ArrayBoundCheckerV2.cpp
13.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines ArrayBoundCheckerV2, which is a path-sensitive check
// which looks for an out-of-bound array element access.
//
//===----------------------------------------------------------------------===//
#include "Taint.h"
#include "clang/AST/CharUnits.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicSize.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
using namespace ento;
using namespace taint;
namespace {
class ArrayBoundCheckerV2 :
public Checker<check::Location> {
mutable std::unique_ptr<BuiltinBug> BT;
enum OOB_Kind { OOB_Precedes, OOB_Excedes, OOB_Tainted };
void reportOOB(CheckerContext &C, ProgramStateRef errorState, OOB_Kind kind,
std::unique_ptr<BugReporterVisitor> Visitor = nullptr) const;
public:
void checkLocation(SVal l, bool isLoad, const Stmt*S,
CheckerContext &C) const;
};
// FIXME: Eventually replace RegionRawOffset with this class.
class RegionRawOffsetV2 {
private:
const SubRegion *baseRegion;
SVal byteOffset;
RegionRawOffsetV2()
: baseRegion(nullptr), byteOffset(UnknownVal()) {}
public:
RegionRawOffsetV2(const SubRegion* base, SVal offset)
: baseRegion(base), byteOffset(offset) {}
NonLoc getByteOffset() const { return byteOffset.castAs<NonLoc>(); }
const SubRegion *getRegion() const { return baseRegion; }
static RegionRawOffsetV2 computeOffset(ProgramStateRef state,
SValBuilder &svalBuilder,
SVal location);
void dump() const;
void dumpToStream(raw_ostream &os) const;
};
}
static SVal computeExtentBegin(SValBuilder &svalBuilder,
const MemRegion *region) {
const MemSpaceRegion *SR = region->getMemorySpace();
if (SR->getKind() == MemRegion::UnknownSpaceRegionKind)
return UnknownVal();
else
return svalBuilder.makeZeroArrayIndex();
}
// TODO: once the constraint manager is smart enough to handle non simplified
// symbolic expressions remove this function. Note that this can not be used in
// the constraint manager as is, since this does not handle overflows. It is
// safe to assume, however, that memory offsets will not overflow.
static std::pair<NonLoc, nonloc::ConcreteInt>
getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent,
SValBuilder &svalBuilder) {
Optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>();
if (SymVal && SymVal->isExpression()) {
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) {
llvm::APSInt constant =
APSIntType(extent.getValue()).convert(SIE->getRHS());
switch (SIE->getOpcode()) {
case BO_Mul:
// The constant should never be 0 here, since it the result of scaling
// based on the size of a type which is never 0.
if ((extent.getValue() % constant) != 0)
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
else
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extent.getValue() / constant),
svalBuilder);
case BO_Add:
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder);
default:
break;
}
}
}
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
}
void ArrayBoundCheckerV2::checkLocation(SVal location, bool isLoad,
const Stmt* LoadS,
CheckerContext &checkerContext) const {
// NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping
// some new logic here that reasons directly about memory region extents.
// Once that logic is more mature, we can bring it back to assumeInBound()
// for all clients to use.
//
// The algorithm we are using here for bounds checking is to see if the
// memory access is within the extent of the base region. Since we
// have some flexibility in defining the base region, we can achieve
// various levels of conservatism in our buffer overflow checking.
ProgramStateRef state = checkerContext.getState();
SValBuilder &svalBuilder = checkerContext.getSValBuilder();
const RegionRawOffsetV2 &rawOffset =
RegionRawOffsetV2::computeOffset(state, svalBuilder, location);
if (!rawOffset.getRegion())
return;
NonLoc rawOffsetVal = rawOffset.getByteOffset();
// CHECK LOWER BOUND: Is byteOffset < extent begin?
// If so, we are doing a load/store
// before the first valid offset in the memory region.
SVal extentBegin = computeExtentBegin(svalBuilder, rawOffset.getRegion());
if (Optional<NonLoc> NV = extentBegin.getAs<NonLoc>()) {
if (NV->getAs<nonloc::ConcreteInt>()) {
std::pair<NonLoc, nonloc::ConcreteInt> simplifiedOffsets =
getSimplifiedOffsets(rawOffset.getByteOffset(),
NV->castAs<nonloc::ConcreteInt>(),
svalBuilder);
rawOffsetVal = simplifiedOffsets.first;
*NV = simplifiedOffsets.second;
}
SVal lowerBound = svalBuilder.evalBinOpNN(state, BO_LT, rawOffsetVal, *NV,
svalBuilder.getConditionType());
Optional<NonLoc> lowerBoundToCheck = lowerBound.getAs<NonLoc>();
if (!lowerBoundToCheck)
return;
ProgramStateRef state_precedesLowerBound, state_withinLowerBound;
std::tie(state_precedesLowerBound, state_withinLowerBound) =
state->assume(*lowerBoundToCheck);
// Are we constrained enough to definitely precede the lower bound?
if (state_precedesLowerBound && !state_withinLowerBound) {
reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes);
return;
}
// Otherwise, assume the constraint of the lower bound.
assert(state_withinLowerBound);
state = state_withinLowerBound;
}
do {
// CHECK UPPER BOUND: Is byteOffset >= size(baseRegion)? If so,
// we are doing a load/store after the last valid offset.
const MemRegion *MR = rawOffset.getRegion();
DefinedOrUnknownSVal Size = getDynamicSize(state, MR, svalBuilder);
if (!Size.getAs<NonLoc>())
break;
if (Size.getAs<nonloc::ConcreteInt>()) {
std::pair<NonLoc, nonloc::ConcreteInt> simplifiedOffsets =
getSimplifiedOffsets(rawOffset.getByteOffset(),
Size.castAs<nonloc::ConcreteInt>(), svalBuilder);
rawOffsetVal = simplifiedOffsets.first;
Size = simplifiedOffsets.second;
}
SVal upperbound = svalBuilder.evalBinOpNN(state, BO_GE, rawOffsetVal,
Size.castAs<NonLoc>(),
svalBuilder.getConditionType());
Optional<NonLoc> upperboundToCheck = upperbound.getAs<NonLoc>();
if (!upperboundToCheck)
break;
ProgramStateRef state_exceedsUpperBound, state_withinUpperBound;
std::tie(state_exceedsUpperBound, state_withinUpperBound) =
state->assume(*upperboundToCheck);
// If we are under constrained and the index variables are tainted, report.
if (state_exceedsUpperBound && state_withinUpperBound) {
SVal ByteOffset = rawOffset.getByteOffset();
if (isTainted(state, ByteOffset)) {
reportOOB(checkerContext, state_exceedsUpperBound, OOB_Tainted,
std::make_unique<TaintBugVisitor>(ByteOffset));
return;
}
} else if (state_exceedsUpperBound) {
// If we are constrained enough to definitely exceed the upper bound,
// report.
assert(!state_withinUpperBound);
reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes);
return;
}
assert(state_withinUpperBound);
state = state_withinUpperBound;
}
while (false);
checkerContext.addTransition(state);
}
void ArrayBoundCheckerV2::reportOOB(
CheckerContext &checkerContext, ProgramStateRef errorState, OOB_Kind kind,
std::unique_ptr<BugReporterVisitor> Visitor) const {
ExplodedNode *errorNode = checkerContext.generateErrorNode(errorState);
if (!errorNode)
return;
if (!BT)
BT.reset(new BuiltinBug(this, "Out-of-bound access"));
// FIXME: This diagnostics are preliminary. We should get far better
// diagnostics for explaining buffer overruns.
SmallString<256> buf;
llvm::raw_svector_ostream os(buf);
os << "Out of bound memory access ";
switch (kind) {
case OOB_Precedes:
os << "(accessed memory precedes memory block)";
break;
case OOB_Excedes:
os << "(access exceeds upper limit of memory block)";
break;
case OOB_Tainted:
os << "(index is tainted)";
break;
}
auto BR = std::make_unique<PathSensitiveBugReport>(*BT, os.str(), errorNode);
BR->addVisitor(std::move(Visitor));
checkerContext.emitReport(std::move(BR));
}
#ifndef NDEBUG
LLVM_DUMP_METHOD void RegionRawOffsetV2::dump() const {
dumpToStream(llvm::errs());
}
void RegionRawOffsetV2::dumpToStream(raw_ostream &os) const {
os << "raw_offset_v2{" << getRegion() << ',' << getByteOffset() << '}';
}
#endif
// Lazily computes a value to be used by 'computeOffset'. If 'val'
// is unknown or undefined, we lazily substitute '0'. Otherwise,
// return 'val'.
static inline SVal getValue(SVal val, SValBuilder &svalBuilder) {
return val.getAs<UndefinedVal>() ? svalBuilder.makeArrayIndex(0) : val;
}
// Scale a base value by a scaling factor, and return the scaled
// value as an SVal. Used by 'computeOffset'.
static inline SVal scaleValue(ProgramStateRef state,
NonLoc baseVal, CharUnits scaling,
SValBuilder &sb) {
return sb.evalBinOpNN(state, BO_Mul, baseVal,
sb.makeArrayIndex(scaling.getQuantity()),
sb.getArrayIndexType());
}
// Add an SVal to another, treating unknown and undefined values as
// summing to UnknownVal. Used by 'computeOffset'.
static SVal addValue(ProgramStateRef state, SVal x, SVal y,
SValBuilder &svalBuilder) {
// We treat UnknownVals and UndefinedVals the same here because we
// only care about computing offsets.
if (x.isUnknownOrUndef() || y.isUnknownOrUndef())
return UnknownVal();
return svalBuilder.evalBinOpNN(state, BO_Add, x.castAs<NonLoc>(),
y.castAs<NonLoc>(),
svalBuilder.getArrayIndexType());
}
/// Compute a raw byte offset from a base region. Used for array bounds
/// checking.
RegionRawOffsetV2 RegionRawOffsetV2::computeOffset(ProgramStateRef state,
SValBuilder &svalBuilder,
SVal location)
{
const MemRegion *region = location.getAsRegion();
SVal offset = UndefinedVal();
while (region) {
switch (region->getKind()) {
default: {
if (const SubRegion *subReg = dyn_cast<SubRegion>(region)) {
offset = getValue(offset, svalBuilder);
if (!offset.isUnknownOrUndef())
return RegionRawOffsetV2(subReg, offset);
}
return RegionRawOffsetV2();
}
case MemRegion::ElementRegionKind: {
const ElementRegion *elemReg = cast<ElementRegion>(region);
SVal index = elemReg->getIndex();
if (!index.getAs<NonLoc>())
return RegionRawOffsetV2();
QualType elemType = elemReg->getElementType();
// If the element is an incomplete type, go no further.
ASTContext &astContext = svalBuilder.getContext();
if (elemType->isIncompleteType())
return RegionRawOffsetV2();
// Update the offset.
offset = addValue(state,
getValue(offset, svalBuilder),
scaleValue(state,
index.castAs<NonLoc>(),
astContext.getTypeSizeInChars(elemType),
svalBuilder),
svalBuilder);
if (offset.isUnknownOrUndef())
return RegionRawOffsetV2();
region = elemReg->getSuperRegion();
continue;
}
}
}
return RegionRawOffsetV2();
}
void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) {
mgr.registerChecker<ArrayBoundCheckerV2>();
}
bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) {
return true;
}