check-do-forall.cpp
41 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
//===-- lib/Semantics/check-do-forall.cpp ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "check-do-forall.h"
#include "flang/Common/template.h"
#include "flang/Evaluate/call.h"
#include "flang/Evaluate/expression.h"
#include "flang/Evaluate/tools.h"
#include "flang/Parser/message.h"
#include "flang/Parser/parse-tree-visitor.h"
#include "flang/Parser/tools.h"
#include "flang/Semantics/attr.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
namespace Fortran::evaluate {
using ActualArgumentRef = common::Reference<const ActualArgument>;
inline bool operator<(ActualArgumentRef x, ActualArgumentRef y) {
return &*x < &*y;
}
} // namespace Fortran::evaluate
namespace Fortran::semantics {
using namespace parser::literals;
using Bounds = parser::LoopControl::Bounds;
using IndexVarKind = SemanticsContext::IndexVarKind;
static const parser::ConcurrentHeader &GetConcurrentHeader(
const parser::LoopControl &loopControl) {
const auto &concurrent{
std::get<parser::LoopControl::Concurrent>(loopControl.u)};
return std::get<parser::ConcurrentHeader>(concurrent.t);
}
static const parser::ConcurrentHeader &GetConcurrentHeader(
const parser::ForallConstruct &construct) {
const auto &stmt{
std::get<parser::Statement<parser::ForallConstructStmt>>(construct.t)};
return std::get<common::Indirection<parser::ConcurrentHeader>>(
stmt.statement.t)
.value();
}
static const parser::ConcurrentHeader &GetConcurrentHeader(
const parser::ForallStmt &stmt) {
return std::get<common::Indirection<parser::ConcurrentHeader>>(stmt.t)
.value();
}
template <typename T>
static const std::list<parser::ConcurrentControl> &GetControls(const T &x) {
return std::get<std::list<parser::ConcurrentControl>>(
GetConcurrentHeader(x).t);
}
static const Bounds &GetBounds(const parser::DoConstruct &doConstruct) {
auto &loopControl{doConstruct.GetLoopControl().value()};
return std::get<Bounds>(loopControl.u);
}
static const parser::Name &GetDoVariable(
const parser::DoConstruct &doConstruct) {
const Bounds &bounds{GetBounds(doConstruct)};
return bounds.name.thing;
}
// Return the (possibly null) name of the construct
template <typename A>
static const parser::Name *MaybeGetConstructName(const A &a) {
return common::GetPtrFromOptional(std::get<0>(std::get<0>(a.t).statement.t));
}
static parser::MessageFixedText GetEnclosingDoMsg() {
return "Enclosing DO CONCURRENT statement"_en_US;
}
static const parser::Name *MaybeGetConstructName(
const parser::BlockConstruct &blockConstruct) {
return common::GetPtrFromOptional(
std::get<parser::Statement<parser::BlockStmt>>(blockConstruct.t)
.statement.v);
}
static void SayWithDo(SemanticsContext &context, parser::CharBlock stmtLocation,
parser::MessageFixedText &&message, parser::CharBlock doLocation) {
context.Say(stmtLocation, message).Attach(doLocation, GetEnclosingDoMsg());
}
// 11.1.7.5 - enforce semantics constraints on a DO CONCURRENT loop body
class DoConcurrentBodyEnforce {
public:
DoConcurrentBodyEnforce(
SemanticsContext &context, parser::CharBlock doConcurrentSourcePosition)
: context_{context}, doConcurrentSourcePosition_{
doConcurrentSourcePosition} {}
std::set<parser::Label> labels() { return labels_; }
template <typename T> bool Pre(const T &) { return true; }
template <typename T> void Post(const T &) {}
template <typename T> bool Pre(const parser::Statement<T> &statement) {
currentStatementSourcePosition_ = statement.source;
if (statement.label.has_value()) {
labels_.insert(*statement.label);
}
return true;
}
template <typename T> bool Pre(const parser::UnlabeledStatement<T> &stmt) {
currentStatementSourcePosition_ = stmt.source;
return true;
}
// C1140 -- Can't deallocate a polymorphic entity in a DO CONCURRENT.
// Deallocation can be caused by exiting a block that declares an allocatable
// entity, assignment to an allocatable variable, or an actual DEALLOCATE
// statement
//
// Note also that the deallocation of a derived type entity might cause the
// invocation of an IMPURE final subroutine. (C1139)
//
// Only to be called for symbols with ObjectEntityDetails
static bool HasImpureFinal(const Symbol &symbol) {
if (const Symbol * root{GetAssociationRoot(symbol)}) {
CHECK(root->has<ObjectEntityDetails>());
if (const DeclTypeSpec * symType{root->GetType()}) {
if (const DerivedTypeSpec * derived{symType->AsDerived()}) {
return semantics::HasImpureFinal(*derived);
}
}
}
return false;
}
// Predicate for deallocations caused by block exit and direct deallocation
static bool DeallocateAll(const Symbol &) { return true; }
// Predicate for deallocations caused by intrinsic assignment
static bool DeallocateNonCoarray(const Symbol &component) {
return !IsCoarray(component);
}
static bool WillDeallocatePolymorphic(const Symbol &entity,
const std::function<bool(const Symbol &)> &WillDeallocate) {
return WillDeallocate(entity) && IsPolymorphicAllocatable(entity);
}
// Is it possible that we will we deallocate a polymorphic entity or one
// of its components?
static bool MightDeallocatePolymorphic(const Symbol &entity,
const std::function<bool(const Symbol &)> &WillDeallocate) {
if (const Symbol * root{GetAssociationRoot(entity)}) {
// Check the entity itself, no coarray exception here
if (IsPolymorphicAllocatable(*root)) {
return true;
}
// Check the components
if (const auto *details{root->detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * entityType{details->type()}) {
if (const DerivedTypeSpec * derivedType{entityType->AsDerived()}) {
UltimateComponentIterator ultimates{*derivedType};
for (const auto &ultimate : ultimates) {
if (WillDeallocatePolymorphic(ultimate, WillDeallocate)) {
return true;
}
}
}
}
}
}
return false;
}
void SayDeallocateWithImpureFinal(const Symbol &entity, const char *reason) {
context_.SayWithDecl(entity, currentStatementSourcePosition_,
"Deallocation of an entity with an IMPURE FINAL procedure"
" caused by %s not allowed in DO CONCURRENT"_err_en_US,
reason);
}
void SayDeallocateOfPolymorph(
parser::CharBlock location, const Symbol &entity, const char *reason) {
context_.SayWithDecl(entity, location,
"Deallocation of a polymorphic entity caused by %s"
" not allowed in DO CONCURRENT"_err_en_US,
reason);
}
// Deallocation caused by block exit
// Allocatable entities and all of their allocatable subcomponents will be
// deallocated. This test is different from the other two because it does
// not deallocate in cases where the entity itself is not allocatable but
// has allocatable polymorphic components
void Post(const parser::BlockConstruct &blockConstruct) {
const auto &endBlockStmt{
std::get<parser::Statement<parser::EndBlockStmt>>(blockConstruct.t)};
const Scope &blockScope{context_.FindScope(endBlockStmt.source)};
const Scope &doScope{context_.FindScope(doConcurrentSourcePosition_)};
if (DoesScopeContain(&doScope, blockScope)) {
const char *reason{"block exit"};
for (auto &pair : blockScope) {
const Symbol &entity{*pair.second};
if (IsAllocatable(entity) && !IsSaved(entity) &&
MightDeallocatePolymorphic(entity, DeallocateAll)) {
SayDeallocateOfPolymorph(endBlockStmt.source, entity, reason);
}
if (HasImpureFinal(entity)) {
SayDeallocateWithImpureFinal(entity, reason);
}
}
}
}
// Deallocation caused by assignment
// Note that this case does not cause deallocation of coarray components
void Post(const parser::AssignmentStmt &stmt) {
const auto &variable{std::get<parser::Variable>(stmt.t)};
if (const Symbol * entity{GetLastName(variable).symbol}) {
const char *reason{"assignment"};
if (MightDeallocatePolymorphic(*entity, DeallocateNonCoarray)) {
SayDeallocateOfPolymorph(variable.GetSource(), *entity, reason);
}
if (HasImpureFinal(*entity)) {
SayDeallocateWithImpureFinal(*entity, reason);
}
}
}
// Deallocation from a DEALLOCATE statement
// This case is different because DEALLOCATE statements deallocate both
// ALLOCATABLE and POINTER entities
void Post(const parser::DeallocateStmt &stmt) {
const auto &allocateObjectList{
std::get<std::list<parser::AllocateObject>>(stmt.t)};
for (const auto &allocateObject : allocateObjectList) {
const parser::Name &name{GetLastName(allocateObject)};
const char *reason{"a DEALLOCATE statement"};
if (name.symbol) {
const Symbol &entity{*name.symbol};
const DeclTypeSpec *entityType{entity.GetType()};
if ((entityType && entityType->IsPolymorphic()) || // POINTER case
MightDeallocatePolymorphic(entity, DeallocateAll)) {
SayDeallocateOfPolymorph(
currentStatementSourcePosition_, entity, reason);
}
if (HasImpureFinal(entity)) {
SayDeallocateWithImpureFinal(entity, reason);
}
}
}
}
// C1137 -- No image control statements in a DO CONCURRENT
void Post(const parser::ExecutableConstruct &construct) {
if (IsImageControlStmt(construct)) {
const parser::CharBlock statementLocation{
GetImageControlStmtLocation(construct)};
auto &msg{context_.Say(statementLocation,
"An image control statement is not allowed in DO"
" CONCURRENT"_err_en_US)};
if (auto coarrayMsg{GetImageControlStmtCoarrayMsg(construct)}) {
msg.Attach(statementLocation, *coarrayMsg);
}
msg.Attach(doConcurrentSourcePosition_, GetEnclosingDoMsg());
}
}
// C1136 -- No RETURN statements in a DO CONCURRENT
void Post(const parser::ReturnStmt &) {
context_
.Say(currentStatementSourcePosition_,
"RETURN is not allowed in DO CONCURRENT"_err_en_US)
.Attach(doConcurrentSourcePosition_, GetEnclosingDoMsg());
}
// C1139: call to impure procedure and ...
// C1141: cannot call ieee_get_flag, ieee_[gs]et_halting_mode
// It's not necessary to check the ieee_get* procedures because they're
// not pure, and impure procedures are caught by checks for constraint C1139
void Post(const parser::ProcedureDesignator &procedureDesignator) {
if (auto *name{std::get_if<parser::Name>(&procedureDesignator.u)}) {
if (name->symbol && !IsPureProcedure(*name->symbol)) {
SayWithDo(context_, currentStatementSourcePosition_,
"Call to an impure procedure is not allowed in DO"
" CONCURRENT"_err_en_US,
doConcurrentSourcePosition_);
}
if (name->symbol && fromScope(*name->symbol, "ieee_exceptions"s)) {
if (name->source == "ieee_set_halting_mode") {
SayWithDo(context_, currentStatementSourcePosition_,
"IEEE_SET_HALTING_MODE is not allowed in DO "
"CONCURRENT"_err_en_US,
doConcurrentSourcePosition_);
}
}
} else {
// C1139: this a procedure component
auto &component{std::get<parser::ProcComponentRef>(procedureDesignator.u)
.v.thing.component};
if (component.symbol && !IsPureProcedure(*component.symbol)) {
SayWithDo(context_, currentStatementSourcePosition_,
"Call to an impure procedure component is not allowed"
" in DO CONCURRENT"_err_en_US,
doConcurrentSourcePosition_);
}
}
}
// 11.1.7.5, paragraph 5, no ADVANCE specifier in a DO CONCURRENT
void Post(const parser::IoControlSpec &ioControlSpec) {
if (auto *charExpr{
std::get_if<parser::IoControlSpec::CharExpr>(&ioControlSpec.u)}) {
if (std::get<parser::IoControlSpec::CharExpr::Kind>(charExpr->t) ==
parser::IoControlSpec::CharExpr::Kind::Advance) {
SayWithDo(context_, currentStatementSourcePosition_,
"ADVANCE specifier is not allowed in DO"
" CONCURRENT"_err_en_US,
doConcurrentSourcePosition_);
}
}
}
private:
// Return the (possibly null) name of the statement
template <typename A>
static const parser::Name *MaybeGetStmtName(const A &a) {
return common::GetPtrFromOptional(std::get<0>(a.t));
}
bool fromScope(const Symbol &symbol, const std::string &moduleName) {
if (symbol.GetUltimate().owner().IsModule() &&
symbol.GetUltimate().owner().GetName().value().ToString() ==
moduleName) {
return true;
}
return false;
}
std::set<parser::Label> labels_;
parser::CharBlock currentStatementSourcePosition_;
SemanticsContext &context_;
parser::CharBlock doConcurrentSourcePosition_;
}; // class DoConcurrentBodyEnforce
// Class for enforcing C1130 -- in a DO CONCURRENT with DEFAULT(NONE),
// variables from enclosing scopes must have their locality specified
class DoConcurrentVariableEnforce {
public:
DoConcurrentVariableEnforce(
SemanticsContext &context, parser::CharBlock doConcurrentSourcePosition)
: context_{context},
doConcurrentSourcePosition_{doConcurrentSourcePosition},
blockScope_{context.FindScope(doConcurrentSourcePosition_)} {}
template <typename T> bool Pre(const T &) { return true; }
template <typename T> void Post(const T &) {}
// Check to see if the name is a variable from an enclosing scope
void Post(const parser::Name &name) {
if (const Symbol * symbol{name.symbol}) {
if (IsVariableName(*symbol)) {
const Scope &variableScope{symbol->owner()};
if (DoesScopeContain(&variableScope, blockScope_)) {
context_.SayWithDecl(*symbol, name.source,
"Variable '%s' from an enclosing scope referenced in DO "
"CONCURRENT with DEFAULT(NONE) must appear in a "
"locality-spec"_err_en_US,
symbol->name());
}
}
}
}
private:
SemanticsContext &context_;
parser::CharBlock doConcurrentSourcePosition_;
const Scope &blockScope_;
}; // class DoConcurrentVariableEnforce
// Find a DO or FORALL and enforce semantics checks on its body
class DoContext {
public:
DoContext(SemanticsContext &context, IndexVarKind kind)
: context_{context}, kind_{kind} {}
// Mark this DO construct as a point of definition for the DO variables
// or index-names it contains. If they're already defined, emit an error
// message. We need to remember both the variable and the source location of
// the variable in the DO construct so that we can remove it when we leave
// the DO construct and use its location in error messages.
void DefineDoVariables(const parser::DoConstruct &doConstruct) {
if (doConstruct.IsDoNormal()) {
context_.ActivateIndexVar(GetDoVariable(doConstruct), IndexVarKind::DO);
} else if (doConstruct.IsDoConcurrent()) {
if (const auto &loopControl{doConstruct.GetLoopControl()}) {
ActivateIndexVars(GetControls(*loopControl));
}
}
}
// Called at the end of a DO construct to deactivate the DO construct
void ResetDoVariables(const parser::DoConstruct &doConstruct) {
if (doConstruct.IsDoNormal()) {
context_.DeactivateIndexVar(GetDoVariable(doConstruct));
} else if (doConstruct.IsDoConcurrent()) {
if (const auto &loopControl{doConstruct.GetLoopControl()}) {
DeactivateIndexVars(GetControls(*loopControl));
}
}
}
void ActivateIndexVars(const std::list<parser::ConcurrentControl> &controls) {
for (const auto &control : controls) {
context_.ActivateIndexVar(std::get<parser::Name>(control.t), kind_);
}
}
void DeactivateIndexVars(
const std::list<parser::ConcurrentControl> &controls) {
for (const auto &control : controls) {
context_.DeactivateIndexVar(std::get<parser::Name>(control.t));
}
}
void Check(const parser::DoConstruct &doConstruct) {
if (doConstruct.IsDoConcurrent()) {
CheckDoConcurrent(doConstruct);
return;
}
if (doConstruct.IsDoNormal()) {
CheckDoNormal(doConstruct);
return;
}
// TODO: handle the other cases
}
void Check(const parser::ForallStmt &stmt) {
CheckConcurrentHeader(GetConcurrentHeader(stmt));
}
void Check(const parser::ForallConstruct &construct) {
CheckConcurrentHeader(GetConcurrentHeader(construct));
}
void Check(const parser::ForallAssignmentStmt &stmt) {
const evaluate::Assignment *assignment{std::visit(
common::visitors{[&](const auto &x) { return GetAssignment(x); }},
stmt.u)};
if (assignment) {
CheckForallIndexesUsed(*assignment);
CheckForImpureCall(assignment->lhs);
CheckForImpureCall(assignment->rhs);
if (const auto *proc{
std::get_if<evaluate::ProcedureRef>(&assignment->u)}) {
CheckForImpureCall(*proc);
}
std::visit(common::visitors{
[](const evaluate::Assignment::Intrinsic &) {},
[&](const evaluate::ProcedureRef &proc) {
CheckForImpureCall(proc);
},
[&](const evaluate::Assignment::BoundsSpec &bounds) {
for (const auto &bound : bounds) {
CheckForImpureCall(SomeExpr{bound});
}
},
[&](const evaluate::Assignment::BoundsRemapping &bounds) {
for (const auto &bound : bounds) {
CheckForImpureCall(SomeExpr{bound.first});
CheckForImpureCall(SomeExpr{bound.second});
}
},
},
assignment->u);
}
}
private:
void SayBadDoControl(parser::CharBlock sourceLocation) {
context_.Say(sourceLocation, "DO controls should be INTEGER"_err_en_US);
}
void CheckDoControl(const parser::CharBlock &sourceLocation, bool isReal) {
const bool warn{context_.warnOnNonstandardUsage() ||
context_.ShouldWarn(common::LanguageFeature::RealDoControls)};
if (isReal && !warn) {
// No messages for the default case
} else if (isReal && warn) {
context_.Say(sourceLocation, "DO controls should be INTEGER"_en_US);
} else {
SayBadDoControl(sourceLocation);
}
}
void CheckDoVariable(const parser::ScalarName &scalarName) {
const parser::CharBlock &sourceLocation{scalarName.thing.source};
if (const Symbol * symbol{scalarName.thing.symbol}) {
if (!IsVariableName(*symbol)) {
context_.Say(
sourceLocation, "DO control must be an INTEGER variable"_err_en_US);
} else {
const DeclTypeSpec *symType{symbol->GetType()};
if (!symType) {
SayBadDoControl(sourceLocation);
} else {
if (!symType->IsNumeric(TypeCategory::Integer)) {
CheckDoControl(
sourceLocation, symType->IsNumeric(TypeCategory::Real));
}
}
} // No messages for INTEGER
}
}
// Semantic checks for the limit and step expressions
void CheckDoExpression(const parser::ScalarExpr &scalarExpression) {
if (const SomeExpr * expr{GetExpr(scalarExpression)}) {
if (!ExprHasTypeCategory(*expr, TypeCategory::Integer)) {
// No warnings or errors for type INTEGER
const parser::CharBlock &loc{scalarExpression.thing.value().source};
CheckDoControl(loc, ExprHasTypeCategory(*expr, TypeCategory::Real));
}
}
}
void CheckDoNormal(const parser::DoConstruct &doConstruct) {
// C1120 -- types of DO variables must be INTEGER, extended by allowing
// REAL and DOUBLE PRECISION
const Bounds &bounds{GetBounds(doConstruct)};
CheckDoVariable(bounds.name);
CheckDoExpression(bounds.lower);
CheckDoExpression(bounds.upper);
if (bounds.step) {
CheckDoExpression(*bounds.step);
if (IsZero(*bounds.step)) {
context_.Say(bounds.step->thing.value().source,
"DO step expression should not be zero"_en_US);
}
}
}
void CheckDoConcurrent(const parser::DoConstruct &doConstruct) {
auto &doStmt{
std::get<parser::Statement<parser::NonLabelDoStmt>>(doConstruct.t)};
currentStatementSourcePosition_ = doStmt.source;
const parser::Block &block{std::get<parser::Block>(doConstruct.t)};
DoConcurrentBodyEnforce doConcurrentBodyEnforce{context_, doStmt.source};
parser::Walk(block, doConcurrentBodyEnforce);
LabelEnforce doConcurrentLabelEnforce{context_,
doConcurrentBodyEnforce.labels(), currentStatementSourcePosition_,
"DO CONCURRENT"};
parser::Walk(block, doConcurrentLabelEnforce);
const auto &loopControl{doConstruct.GetLoopControl()};
CheckConcurrentLoopControl(*loopControl);
CheckLocalitySpecs(*loopControl, block);
}
// Return a set of symbols whose names are in a Local locality-spec. Look
// the names up in the scope that encloses the DO construct to avoid getting
// the local versions of them. Then follow the host-, use-, and
// construct-associations to get the root symbols
SymbolSet GatherLocals(
const std::list<parser::LocalitySpec> &localitySpecs) const {
SymbolSet symbols;
const Scope &parentScope{
context_.FindScope(currentStatementSourcePosition_).parent()};
// Loop through the LocalitySpec::Local locality-specs
for (const auto &ls : localitySpecs) {
if (const auto *names{std::get_if<parser::LocalitySpec::Local>(&ls.u)}) {
// Loop through the names in the Local locality-spec getting their
// symbols
for (const parser::Name &name : names->v) {
if (const Symbol * symbol{parentScope.FindSymbol(name.source)}) {
if (const Symbol * root{GetAssociationRoot(*symbol)}) {
symbols.insert(*root);
}
}
}
}
}
return symbols;
}
static SymbolSet GatherSymbolsFromExpression(const parser::Expr &expression) {
SymbolSet result;
if (const auto *expr{GetExpr(expression)}) {
for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) {
if (const Symbol * root{GetAssociationRoot(symbol)}) {
result.insert(*root);
}
}
}
return result;
}
// C1121 - procedures in mask must be pure
void CheckMaskIsPure(const parser::ScalarLogicalExpr &mask) const {
SymbolSet references{GatherSymbolsFromExpression(mask.thing.thing.value())};
for (const Symbol &ref : references) {
if (IsProcedure(ref) && !IsPureProcedure(ref)) {
context_.SayWithDecl(ref, parser::Unwrap<parser::Expr>(mask)->source,
"%s mask expression may not reference impure procedure '%s'"_err_en_US,
LoopKindName(), ref.name());
return;
}
}
}
void CheckNoCollisions(const SymbolSet &refs, const SymbolSet &uses,
parser::MessageFixedText &&errorMessage,
const parser::CharBlock &refPosition) const {
for (const Symbol &ref : refs) {
if (uses.find(ref) != uses.end()) {
context_.SayWithDecl(ref, refPosition, std::move(errorMessage),
LoopKindName(), ref.name());
return;
}
}
}
void HasNoReferences(
const SymbolSet &indexNames, const parser::ScalarIntExpr &expr) const {
CheckNoCollisions(GatherSymbolsFromExpression(expr.thing.thing.value()),
indexNames,
"%s limit expression may not reference index variable '%s'"_err_en_US,
expr.thing.thing.value().source);
}
// C1129, names in local locality-specs can't be in mask expressions
void CheckMaskDoesNotReferenceLocal(
const parser::ScalarLogicalExpr &mask, const SymbolSet &localVars) const {
CheckNoCollisions(GatherSymbolsFromExpression(mask.thing.thing.value()),
localVars,
"%s mask expression references variable '%s'"
" in LOCAL locality-spec"_err_en_US,
mask.thing.thing.value().source);
}
// C1129, names in local locality-specs can't be in limit or step
// expressions
void CheckExprDoesNotReferenceLocal(
const parser::ScalarIntExpr &expr, const SymbolSet &localVars) const {
CheckNoCollisions(GatherSymbolsFromExpression(expr.thing.thing.value()),
localVars,
"%s expression references variable '%s'"
" in LOCAL locality-spec"_err_en_US,
expr.thing.thing.value().source);
}
// C1130, DEFAULT(NONE) locality requires names to be in locality-specs to
// be used in the body of the DO loop
void CheckDefaultNoneImpliesExplicitLocality(
const std::list<parser::LocalitySpec> &localitySpecs,
const parser::Block &block) const {
bool hasDefaultNone{false};
for (auto &ls : localitySpecs) {
if (std::holds_alternative<parser::LocalitySpec::DefaultNone>(ls.u)) {
if (hasDefaultNone) {
// C1127, you can only have one DEFAULT(NONE)
context_.Say(currentStatementSourcePosition_,
"Only one DEFAULT(NONE) may appear"_en_US);
break;
}
hasDefaultNone = true;
}
}
if (hasDefaultNone) {
DoConcurrentVariableEnforce doConcurrentVariableEnforce{
context_, currentStatementSourcePosition_};
parser::Walk(block, doConcurrentVariableEnforce);
}
}
// C1123, concurrent limit or step expressions can't reference index-names
void CheckConcurrentHeader(const parser::ConcurrentHeader &header) const {
if (const auto &mask{
std::get<std::optional<parser::ScalarLogicalExpr>>(header.t)}) {
CheckMaskIsPure(*mask);
}
auto &controls{std::get<std::list<parser::ConcurrentControl>>(header.t)};
SymbolSet indexNames;
for (const parser::ConcurrentControl &control : controls) {
const auto &indexName{std::get<parser::Name>(control.t)};
if (indexName.symbol) {
indexNames.insert(*indexName.symbol);
}
}
if (!indexNames.empty()) {
for (const parser::ConcurrentControl &control : controls) {
HasNoReferences(indexNames, std::get<1>(control.t));
HasNoReferences(indexNames, std::get<2>(control.t));
if (const auto &intExpr{
std::get<std::optional<parser::ScalarIntExpr>>(control.t)}) {
const parser::Expr &expr{intExpr->thing.thing.value()};
CheckNoCollisions(GatherSymbolsFromExpression(expr), indexNames,
"%s step expression may not reference index variable '%s'"_err_en_US,
expr.source);
if (IsZero(expr)) {
context_.Say(expr.source,
"%s step expression may not be zero"_err_en_US, LoopKindName());
}
}
}
}
}
void CheckLocalitySpecs(
const parser::LoopControl &control, const parser::Block &block) const {
const auto &concurrent{
std::get<parser::LoopControl::Concurrent>(control.u)};
const auto &header{std::get<parser::ConcurrentHeader>(concurrent.t)};
const auto &localitySpecs{
std::get<std::list<parser::LocalitySpec>>(concurrent.t)};
if (!localitySpecs.empty()) {
const SymbolSet &localVars{GatherLocals(localitySpecs)};
for (const auto &c : GetControls(control)) {
CheckExprDoesNotReferenceLocal(std::get<1>(c.t), localVars);
CheckExprDoesNotReferenceLocal(std::get<2>(c.t), localVars);
if (const auto &expr{
std::get<std::optional<parser::ScalarIntExpr>>(c.t)}) {
CheckExprDoesNotReferenceLocal(*expr, localVars);
}
}
if (const auto &mask{
std::get<std::optional<parser::ScalarLogicalExpr>>(header.t)}) {
CheckMaskDoesNotReferenceLocal(*mask, localVars);
}
CheckDefaultNoneImpliesExplicitLocality(localitySpecs, block);
}
}
// check constraints [C1121 .. C1130]
void CheckConcurrentLoopControl(const parser::LoopControl &control) const {
const auto &concurrent{
std::get<parser::LoopControl::Concurrent>(control.u)};
CheckConcurrentHeader(std::get<parser::ConcurrentHeader>(concurrent.t));
}
template <typename T> void CheckForImpureCall(const T &x) {
const auto &intrinsics{context_.foldingContext().intrinsics()};
if (auto bad{FindImpureCall(intrinsics, x)}) {
context_.Say(
"Impure procedure '%s' may not be referenced in a %s"_err_en_US, *bad,
LoopKindName());
}
}
// Each index should be used on the LHS of each assignment in a FORALL
void CheckForallIndexesUsed(const evaluate::Assignment &assignment) {
SymbolVector indexVars{context_.GetIndexVars(IndexVarKind::FORALL)};
if (!indexVars.empty()) {
SymbolSet symbols{evaluate::CollectSymbols(assignment.lhs)};
std::visit(
common::visitors{
[&](const evaluate::Assignment::BoundsSpec &spec) {
for (const auto &bound : spec) {
// TODO: this is working around missing std::set::merge in some versions of
// clang that we are building with
#ifdef __clang__
auto boundSymbols{evaluate::CollectSymbols(bound)};
symbols.insert(boundSymbols.begin(), boundSymbols.end());
#else
symbols.merge(evaluate::CollectSymbols(bound));
#endif
}
},
[&](const evaluate::Assignment::BoundsRemapping &remapping) {
for (const auto &bounds : remapping) {
#ifdef __clang__
auto lbSymbols{evaluate::CollectSymbols(bounds.first)};
symbols.insert(lbSymbols.begin(), lbSymbols.end());
auto ubSymbols{evaluate::CollectSymbols(bounds.second)};
symbols.insert(ubSymbols.begin(), ubSymbols.end());
#else
symbols.merge(evaluate::CollectSymbols(bounds.first));
symbols.merge(evaluate::CollectSymbols(bounds.second));
#endif
}
},
[](const auto &) {},
},
assignment.u);
for (const Symbol &index : indexVars) {
if (symbols.count(index) == 0) {
context_.Say(
"Warning: FORALL index variable '%s' not used on left-hand side"
" of assignment"_en_US,
index.name());
}
}
}
}
// For messages where the DO loop must be DO CONCURRENT, make that explicit.
const char *LoopKindName() const {
return kind_ == IndexVarKind::DO ? "DO CONCURRENT" : "FORALL";
}
SemanticsContext &context_;
const IndexVarKind kind_;
parser::CharBlock currentStatementSourcePosition_;
}; // class DoContext
void DoForallChecker::Enter(const parser::DoConstruct &doConstruct) {
DoContext doContext{context_, IndexVarKind::DO};
doContext.DefineDoVariables(doConstruct);
}
void DoForallChecker::Leave(const parser::DoConstruct &doConstruct) {
DoContext doContext{context_, IndexVarKind::DO};
doContext.Check(doConstruct);
doContext.ResetDoVariables(doConstruct);
}
void DoForallChecker::Enter(const parser::ForallConstruct &construct) {
DoContext doContext{context_, IndexVarKind::FORALL};
doContext.ActivateIndexVars(GetControls(construct));
}
void DoForallChecker::Leave(const parser::ForallConstruct &construct) {
DoContext doContext{context_, IndexVarKind::FORALL};
doContext.Check(construct);
doContext.DeactivateIndexVars(GetControls(construct));
}
void DoForallChecker::Enter(const parser::ForallStmt &stmt) {
DoContext doContext{context_, IndexVarKind::FORALL};
doContext.ActivateIndexVars(GetControls(stmt));
}
void DoForallChecker::Leave(const parser::ForallStmt &stmt) {
DoContext doContext{context_, IndexVarKind::FORALL};
doContext.Check(stmt);
doContext.DeactivateIndexVars(GetControls(stmt));
}
void DoForallChecker::Leave(const parser::ForallAssignmentStmt &stmt) {
DoContext doContext{context_, IndexVarKind::FORALL};
doContext.Check(stmt);
}
// Return the (possibly null) name of the ConstructNode
static const parser::Name *MaybeGetNodeName(const ConstructNode &construct) {
return std::visit(
[&](const auto &x) { return MaybeGetConstructName(*x); }, construct);
}
template <typename A>
static parser::CharBlock GetConstructPosition(const A &a) {
return std::get<0>(a.t).source;
}
static parser::CharBlock GetNodePosition(const ConstructNode &construct) {
return std::visit(
[&](const auto &x) { return GetConstructPosition(*x); }, construct);
}
void DoForallChecker::SayBadLeave(StmtType stmtType,
const char *enclosingStmtName, const ConstructNode &construct) const {
context_
.Say("%s must not leave a %s statement"_err_en_US, EnumToString(stmtType),
enclosingStmtName)
.Attach(GetNodePosition(construct), "The construct that was left"_en_US);
}
static const parser::DoConstruct *MaybeGetDoConstruct(
const ConstructNode &construct) {
if (const auto *doNode{
std::get_if<const parser::DoConstruct *>(&construct)}) {
return *doNode;
} else {
return nullptr;
}
}
static bool ConstructIsDoConcurrent(const ConstructNode &construct) {
const parser::DoConstruct *doConstruct{MaybeGetDoConstruct(construct)};
return doConstruct && doConstruct->IsDoConcurrent();
}
// Check that CYCLE and EXIT statements do not cause flow of control to
// leave DO CONCURRENT, CRITICAL, or CHANGE TEAM constructs.
void DoForallChecker::CheckForBadLeave(
StmtType stmtType, const ConstructNode &construct) const {
std::visit(common::visitors{
[&](const parser::DoConstruct *doConstructPtr) {
if (doConstructPtr->IsDoConcurrent()) {
// C1135 and C1167 -- CYCLE and EXIT statements can't leave
// a DO CONCURRENT
SayBadLeave(stmtType, "DO CONCURRENT", construct);
}
},
[&](const parser::CriticalConstruct *) {
// C1135 and C1168 -- similarly, for CRITICAL
SayBadLeave(stmtType, "CRITICAL", construct);
},
[&](const parser::ChangeTeamConstruct *) {
// C1135 and C1168 -- similarly, for CHANGE TEAM
SayBadLeave(stmtType, "CHANGE TEAM", construct);
},
[](const auto *) {},
},
construct);
}
static bool StmtMatchesConstruct(const parser::Name *stmtName,
StmtType stmtType, const parser::Name *constructName,
const ConstructNode &construct) {
bool inDoConstruct{MaybeGetDoConstruct(construct) != nullptr};
if (!stmtName) {
return inDoConstruct; // Unlabeled statements match all DO constructs
} else if (constructName && constructName->source == stmtName->source) {
return stmtType == StmtType::EXIT || inDoConstruct;
} else {
return false;
}
}
// C1167 Can't EXIT from a DO CONCURRENT
void DoForallChecker::CheckDoConcurrentExit(
StmtType stmtType, const ConstructNode &construct) const {
if (stmtType == StmtType::EXIT && ConstructIsDoConcurrent(construct)) {
SayBadLeave(StmtType::EXIT, "DO CONCURRENT", construct);
}
}
// Check nesting violations for a CYCLE or EXIT statement. Loop up the
// nesting levels looking for a construct that matches the CYCLE or EXIT
// statment. At every construct, check for a violation. If we find a match
// without finding a violation, the check is complete.
void DoForallChecker::CheckNesting(
StmtType stmtType, const parser::Name *stmtName) const {
const ConstructStack &stack{context_.constructStack()};
for (auto iter{stack.cend()}; iter-- != stack.cbegin();) {
const ConstructNode &construct{*iter};
const parser::Name *constructName{MaybeGetNodeName(construct)};
if (StmtMatchesConstruct(stmtName, stmtType, constructName, construct)) {
CheckDoConcurrentExit(stmtType, construct);
return; // We got a match, so we're finished checking
}
CheckForBadLeave(stmtType, construct);
}
// We haven't found a match in the enclosing constructs
if (stmtType == StmtType::EXIT) {
context_.Say("No matching construct for EXIT statement"_err_en_US);
} else {
context_.Say("No matching DO construct for CYCLE statement"_err_en_US);
}
}
// C1135 -- Nesting for CYCLE statements
void DoForallChecker::Enter(const parser::CycleStmt &cycleStmt) {
CheckNesting(StmtType::CYCLE, common::GetPtrFromOptional(cycleStmt.v));
}
// C1167 and C1168 -- Nesting for EXIT statements
void DoForallChecker::Enter(const parser::ExitStmt &exitStmt) {
CheckNesting(StmtType::EXIT, common::GetPtrFromOptional(exitStmt.v));
}
void DoForallChecker::Leave(const parser::AssignmentStmt &stmt) {
const auto &variable{std::get<parser::Variable>(stmt.t)};
context_.CheckIndexVarRedefine(variable);
}
static void CheckIfArgIsDoVar(const evaluate::ActualArgument &arg,
const parser::CharBlock location, SemanticsContext &context) {
common::Intent intent{arg.dummyIntent()};
if (intent == common::Intent::Out || intent == common::Intent::InOut) {
if (const SomeExpr * argExpr{arg.UnwrapExpr()}) {
if (const Symbol * var{evaluate::UnwrapWholeSymbolDataRef(*argExpr)}) {
if (intent == common::Intent::Out) {
context.CheckIndexVarRedefine(location, *var);
} else {
context.WarnIndexVarRedefine(location, *var); // INTENT(INOUT)
}
}
}
}
}
// Check to see if a DO variable is being passed as an actual argument to a
// dummy argument whose intent is OUT or INOUT. To do this, we need to find
// the expressions for actual arguments which contain DO variables. We get the
// intents of the dummy arguments from the ProcedureRef in the "typedCall"
// field of the CallStmt which was filled in during expression checking. At
// the same time, we need to iterate over the parser::Expr versions of the
// actual arguments to get their source locations of the arguments for the
// messages.
void DoForallChecker::Leave(const parser::CallStmt &callStmt) {
if (const auto &typedCall{callStmt.typedCall}) {
const auto &parsedArgs{
std::get<std::list<parser::ActualArgSpec>>(callStmt.v.t)};
auto parsedArgIter{parsedArgs.begin()};
const evaluate::ActualArguments &checkedArgs{typedCall->arguments()};
for (const auto &checkedOptionalArg : checkedArgs) {
if (parsedArgIter == parsedArgs.end()) {
break; // No more parsed arguments, we're done.
}
const auto &parsedArg{std::get<parser::ActualArg>(parsedArgIter->t)};
++parsedArgIter;
if (checkedOptionalArg) {
const evaluate::ActualArgument &checkedArg{*checkedOptionalArg};
if (const auto *parsedExpr{
std::get_if<common::Indirection<parser::Expr>>(&parsedArg.u)}) {
CheckIfArgIsDoVar(checkedArg, parsedExpr->value().source, context_);
}
}
}
}
}
void DoForallChecker::Leave(const parser::ConnectSpec &connectSpec) {
const auto *newunit{
std::get_if<parser::ConnectSpec::Newunit>(&connectSpec.u)};
if (newunit) {
context_.CheckIndexVarRedefine(newunit->v.thing.thing);
}
}
using ActualArgumentSet = std::set<evaluate::ActualArgumentRef>;
struct CollectActualArgumentsHelper
: public evaluate::SetTraverse<CollectActualArgumentsHelper,
ActualArgumentSet> {
using Base = SetTraverse<CollectActualArgumentsHelper, ActualArgumentSet>;
CollectActualArgumentsHelper() : Base{*this} {}
using Base::operator();
ActualArgumentSet operator()(const evaluate::ActualArgument &arg) const {
return Combine(ActualArgumentSet{arg},
CollectActualArgumentsHelper{}(arg.UnwrapExpr()));
}
};
template <typename A> ActualArgumentSet CollectActualArguments(const A &x) {
return CollectActualArgumentsHelper{}(x);
}
template ActualArgumentSet CollectActualArguments(const SomeExpr &);
void DoForallChecker::Enter(const parser::Expr &parsedExpr) { ++exprDepth_; }
void DoForallChecker::Leave(const parser::Expr &parsedExpr) {
CHECK(exprDepth_ > 0);
if (--exprDepth_ == 0) { // Only check top level expressions
if (const SomeExpr * expr{GetExpr(parsedExpr)}) {
ActualArgumentSet argSet{CollectActualArguments(*expr)};
for (const evaluate::ActualArgumentRef &argRef : argSet) {
CheckIfArgIsDoVar(*argRef, parsedExpr.source, context_);
}
}
}
}
void DoForallChecker::Leave(const parser::InquireSpec &inquireSpec) {
const auto *intVar{std::get_if<parser::InquireSpec::IntVar>(&inquireSpec.u)};
if (intVar) {
const auto &scalar{std::get<parser::ScalarIntVariable>(intVar->t)};
context_.CheckIndexVarRedefine(scalar.thing.thing);
}
}
void DoForallChecker::Leave(const parser::IoControlSpec &ioControlSpec) {
const auto *size{std::get_if<parser::IoControlSpec::Size>(&ioControlSpec.u)};
if (size) {
context_.CheckIndexVarRedefine(size->v.thing.thing);
}
}
void DoForallChecker::Leave(const parser::OutputImpliedDo &outputImpliedDo) {
const auto &control{std::get<parser::IoImpliedDoControl>(outputImpliedDo.t)};
const parser::Name &name{control.name.thing.thing};
context_.CheckIndexVarRedefine(name.source, *name.symbol);
}
void DoForallChecker::Leave(const parser::StatVariable &statVariable) {
context_.CheckIndexVarRedefine(statVariable.v.thing.thing);
}
} // namespace Fortran::semantics