FPBits.h
5.06 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
//===-- Abstract class for bit manipulation of float numbers. ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_FPUTIL_FP_BITS_H
#define LLVM_LIBC_UTILS_FPUTIL_FP_BITS_H
#include "utils/CPP/TypeTraits.h"
#include <stdint.h>
namespace __llvm_libc {
namespace fputil {
template <typename T> struct MantissaWidth {};
template <> struct MantissaWidth<float> {
static constexpr unsigned value = 23;
};
template <> struct MantissaWidth<double> {
static constexpr unsigned value = 52;
};
template <typename T> struct ExponentWidth {};
template <> struct ExponentWidth<float> {
static constexpr unsigned value = 8;
};
template <> struct ExponentWidth<double> {
static constexpr unsigned value = 11;
};
template <> struct ExponentWidth<long double> {
static constexpr unsigned value = 15;
};
template <typename T> struct FPUIntType {};
template <> struct FPUIntType<float> { using Type = uint32_t; };
template <> struct FPUIntType<double> { using Type = uint64_t; };
#if !(defined(__x86_64__) || defined(__i386__))
// TODO: This has to be extended for visual studio where long double and
// double are equivalent.
template <> struct MantissaWidth<long double> {
static constexpr unsigned value = 112;
};
template <> struct FPUIntType<long double> { using Type = __uint128_t; };
#endif
// A generic class to represent single precision, double precision, and quad
// precision IEEE 754 floating point formats.
// On most platforms, the 'float' type corresponds to single precision floating
// point numbers, the 'double' type corresponds to double precision floating
// point numers, and the 'long double' type corresponds to the quad precision
// floating numbers. On x86 platforms however, the 'long double' type maps to
// an x87 floating point format. This format is an IEEE 754 extension format.
// It is handled as an explicit specialization of this class.
template <typename T> struct __attribute__((packed)) FPBits {
static_assert(cpp::IsFloatingPointType<T>::Value,
"FPBits instantiated with invalid type.");
// Reinterpreting bits as an integer value and interpreting the bits of an
// integer value as a floating point value is used in tests. So, a convenient
// type is provided for such reinterpretations.
using UIntType = typename FPUIntType<T>::Type;
UIntType mantissa : MantissaWidth<T>::value;
uint16_t exponent : ExponentWidth<T>::value;
uint8_t sign : 1;
static constexpr int exponentBias = (1 << (ExponentWidth<T>::value - 1)) - 1;
static constexpr int maxExponent = (1 << ExponentWidth<T>::value) - 1;
static constexpr UIntType minSubnormal = UIntType(1);
static constexpr UIntType maxSubnormal =
(UIntType(1) << MantissaWidth<T>::value) - 1;
static constexpr UIntType minNormal =
(UIntType(1) << MantissaWidth<T>::value);
static constexpr UIntType maxNormal =
((UIntType(maxExponent) - 1) << MantissaWidth<T>::value) | maxSubnormal;
// We don't want accidental type promotions/conversions so we require exact
// type match.
template <typename XType,
cpp::EnableIfType<cpp::IsSame<T, XType>::Value, int> = 0>
explicit FPBits(XType x) {
*this = *reinterpret_cast<FPBits<T> *>(&x);
}
operator T() { return *reinterpret_cast<T *>(this); }
int getExponent() const { return int(exponent) - exponentBias; }
bool isZero() const { return mantissa == 0 && exponent == 0; }
bool isInf() const { return mantissa == 0 && exponent == maxExponent; }
bool isNaN() const { return exponent == maxExponent && mantissa != 0; }
bool isInfOrNaN() const { return exponent == maxExponent; }
// Methods below this are used by tests.
// The to and from integer bits converters are only used in tests. Hence,
// the potential software implementations of UIntType will not slow real
// code.
template <typename XType,
cpp::EnableIfType<cpp::IsSame<UIntType, XType>::Value, int> = 0>
explicit FPBits<long double>(XType x) {
// The last 4 bytes of v are ignored in case of i386.
*this = *reinterpret_cast<FPBits<T> *>(&x);
}
UIntType bitsAsUInt() const {
return *reinterpret_cast<const UIntType *>(this);
}
static FPBits<T> zero() { return FPBits(T(0.0)); }
static FPBits<T> negZero() {
FPBits<T> bits(T(0.0));
bits.sign = 1;
return bits;
}
static FPBits<T> inf() {
FPBits<T> bits(T(0.0));
bits.exponent = maxExponent;
return bits;
}
static FPBits<T> negInf() {
FPBits<T> bits(T(0.0));
bits.exponent = maxExponent;
bits.sign = 1;
return bits;
}
static T buildNaN(UIntType v) {
FPBits<T> bits(T(0.0));
bits.exponent = maxExponent;
bits.mantissa = v;
return bits;
}
};
} // namespace fputil
} // namespace __llvm_libc
#if defined(__x86_64__) || defined(__i386__)
#include "utils/FPUtil/LongDoubleBitsX86.h"
#endif
#endif // LLVM_LIBC_UTILS_FPUTIL_FP_BITS_H