ICF.cpp 20.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
//===- ICF.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// ICF is short for Identical Code Folding. This is a size optimization to
// identify and merge two or more read-only sections (typically functions)
// that happened to have the same contents. It usually reduces output size
// by a few percent.
//
// In ICF, two sections are considered identical if they have the same
// section flags, section data, and relocations. Relocations are tricky,
// because two relocations are considered the same if they have the same
// relocation types, values, and if they point to the same sections *in
// terms of ICF*.
//
// Here is an example. If foo and bar defined below are compiled to the
// same machine instructions, ICF can and should merge the two, although
// their relocations point to each other.
//
//   void foo() { bar(); }
//   void bar() { foo(); }
//
// If you merge the two, their relocations point to the same section and
// thus you know they are mergeable, but how do you know they are
// mergeable in the first place? This is not an easy problem to solve.
//
// What we are doing in LLD is to partition sections into equivalence
// classes. Sections in the same equivalence class when the algorithm
// terminates are considered identical. Here are details:
//
// 1. First, we partition sections using their hash values as keys. Hash
//    values contain section types, section contents and numbers of
//    relocations. During this step, relocation targets are not taken into
//    account. We just put sections that apparently differ into different
//    equivalence classes.
//
// 2. Next, for each equivalence class, we visit sections to compare
//    relocation targets. Relocation targets are considered equivalent if
//    their targets are in the same equivalence class. Sections with
//    different relocation targets are put into different equivalence
//    classes.
//
// 3. If we split an equivalence class in step 2, two relocations
//    previously target the same equivalence class may now target
//    different equivalence classes. Therefore, we repeat step 2 until a
//    convergence is obtained.
//
// 4. For each equivalence class C, pick an arbitrary section in C, and
//    merge all the other sections in C with it.
//
// For small programs, this algorithm needs 3-5 iterations. For large
// programs such as Chromium, it takes more than 20 iterations.
//
// This algorithm was mentioned as an "optimistic algorithm" in [1],
// though gold implements a different algorithm than this.
//
// We parallelize each step so that multiple threads can work on different
// equivalence classes concurrently. That gave us a large performance
// boost when applying ICF on large programs. For example, MSVC link.exe
// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
// faster than MSVC or gold though.
//
// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
// in the Gold Linker
// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
//
//===----------------------------------------------------------------------===//

#include "ICF.h"
#include "Config.h"
#include "EhFrame.h"
#include "LinkerScript.h"
#include "OutputSections.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Writer.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/xxhash.h"
#include <algorithm>
#include <atomic>

using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace lld;
using namespace lld::elf;

namespace {
template <class ELFT> class ICF {
public:
  void run();

private:
  void segregate(size_t begin, size_t end, bool constant);

  template <class RelTy>
  bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA,
                  const InputSection *b, ArrayRef<RelTy> relsB);

  template <class RelTy>
  bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA,
                  const InputSection *b, ArrayRef<RelTy> relsB);

  bool equalsConstant(const InputSection *a, const InputSection *b);
  bool equalsVariable(const InputSection *a, const InputSection *b);

  size_t findBoundary(size_t begin, size_t end);

  void forEachClassRange(size_t begin, size_t end,
                         llvm::function_ref<void(size_t, size_t)> fn);

  void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);

  std::vector<InputSection *> sections;

  // We repeat the main loop while `Repeat` is true.
  std::atomic<bool> repeat;

  // The main loop counter.
  int cnt = 0;

  // We have two locations for equivalence classes. On the first iteration
  // of the main loop, Class[0] has a valid value, and Class[1] contains
  // garbage. We read equivalence classes from slot 0 and write to slot 1.
  // So, Class[0] represents the current class, and Class[1] represents
  // the next class. On each iteration, we switch their roles and use them
  // alternately.
  //
  // Why are we doing this? Recall that other threads may be working on
  // other equivalence classes in parallel. They may read sections that we
  // are updating. We cannot update equivalence classes in place because
  // it breaks the invariance that all possibly-identical sections must be
  // in the same equivalence class at any moment. In other words, the for
  // loop to update equivalence classes is not atomic, and that is
  // observable from other threads. By writing new classes to other
  // places, we can keep the invariance.
  //
  // Below, `Current` has the index of the current class, and `Next` has
  // the index of the next class. If threading is enabled, they are either
  // (0, 1) or (1, 0).
  //
  // Note on single-thread: if that's the case, they are always (0, 0)
  // because we can safely read the next class without worrying about race
  // conditions. Using the same location makes this algorithm converge
  // faster because it uses results of the same iteration earlier.
  int current = 0;
  int next = 0;
};
}

// Returns true if section S is subject of ICF.
static bool isEligible(InputSection *s) {
  if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
    return false;

  // Don't merge writable sections. .data.rel.ro sections are marked as writable
  // but are semantically read-only.
  if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
      !s->name.startswith(".data.rel.ro."))
    return false;

  // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
  // so we don't consider them for ICF individually.
  if (s->flags & SHF_LINK_ORDER)
    return false;

  // Don't merge synthetic sections as their Data member is not valid and empty.
  // The Data member needs to be valid for ICF as it is used by ICF to determine
  // the equality of section contents.
  if (isa<SyntheticSection>(s))
    return false;

  // .init and .fini contains instructions that must be executed to initialize
  // and finalize the process. They cannot and should not be merged.
  if (s->name == ".init" || s->name == ".fini")
    return false;

  // A user program may enumerate sections named with a C identifier using
  // __start_* and __stop_* symbols. We cannot ICF any such sections because
  // that could change program semantics.
  if (isValidCIdentifier(s->name))
    return false;

  return true;
}

// Split an equivalence class into smaller classes.
template <class ELFT>
void ICF<ELFT>::segregate(size_t begin, size_t end, bool constant) {
  // This loop rearranges sections in [Begin, End) so that all sections
  // that are equal in terms of equals{Constant,Variable} are contiguous
  // in [Begin, End).
  //
  // The algorithm is quadratic in the worst case, but that is not an
  // issue in practice because the number of the distinct sections in
  // each range is usually very small.

  while (begin < end) {
    // Divide [Begin, End) into two. Let Mid be the start index of the
    // second group.
    auto bound =
        std::stable_partition(sections.begin() + begin + 1,
                              sections.begin() + end, [&](InputSection *s) {
                                if (constant)
                                  return equalsConstant(sections[begin], s);
                                return equalsVariable(sections[begin], s);
                              });
    size_t mid = bound - sections.begin();

    // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
    // updating the sections in [Begin, Mid). We use Mid as an equivalence
    // class ID because every group ends with a unique index.
    for (size_t i = begin; i < mid; ++i)
      sections[i]->eqClass[next] = mid;

    // If we created a group, we need to iterate the main loop again.
    if (mid != end)
      repeat = true;

    begin = mid;
  }
}

// Compare two lists of relocations.
template <class ELFT>
template <class RelTy>
bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra,
                           const InputSection *secB, ArrayRef<RelTy> rb) {
  for (size_t i = 0; i < ra.size(); ++i) {
    if (ra[i].r_offset != rb[i].r_offset ||
        ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL))
      return false;

    uint64_t addA = getAddend<ELFT>(ra[i]);
    uint64_t addB = getAddend<ELFT>(rb[i]);

    Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
    Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
    if (&sa == &sb) {
      if (addA == addB)
        continue;
      return false;
    }

    auto *da = dyn_cast<Defined>(&sa);
    auto *db = dyn_cast<Defined>(&sb);

    // Placeholder symbols generated by linker scripts look the same now but
    // may have different values later.
    if (!da || !db || da->scriptDefined || db->scriptDefined)
      return false;

    // When comparing a pair of relocations, if they refer to different symbols,
    // and either symbol is preemptible, the containing sections should be
    // considered different. This is because even if the sections are identical
    // in this DSO, they may not be after preemption.
    if (da->isPreemptible || db->isPreemptible)
      return false;

    // Relocations referring to absolute symbols are constant-equal if their
    // values are equal.
    if (!da->section && !db->section && da->value + addA == db->value + addB)
      continue;
    if (!da->section || !db->section)
      return false;

    if (da->section->kind() != db->section->kind())
      return false;

    // Relocations referring to InputSections are constant-equal if their
    // section offsets are equal.
    if (isa<InputSection>(da->section)) {
      if (da->value + addA == db->value + addB)
        continue;
      return false;
    }

    // Relocations referring to MergeInputSections are constant-equal if their
    // offsets in the output section are equal.
    auto *x = dyn_cast<MergeInputSection>(da->section);
    if (!x)
      return false;
    auto *y = cast<MergeInputSection>(db->section);
    if (x->getParent() != y->getParent())
      return false;

    uint64_t offsetA =
        sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
    uint64_t offsetB =
        sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
    if (offsetA != offsetB)
      return false;
  }

  return true;
}

// Compare "non-moving" part of two InputSections, namely everything
// except relocation targets.
template <class ELFT>
bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
  if (a->numRelocations != b->numRelocations || a->flags != b->flags ||
      a->getSize() != b->getSize() || a->data() != b->data())
    return false;

  // If two sections have different output sections, we cannot merge them.
  assert(a->getParent() && b->getParent());
  if (a->getParent() != b->getParent())
    return false;

  if (a->areRelocsRela)
    return constantEq(a, a->template relas<ELFT>(), b,
                      b->template relas<ELFT>());
  return constantEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
}

// Compare two lists of relocations. Returns true if all pairs of
// relocations point to the same section in terms of ICF.
template <class ELFT>
template <class RelTy>
bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra,
                           const InputSection *secB, ArrayRef<RelTy> rb) {
  assert(ra.size() == rb.size());

  for (size_t i = 0; i < ra.size(); ++i) {
    // The two sections must be identical.
    Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
    Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
    if (&sa == &sb)
      continue;

    auto *da = cast<Defined>(&sa);
    auto *db = cast<Defined>(&sb);

    // We already dealt with absolute and non-InputSection symbols in
    // constantEq, and for InputSections we have already checked everything
    // except the equivalence class.
    if (!da->section)
      continue;
    auto *x = dyn_cast<InputSection>(da->section);
    if (!x)
      continue;
    auto *y = cast<InputSection>(db->section);

    // Ineligible sections are in the special equivalence class 0.
    // They can never be the same in terms of the equivalence class.
    if (x->eqClass[current] == 0)
      return false;
    if (x->eqClass[current] != y->eqClass[current])
      return false;
  };

  return true;
}

// Compare "moving" part of two InputSections, namely relocation targets.
template <class ELFT>
bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
  if (a->areRelocsRela)
    return variableEq(a, a->template relas<ELFT>(), b,
                      b->template relas<ELFT>());
  return variableEq(a, a->template rels<ELFT>(), b, b->template rels<ELFT>());
}

template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
  uint32_t eqClass = sections[begin]->eqClass[current];
  for (size_t i = begin + 1; i < end; ++i)
    if (eqClass != sections[i]->eqClass[current])
      return i;
  return end;
}

// Sections in the same equivalence class are contiguous in Sections
// vector. Therefore, Sections vector can be considered as contiguous
// groups of sections, grouped by the class.
//
// This function calls Fn on every group within [Begin, End).
template <class ELFT>
void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
                                  llvm::function_ref<void(size_t, size_t)> fn) {
  while (begin < end) {
    size_t mid = findBoundary(begin, end);
    fn(begin, mid);
    begin = mid;
  }
}

// Call Fn on each equivalence class.
template <class ELFT>
void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
  // If threading is disabled or the number of sections are
  // too small to use threading, call Fn sequentially.
  if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) {
    forEachClassRange(0, sections.size(), fn);
    ++cnt;
    return;
  }

  current = cnt % 2;
  next = (cnt + 1) % 2;

  // Shard into non-overlapping intervals, and call Fn in parallel.
  // The sharding must be completed before any calls to Fn are made
  // so that Fn can modify the Chunks in its shard without causing data
  // races.
  const size_t numShards = 256;
  size_t step = sections.size() / numShards;
  size_t boundaries[numShards + 1];
  boundaries[0] = 0;
  boundaries[numShards] = sections.size();

  parallelForEachN(1, numShards, [&](size_t i) {
    boundaries[i] = findBoundary((i - 1) * step, sections.size());
  });

  parallelForEachN(1, numShards + 1, [&](size_t i) {
    if (boundaries[i - 1] < boundaries[i])
      forEachClassRange(boundaries[i - 1], boundaries[i], fn);
  });
  ++cnt;
}

// Combine the hashes of the sections referenced by the given section into its
// hash.
template <class ELFT, class RelTy>
static void combineRelocHashes(unsigned cnt, InputSection *isec,
                               ArrayRef<RelTy> rels) {
  uint32_t hash = isec->eqClass[cnt % 2];
  for (RelTy rel : rels) {
    Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel);
    if (auto *d = dyn_cast<Defined>(&s))
      if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
        hash += relSec->eqClass[cnt % 2];
  }
  // Set MSB to 1 to avoid collisions with non-hash IDs.
  isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
}

static void print(const Twine &s) {
  if (config->printIcfSections)
    message(s);
}

// The main function of ICF.
template <class ELFT> void ICF<ELFT>::run() {
  // Compute isPreemptible early. We may add more symbols later, so this loop
  // cannot be merged with the later computeIsPreemptible() pass which is used
  // by scanRelocations().
  for (Symbol *sym : symtab->symbols())
    sym->isPreemptible = computeIsPreemptible(*sym);

  // Two text sections may have identical content and relocations but different
  // LSDA, e.g. the two functions may have catch blocks of different types. If a
  // text section is referenced by a .eh_frame FDE with LSDA, it is not
  // eligible. This is implemented by iterating over CIE/FDE and setting
  // eqClass[0] to the referenced text section from a live FDE.
  //
  // If two .gcc_except_table have identical semantics (usually identical
  // content with PC-relative encoding), we will lose folding opportunity.
  uint32_t uniqueId = 0;
  for (Partition &part : partitions)
    part.ehFrame->iterateFDEWithLSDA<ELFT>(
        [&](InputSection &s) { s.eqClass[0] = ++uniqueId; });

  // Collect sections to merge.
  for (InputSectionBase *sec : inputSections) {
    auto *s = cast<InputSection>(sec);
    if (isEligible(s) && s->eqClass[0] == 0)
      sections.push_back(s);
  }

  // Initially, we use hash values to partition sections.
  parallelForEach(
      sections, [&](InputSection *s) { s->eqClass[0] = xxHash64(s->data()); });

  // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to
  // reduce the average sizes of equivalence classes, i.e. segregate() which has
  // a large time complexity will have less work to do.
  for (unsigned cnt = 0; cnt != 2; ++cnt) {
    parallelForEach(sections, [&](InputSection *s) {
      if (s->areRelocsRela)
        combineRelocHashes<ELFT>(cnt, s, s->template relas<ELFT>());
      else
        combineRelocHashes<ELFT>(cnt, s, s->template rels<ELFT>());
    });
  }

  // From now on, sections in Sections vector are ordered so that sections
  // in the same equivalence class are consecutive in the vector.
  llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
    return a->eqClass[0] < b->eqClass[0];
  });

  // Compare static contents and assign unique IDs for each static content.
  forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });

  // Split groups by comparing relocations until convergence is obtained.
  do {
    repeat = false;
    forEachClass(
        [&](size_t begin, size_t end) { segregate(begin, end, false); });
  } while (repeat);

  log("ICF needed " + Twine(cnt) + " iterations");

  // Merge sections by the equivalence class.
  forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
    if (end - begin == 1)
      return;
    print("selected section " + toString(sections[begin]));
    for (size_t i = begin + 1; i < end; ++i) {
      print("  removing identical section " + toString(sections[i]));
      sections[begin]->replace(sections[i]);

      // At this point we know sections merged are fully identical and hence
      // we want to remove duplicate implicit dependencies such as link order
      // and relocation sections.
      for (InputSection *isec : sections[i]->dependentSections)
        isec->markDead();
    }
  });

  // InputSectionDescription::sections is populated by processSectionCommands().
  // ICF may fold some input sections assigned to output sections. Remove them.
  for (BaseCommand *base : script->sectionCommands)
    if (auto *sec = dyn_cast<OutputSection>(base))
      for (BaseCommand *sub_base : sec->sectionCommands)
        if (auto *isd = dyn_cast<InputSectionDescription>(sub_base))
          llvm::erase_if(isd->sections,
                         [](InputSection *isec) { return !isec->isLive(); });
}

// ICF entry point function.
template <class ELFT> void elf::doIcf() {
  llvm::TimeTraceScope timeScope("ICF");
  ICF<ELFT>().run();
}

template void elf::doIcf<ELF32LE>();
template void elf::doIcf<ELF32BE>();
template void elf::doIcf<ELF64LE>();
template void elf::doIcf<ELF64BE>();