          case eSymbolTypeCode:
          case eSymbolTypeResolver:
          case eSymbolTypeReExported:
            symbol_indexes.push_back(temp_symbol_indexes[i]);
            break;
          default:
            break;
          }
        }
      }
    }
  }

  if (name_type_mask & eFunctionNameTypeBase) {
    // From mangled names we can't tell what is a basename and what is a method
    // name, so we just treat them the same
    if (!m_name_indexes_computed)
      InitNameIndexes();

    if (!m_basename_to_index.IsEmpty()) {
      const UniqueCStringMap<uint32_t>::Entry *match;
      for (match = m_basename_to_index.FindFirstValueForName(name);
           match != nullptr;
           match = m_basename_to_index.FindNextValueForName(match)) {
        symbol_indexes.push_back(match->value);
      }
    }
  }

  if (name_type_mask & eFunctionNameTypeMethod) {
    if (!m_name_indexes_computed)
      InitNameIndexes();

    if (!m_method_to_index.IsEmpty()) {
      const UniqueCStringMap<uint32_t>::Entry *match;
      for (match = m_method_to_index.FindFirstValueForName(name);
           match != nullptr;
           match = m_method_to_index.FindNextValueForName(match)) {
        symbol_indexes.push_back(match->value);
      }
    }
  }

  if (name_type_mask & eFunctionNameTypeSelector) {
    if (!m_name_indexes_computed)
      InitNameIndexes();

    if (!m_selector_to_index.IsEmpty()) {
      const UniqueCStringMap<uint32_t>::Entry *match;
      for (match = m_selector_to_index.FindFirstValueForName(name);
           match != nullptr;
           match = m_selector_to_index.FindNextValueForName(match)) {
        symbol_indexes.push_back(match->value);
      }
    }
  }

  if (!symbol_indexes.empty()) {
    llvm::sort(symbol_indexes.begin(), symbol_indexes.end());
    symbol_indexes.erase(
        std::unique(symbol_indexes.begin(), symbol_indexes.end()),
        symbol_indexes.end());
    SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
  }
}

const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
  uint32_t child_idx = GetIndexForSymbol(child_symbol);
  if (child_idx != UINT32_MAX && child_idx > 0) {
    for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
      const Symbol *symbol = SymbolAtIndex(idx);
      const uint32_t sibling_idx = symbol->GetSiblingIndex();
      if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
        return symbol;
    }
  }
  return nullptr;
}