LibcBenchmarkTest.cpp
6.25 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
//===-- Benchmark function tests -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LibcBenchmark.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <chrono>
#include <limits>
#include <queue>
#include <vector>
using std::chrono::nanoseconds;
using ::testing::ElementsAre;
using ::testing::Field;
using ::testing::IsEmpty;
using ::testing::SizeIs;
namespace llvm {
namespace libc_benchmarks {
namespace {
// A simple parameter provider returning a zero initialized vector of size
// `iterations`.
struct DummyParameterProvider {
std::vector<char> generateBatch(size_t iterations) {
return std::vector<char>(iterations);
}
};
class LibcBenchmark : public ::testing::Test {
public:
// A Clock interface suitable for testing.
// - Either it returns 0,
// - Or a timepoint coming from the `setMeasurements` call.
Duration now() {
if (!MaybeTimepoints)
return {};
assert(!MaybeTimepoints->empty());
const Duration timepoint = MaybeTimepoints->front();
MaybeTimepoints->pop();
return timepoint;
}
protected:
void SetUp() override { Options.Log = BenchmarkLog::Full; }
void TearDown() override {
// We make sure all the expected measurements were performed.
if (MaybeTimepoints)
EXPECT_THAT(*MaybeTimepoints, IsEmpty());
}
BenchmarkResult run() {
return benchmark(Options, ParameterProvider, DummyFunction, *this);
}
void setMeasurements(llvm::ArrayRef<Duration> Durations) {
MaybeTimepoints.emplace(); // Create the optional value.
Duration CurrentTime = nanoseconds(1);
for (const auto &Duration : Durations) {
MaybeTimepoints->push(CurrentTime);
CurrentTime += Duration;
MaybeTimepoints->push(CurrentTime);
CurrentTime += nanoseconds(1);
}
}
BenchmarkOptions Options;
private:
DummyParameterProvider ParameterProvider;
static char DummyFunction(char Payload) { return Payload; }
llvm::Optional<std::queue<Duration>> MaybeTimepoints;
};
TEST_F(LibcBenchmark, MaxSamplesReached) {
Options.MaxSamples = 1;
const auto Result = run();
EXPECT_THAT(Result.MaybeBenchmarkLog->size(), 1);
EXPECT_THAT(Result.TerminationStatus, BenchmarkStatus::MaxSamplesReached);
}
TEST_F(LibcBenchmark, MaxDurationReached) {
Options.MaxDuration = nanoseconds(10);
setMeasurements({nanoseconds(11)});
const auto Result = run();
EXPECT_THAT(Result.MaybeBenchmarkLog->size(), 1);
EXPECT_THAT(Result.TerminationStatus, BenchmarkStatus::MaxDurationReached);
}
TEST_F(LibcBenchmark, MaxIterationsReached) {
Options.InitialIterations = 1;
Options.MaxIterations = 20;
Options.ScalingFactor = 2;
Options.Epsilon = 0; // unreachable.
const auto Result = run();
EXPECT_THAT(*Result.MaybeBenchmarkLog,
ElementsAre(Field(&BenchmarkState::LastSampleIterations, 1),
Field(&BenchmarkState::LastSampleIterations, 2),
Field(&BenchmarkState::LastSampleIterations, 4),
Field(&BenchmarkState::LastSampleIterations, 8),
Field(&BenchmarkState::LastSampleIterations, 16),
Field(&BenchmarkState::LastSampleIterations, 32)));
EXPECT_THAT(Result.MaybeBenchmarkLog->size(), 6);
EXPECT_THAT(Result.TerminationStatus, BenchmarkStatus::MaxIterationsReached);
}
TEST_F(LibcBenchmark, MinSamples) {
Options.MinSamples = 4;
Options.ScalingFactor = 2;
Options.Epsilon = std::numeric_limits<double>::max(); // always reachable.
setMeasurements(
{nanoseconds(1), nanoseconds(2), nanoseconds(4), nanoseconds(8)});
const auto Result = run();
EXPECT_THAT(*Result.MaybeBenchmarkLog,
ElementsAre(Field(&BenchmarkState::LastSampleIterations, 1),
Field(&BenchmarkState::LastSampleIterations, 2),
Field(&BenchmarkState::LastSampleIterations, 4),
Field(&BenchmarkState::LastSampleIterations, 8)));
EXPECT_THAT(Result.MaybeBenchmarkLog->size(), 4);
EXPECT_THAT(Result.TerminationStatus, BenchmarkStatus::PrecisionReached);
}
TEST_F(LibcBenchmark, Epsilon) {
Options.MinSamples = 4;
Options.ScalingFactor = 2;
Options.Epsilon = std::numeric_limits<double>::max(); // always reachable.
setMeasurements(
{nanoseconds(1), nanoseconds(2), nanoseconds(4), nanoseconds(8)});
const auto Result = run();
EXPECT_THAT(*Result.MaybeBenchmarkLog,
ElementsAre(Field(&BenchmarkState::LastSampleIterations, 1),
Field(&BenchmarkState::LastSampleIterations, 2),
Field(&BenchmarkState::LastSampleIterations, 4),
Field(&BenchmarkState::LastSampleIterations, 8)));
EXPECT_THAT(Result.MaybeBenchmarkLog->size(), 4);
EXPECT_THAT(Result.TerminationStatus, BenchmarkStatus::PrecisionReached);
}
TEST(ArrayRefLoop, Cycle) {
std::array<int, 2> array = {1, 2};
EXPECT_THAT(cycle(array, 0), ElementsAre());
EXPECT_THAT(cycle(array, 1), ElementsAre(1));
EXPECT_THAT(cycle(array, 2), ElementsAre(1, 2));
EXPECT_THAT(cycle(array, 3), ElementsAre(1, 2, 1));
EXPECT_THAT(cycle(array, 4), ElementsAre(1, 2, 1, 2));
EXPECT_THAT(cycle(array, 5), ElementsAre(1, 2, 1, 2, 1));
}
TEST(ByteConstrainedArray, Simple) {
EXPECT_THAT((ByteConstrainedArray<char, 17>()), SizeIs(17));
EXPECT_THAT((ByteConstrainedArray<uint16_t, 17>()), SizeIs(8));
EXPECT_THAT((ByteConstrainedArray<uint32_t, 17>()), SizeIs(4));
EXPECT_THAT((ByteConstrainedArray<uint64_t, 17>()), SizeIs(2));
EXPECT_LE(sizeof(ByteConstrainedArray<char, 17>), 17U);
EXPECT_LE(sizeof(ByteConstrainedArray<uint16_t, 17>), 17U);
EXPECT_LE(sizeof(ByteConstrainedArray<uint32_t, 17>), 17U);
EXPECT_LE(sizeof(ByteConstrainedArray<uint64_t, 17>), 17U);
}
TEST(ByteConstrainedArray, Cycle) {
ByteConstrainedArray<uint64_t, 17> TwoValues{{1UL, 2UL}};
EXPECT_THAT(cycle(TwoValues, 5), ElementsAre(1, 2, 1, 2, 1));
}
} // namespace
} // namespace libc_benchmarks
} // namespace llvm