CodeGenFunction.cpp 98.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This coordinates the per-function state used while generating code.
//
//===----------------------------------------------------------------------===//

#include "CodeGenFunction.h"
#include "CGBlocks.h"
#include "CGCUDARuntime.h"
#include "CGCXXABI.h"
#include "CGCleanup.h"
#include "CGDebugInfo.h"
#include "CGOpenMPRuntime.h"
#include "CodeGenModule.h"
#include "CodeGenPGO.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/FPEnv.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/CRC.h"
#include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
using namespace clang;
using namespace CodeGen;

/// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time
/// markers.
static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts,
                                      const LangOptions &LangOpts) {
  if (CGOpts.DisableLifetimeMarkers)
    return false;

  // Sanitizers may use markers.
  if (CGOpts.SanitizeAddressUseAfterScope ||
      LangOpts.Sanitize.has(SanitizerKind::HWAddress) ||
      LangOpts.Sanitize.has(SanitizerKind::Memory))
    return true;

  // For now, only in optimized builds.
  return CGOpts.OptimizationLevel != 0;
}

CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
    : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
      Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(),
              CGBuilderInserterTy(this)),
      SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()),
      DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm),
      ShouldEmitLifetimeMarkers(
          shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) {
  if (!suppressNewContext)
    CGM.getCXXABI().getMangleContext().startNewFunction();

  SetFastMathFlags(CurFPFeatures);
  SetFPModel();
}

CodeGenFunction::~CodeGenFunction() {
  assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");

  if (getLangOpts().OpenMP && CurFn)
    CGM.getOpenMPRuntime().functionFinished(*this);

  // If we have an OpenMPIRBuilder we want to finalize functions (incl.
  // outlining etc) at some point. Doing it once the function codegen is done
  // seems to be a reasonable spot. We do it here, as opposed to the deletion
  // time of the CodeGenModule, because we have to ensure the IR has not yet
  // been "emitted" to the outside, thus, modifications are still sensible.
  if (CGM.getLangOpts().OpenMPIRBuilder)
    CGM.getOpenMPRuntime().getOMPBuilder().finalize();
}

// Map the LangOption for exception behavior into
// the corresponding enum in the IR.
llvm::fp::ExceptionBehavior
clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) {

  switch (Kind) {
  case LangOptions::FPE_Ignore:  return llvm::fp::ebIgnore;
  case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap;
  case LangOptions::FPE_Strict:  return llvm::fp::ebStrict;
  }
  llvm_unreachable("Unsupported FP Exception Behavior");
}

void CodeGenFunction::SetFPModel() {
  llvm::RoundingMode RM = getLangOpts().getFPRoundingMode();
  auto fpExceptionBehavior = ToConstrainedExceptMD(
                               getLangOpts().getFPExceptionMode());

  Builder.setDefaultConstrainedRounding(RM);
  Builder.setDefaultConstrainedExcept(fpExceptionBehavior);
  Builder.setIsFPConstrained(fpExceptionBehavior != llvm::fp::ebIgnore ||
                             RM != llvm::RoundingMode::NearestTiesToEven);
}

void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) {
  llvm::FastMathFlags FMF;
  FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate());
  FMF.setNoNaNs(FPFeatures.getNoHonorNaNs());
  FMF.setNoInfs(FPFeatures.getNoHonorInfs());
  FMF.setNoSignedZeros(FPFeatures.getNoSignedZero());
  FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal());
  FMF.setApproxFunc(FPFeatures.getAllowApproxFunc());
  FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement());
  Builder.setFastMathFlags(FMF);
}

CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF,
                                                  FPOptions FPFeatures)
    : CGF(CGF), OldFPFeatures(CGF.CurFPFeatures) {
  CGF.CurFPFeatures = FPFeatures;

  if (OldFPFeatures == FPFeatures)
    return;

  FMFGuard.emplace(CGF.Builder);

  llvm::RoundingMode NewRoundingBehavior =
      static_cast<llvm::RoundingMode>(FPFeatures.getRoundingMode());
  CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior);
  auto NewExceptionBehavior =
      ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>(
          FPFeatures.getFPExceptionMode()));
  CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior);

  CGF.SetFastMathFlags(FPFeatures);

  assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() ||
          isa<CXXConstructorDecl>(CGF.CurFuncDecl) ||
          isa<CXXDestructorDecl>(CGF.CurFuncDecl) ||
          (NewExceptionBehavior == llvm::fp::ebIgnore &&
           NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) &&
         "FPConstrained should be enabled on entire function");

  auto mergeFnAttrValue = [&](StringRef Name, bool Value) {
    auto OldValue =
        CGF.CurFn->getFnAttribute(Name).getValueAsString() == "true";
    auto NewValue = OldValue & Value;
    if (OldValue != NewValue)
      CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue));
  };
  mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs());
  mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs());
  mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero());
  mergeFnAttrValue("unsafe-fp-math", FPFeatures.getAllowFPReassociate() &&
                                         FPFeatures.getAllowReciprocal() &&
                                         FPFeatures.getAllowApproxFunc() &&
                                         FPFeatures.getNoSignedZero());
}

CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() {
  CGF.CurFPFeatures = OldFPFeatures;
}

LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
  LValueBaseInfo BaseInfo;
  TBAAAccessInfo TBAAInfo;
  CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo);
  return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo,
                          TBAAInfo);
}

/// Given a value of type T* that may not be to a complete object,
/// construct an l-value with the natural pointee alignment of T.
LValue
CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) {
  LValueBaseInfo BaseInfo;
  TBAAAccessInfo TBAAInfo;
  CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo,
                                                /* forPointeeType= */ true);
  return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo);
}


llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
  return CGM.getTypes().ConvertTypeForMem(T);
}

llvm::Type *CodeGenFunction::ConvertType(QualType T) {
  return CGM.getTypes().ConvertType(T);
}

TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
  type = type.getCanonicalType();
  while (true) {
    switch (type->getTypeClass()) {
#define TYPE(name, parent)
#define ABSTRACT_TYPE(name, parent)
#define NON_CANONICAL_TYPE(name, parent) case Type::name:
#define DEPENDENT_TYPE(name, parent) case Type::name:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
#include "clang/AST/TypeNodes.inc"
      llvm_unreachable("non-canonical or dependent type in IR-generation");

    case Type::Auto:
    case Type::DeducedTemplateSpecialization:
      llvm_unreachable("undeduced type in IR-generation");

    // Various scalar types.
    case Type::Builtin:
    case Type::Pointer:
    case Type::BlockPointer:
    case Type::LValueReference:
    case Type::RValueReference:
    case Type::MemberPointer:
    case Type::Vector:
    case Type::ExtVector:
    case Type::ConstantMatrix:
    case Type::FunctionProto:
    case Type::FunctionNoProto:
    case Type::Enum:
    case Type::ObjCObjectPointer:
    case Type::Pipe:
    case Type::ExtInt:
      return TEK_Scalar;

    // Complexes.
    case Type::Complex:
      return TEK_Complex;

    // Arrays, records, and Objective-C objects.
    case Type::ConstantArray:
    case Type::IncompleteArray:
    case Type::VariableArray:
    case Type::Record:
    case Type::ObjCObject:
    case Type::ObjCInterface:
      return TEK_Aggregate;

    // We operate on atomic values according to their underlying type.
    case Type::Atomic:
      type = cast<AtomicType>(type)->getValueType();
      continue;
    }
    llvm_unreachable("unknown type kind!");
  }
}

llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
  // For cleanliness, we try to avoid emitting the return block for
  // simple cases.
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();

  if (CurBB) {
    assert(!CurBB->getTerminator() && "Unexpected terminated block.");

    // We have a valid insert point, reuse it if it is empty or there are no
    // explicit jumps to the return block.
    if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
      ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
      delete ReturnBlock.getBlock();
      ReturnBlock = JumpDest();
    } else
      EmitBlock(ReturnBlock.getBlock());
    return llvm::DebugLoc();
  }

  // Otherwise, if the return block is the target of a single direct
  // branch then we can just put the code in that block instead. This
  // cleans up functions which started with a unified return block.
  if (ReturnBlock.getBlock()->hasOneUse()) {
    llvm::BranchInst *BI =
      dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
    if (BI && BI->isUnconditional() &&
        BI->getSuccessor(0) == ReturnBlock.getBlock()) {
      // Record/return the DebugLoc of the simple 'return' expression to be used
      // later by the actual 'ret' instruction.
      llvm::DebugLoc Loc = BI->getDebugLoc();
      Builder.SetInsertPoint(BI->getParent());
      BI->eraseFromParent();
      delete ReturnBlock.getBlock();
      ReturnBlock = JumpDest();
      return Loc;
    }
  }

  // FIXME: We are at an unreachable point, there is no reason to emit the block
  // unless it has uses. However, we still need a place to put the debug
  // region.end for now.

  EmitBlock(ReturnBlock.getBlock());
  return llvm::DebugLoc();
}

static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
  if (!BB) return;
  if (!BB->use_empty())
    return CGF.CurFn->getBasicBlockList().push_back(BB);
  delete BB;
}

void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
  assert(BreakContinueStack.empty() &&
         "mismatched push/pop in break/continue stack!");

  bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
    && NumSimpleReturnExprs == NumReturnExprs
    && ReturnBlock.getBlock()->use_empty();
  // Usually the return expression is evaluated before the cleanup
  // code.  If the function contains only a simple return statement,
  // such as a constant, the location before the cleanup code becomes
  // the last useful breakpoint in the function, because the simple
  // return expression will be evaluated after the cleanup code. To be
  // safe, set the debug location for cleanup code to the location of
  // the return statement.  Otherwise the cleanup code should be at the
  // end of the function's lexical scope.
  //
  // If there are multiple branches to the return block, the branch
  // instructions will get the location of the return statements and
  // all will be fine.
  if (CGDebugInfo *DI = getDebugInfo()) {
    if (OnlySimpleReturnStmts)
      DI->EmitLocation(Builder, LastStopPoint);
    else
      DI->EmitLocation(Builder, EndLoc);
  }

  // Pop any cleanups that might have been associated with the
  // parameters.  Do this in whatever block we're currently in; it's
  // important to do this before we enter the return block or return
  // edges will be *really* confused.
  bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth;
  bool HasOnlyLifetimeMarkers =
      HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth);
  bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers;
  if (HasCleanups) {
    // Make sure the line table doesn't jump back into the body for
    // the ret after it's been at EndLoc.
    Optional<ApplyDebugLocation> AL;
    if (CGDebugInfo *DI = getDebugInfo()) {
      if (OnlySimpleReturnStmts)
        DI->EmitLocation(Builder, EndLoc);
      else
        // We may not have a valid end location. Try to apply it anyway, and
        // fall back to an artificial location if needed.
        AL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc);
    }

    PopCleanupBlocks(PrologueCleanupDepth);
  }

  // Emit function epilog (to return).
  llvm::DebugLoc Loc = EmitReturnBlock();

  if (ShouldInstrumentFunction()) {
    if (CGM.getCodeGenOpts().InstrumentFunctions)
      CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit");
    if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
      CurFn->addFnAttr("instrument-function-exit-inlined",
                       "__cyg_profile_func_exit");
  }

  // Emit debug descriptor for function end.
  if (CGDebugInfo *DI = getDebugInfo())
    DI->EmitFunctionEnd(Builder, CurFn);

  // Reset the debug location to that of the simple 'return' expression, if any
  // rather than that of the end of the function's scope '}'.
  ApplyDebugLocation AL(*this, Loc);
  EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
  EmitEndEHSpec(CurCodeDecl);

  assert(EHStack.empty() &&
         "did not remove all scopes from cleanup stack!");

  // If someone did an indirect goto, emit the indirect goto block at the end of
  // the function.
  if (IndirectBranch) {
    EmitBlock(IndirectBranch->getParent());
    Builder.ClearInsertionPoint();
  }

  // If some of our locals escaped, insert a call to llvm.localescape in the
  // entry block.
  if (!EscapedLocals.empty()) {
    // Invert the map from local to index into a simple vector. There should be
    // no holes.
    SmallVector<llvm::Value *, 4> EscapeArgs;
    EscapeArgs.resize(EscapedLocals.size());
    for (auto &Pair : EscapedLocals)
      EscapeArgs[Pair.second] = Pair.first;
    llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
        &CGM.getModule(), llvm::Intrinsic::localescape);
    CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
  }

  // Remove the AllocaInsertPt instruction, which is just a convenience for us.
  llvm::Instruction *Ptr = AllocaInsertPt;
  AllocaInsertPt = nullptr;
  Ptr->eraseFromParent();

  // If someone took the address of a label but never did an indirect goto, we
  // made a zero entry PHI node, which is illegal, zap it now.
  if (IndirectBranch) {
    llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
    if (PN->getNumIncomingValues() == 0) {
      PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
      PN->eraseFromParent();
    }
  }

  EmitIfUsed(*this, EHResumeBlock);
  EmitIfUsed(*this, TerminateLandingPad);
  EmitIfUsed(*this, TerminateHandler);
  EmitIfUsed(*this, UnreachableBlock);

  for (const auto &FuncletAndParent : TerminateFunclets)
    EmitIfUsed(*this, FuncletAndParent.second);

  if (CGM.getCodeGenOpts().EmitDeclMetadata)
    EmitDeclMetadata();

  for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
           I = DeferredReplacements.begin(),
           E = DeferredReplacements.end();
       I != E; ++I) {
    I->first->replaceAllUsesWith(I->second);
    I->first->eraseFromParent();
  }

  // Eliminate CleanupDestSlot alloca by replacing it with SSA values and
  // PHIs if the current function is a coroutine. We don't do it for all
  // functions as it may result in slight increase in numbers of instructions
  // if compiled with no optimizations. We do it for coroutine as the lifetime
  // of CleanupDestSlot alloca make correct coroutine frame building very
  // difficult.
  if (NormalCleanupDest.isValid() && isCoroutine()) {
    llvm::DominatorTree DT(*CurFn);
    llvm::PromoteMemToReg(
        cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT);
    NormalCleanupDest = Address::invalid();
  }

  // Scan function arguments for vector width.
  for (llvm::Argument &A : CurFn->args())
    if (auto *VT = dyn_cast<llvm::VectorType>(A.getType()))
      LargestVectorWidth =
          std::max((uint64_t)LargestVectorWidth,
                   VT->getPrimitiveSizeInBits().getKnownMinSize());

  // Update vector width based on return type.
  if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType()))
    LargestVectorWidth =
        std::max((uint64_t)LargestVectorWidth,
                 VT->getPrimitiveSizeInBits().getKnownMinSize());

  // Add the required-vector-width attribute. This contains the max width from:
  // 1. min-vector-width attribute used in the source program.
  // 2. Any builtins used that have a vector width specified.
  // 3. Values passed in and out of inline assembly.
  // 4. Width of vector arguments and return types for this function.
  // 5. Width of vector aguments and return types for functions called by this
  //    function.
  CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth));

  // If we generated an unreachable return block, delete it now.
  if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) {
    Builder.ClearInsertionPoint();
    ReturnBlock.getBlock()->eraseFromParent();
  }
  if (ReturnValue.isValid()) {
    auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer());
    if (RetAlloca && RetAlloca->use_empty()) {
      RetAlloca->eraseFromParent();
      ReturnValue = Address::invalid();
    }
  }
}

/// ShouldInstrumentFunction - Return true if the current function should be
/// instrumented with __cyg_profile_func_* calls
bool CodeGenFunction::ShouldInstrumentFunction() {
  if (!CGM.getCodeGenOpts().InstrumentFunctions &&
      !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining &&
      !CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
    return false;
  if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
    return false;
  return true;
}

/// ShouldXRayInstrument - Return true if the current function should be
/// instrumented with XRay nop sleds.
bool CodeGenFunction::ShouldXRayInstrumentFunction() const {
  return CGM.getCodeGenOpts().XRayInstrumentFunctions;
}

/// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to
/// the __xray_customevent(...) builtin calls, when doing XRay instrumentation.
bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const {
  return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
         (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents ||
          CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
              XRayInstrKind::Custom);
}

bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const {
  return CGM.getCodeGenOpts().XRayInstrumentFunctions &&
         (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents ||
          CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask ==
              XRayInstrKind::Typed);
}

llvm::Constant *
CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F,
                                            llvm::Constant *Addr) {
  // Addresses stored in prologue data can't require run-time fixups and must
  // be PC-relative. Run-time fixups are undesirable because they necessitate
  // writable text segments, which are unsafe. And absolute addresses are
  // undesirable because they break PIE mode.

  // Add a layer of indirection through a private global. Taking its address
  // won't result in a run-time fixup, even if Addr has linkonce_odr linkage.
  auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(),
                                      /*isConstant=*/true,
                                      llvm::GlobalValue::PrivateLinkage, Addr);

  // Create a PC-relative address.
  auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy);
  auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy);
  auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt);
  return (IntPtrTy == Int32Ty)
             ? PCRelAsInt
             : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty);
}

llvm::Value *
CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F,
                                          llvm::Value *EncodedAddr) {
  // Reconstruct the address of the global.
  auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy);
  auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int");
  auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int");
  auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr");

  // Load the original pointer through the global.
  return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()),
                            "decoded_addr");
}

void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
                                               llvm::Function *Fn)
{
  if (!FD->hasAttr<OpenCLKernelAttr>())
    return;

  llvm::LLVMContext &Context = getLLVMContext();

  CGM.GenOpenCLArgMetadata(Fn, FD, this);

  if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
    QualType HintQTy = A->getTypeHint();
    const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>();
    bool IsSignedInteger =
        HintQTy->isSignedIntegerType() ||
        (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType());
    llvm::Metadata *AttrMDArgs[] = {
        llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
            CGM.getTypes().ConvertType(A->getTypeHint()))),
        llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
            llvm::IntegerType::get(Context, 32),
            llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))};
    Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs));
  }

  if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
    llvm::Metadata *AttrMDArgs[] = {
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
    Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs));
  }

  if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
    llvm::Metadata *AttrMDArgs[] = {
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
    Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs));
  }

  if (const OpenCLIntelReqdSubGroupSizeAttr *A =
          FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
    llvm::Metadata *AttrMDArgs[] = {
        llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))};
    Fn->setMetadata("intel_reqd_sub_group_size",
                    llvm::MDNode::get(Context, AttrMDArgs));
  }
}

/// Determine whether the function F ends with a return stmt.
static bool endsWithReturn(const Decl* F) {
  const Stmt *Body = nullptr;
  if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
    Body = FD->getBody();
  else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
    Body = OMD->getBody();

  if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
    auto LastStmt = CS->body_rbegin();
    if (LastStmt != CS->body_rend())
      return isa<ReturnStmt>(*LastStmt);
  }
  return false;
}

void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) {
  if (SanOpts.has(SanitizerKind::Thread)) {
    Fn->addFnAttr("sanitize_thread_no_checking_at_run_time");
    Fn->removeFnAttr(llvm::Attribute::SanitizeThread);
  }
}

/// Check if the return value of this function requires sanitization.
bool CodeGenFunction::requiresReturnValueCheck() const {
  return requiresReturnValueNullabilityCheck() ||
         (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl &&
          CurCodeDecl->getAttr<ReturnsNonNullAttr>());
}

static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) {
  auto *MD = dyn_cast_or_null<CXXMethodDecl>(D);
  if (!MD || !MD->getDeclName().getAsIdentifierInfo() ||
      !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") ||
      (MD->getNumParams() != 1 && MD->getNumParams() != 2))
    return false;

  if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType())
    return false;

  if (MD->getNumParams() == 2) {
    auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>();
    if (!PT || !PT->isVoidPointerType() ||
        !PT->getPointeeType().isConstQualified())
      return false;
  }

  return true;
}

/// Return the UBSan prologue signature for \p FD if one is available.
static llvm::Constant *getPrologueSignature(CodeGenModule &CGM,
                                            const FunctionDecl *FD) {
  if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
    if (!MD->isStatic())
      return nullptr;
  return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM);
}

void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
                                    llvm::Function *Fn,
                                    const CGFunctionInfo &FnInfo,
                                    const FunctionArgList &Args,
                                    SourceLocation Loc,
                                    SourceLocation StartLoc) {
  assert(!CurFn &&
         "Do not use a CodeGenFunction object for more than one function");

  const Decl *D = GD.getDecl();

  DidCallStackSave = false;
  CurCodeDecl = D;
  if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D))
    if (FD->usesSEHTry())
      CurSEHParent = FD;
  CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
  FnRetTy = RetTy;
  CurFn = Fn;
  CurFnInfo = &FnInfo;
  assert(CurFn->isDeclaration() && "Function already has body?");

  // If this function has been blacklisted for any of the enabled sanitizers,
  // disable the sanitizer for the function.
  do {
#define SANITIZER(NAME, ID)                                                    \
  if (SanOpts.empty())                                                         \
    break;                                                                     \
  if (SanOpts.has(SanitizerKind::ID))                                          \
    if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc))                \
      SanOpts.set(SanitizerKind::ID, false);

#include "clang/Basic/Sanitizers.def"
#undef SANITIZER
  } while (0);

  if (D) {
    // Apply the no_sanitize* attributes to SanOpts.
    for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) {
      SanitizerMask mask = Attr->getMask();
      SanOpts.Mask &= ~mask;
      if (mask & SanitizerKind::Address)
        SanOpts.set(SanitizerKind::KernelAddress, false);
      if (mask & SanitizerKind::KernelAddress)
        SanOpts.set(SanitizerKind::Address, false);
      if (mask & SanitizerKind::HWAddress)
        SanOpts.set(SanitizerKind::KernelHWAddress, false);
      if (mask & SanitizerKind::KernelHWAddress)
        SanOpts.set(SanitizerKind::HWAddress, false);
    }
  }

  // Apply sanitizer attributes to the function.
  if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress))
    Fn->addFnAttr(llvm::Attribute::SanitizeAddress);
  if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress))
    Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress);
  if (SanOpts.has(SanitizerKind::MemTag))
    Fn->addFnAttr(llvm::Attribute::SanitizeMemTag);
  if (SanOpts.has(SanitizerKind::Thread))
    Fn->addFnAttr(llvm::Attribute::SanitizeThread);
  if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory))
    Fn->addFnAttr(llvm::Attribute::SanitizeMemory);
  if (SanOpts.has(SanitizerKind::SafeStack))
    Fn->addFnAttr(llvm::Attribute::SafeStack);
  if (SanOpts.has(SanitizerKind::ShadowCallStack))
    Fn->addFnAttr(llvm::Attribute::ShadowCallStack);

  // Apply fuzzing attribute to the function.
  if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink))
    Fn->addFnAttr(llvm::Attribute::OptForFuzzing);

  // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize,
  // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time.
  if (SanOpts.has(SanitizerKind::Thread)) {
    if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
      IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0);
      if (OMD->getMethodFamily() == OMF_dealloc ||
          OMD->getMethodFamily() == OMF_initialize ||
          (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) {
        markAsIgnoreThreadCheckingAtRuntime(Fn);
      }
    }
  }

  // Ignore unrelated casts in STL allocate() since the allocator must cast
  // from void* to T* before object initialization completes. Don't match on the
  // namespace because not all allocators are in std::
  if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
    if (matchesStlAllocatorFn(D, getContext()))
      SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast;
  }

  // Ignore null checks in coroutine functions since the coroutines passes
  // are not aware of how to move the extra UBSan instructions across the split
  // coroutine boundaries.
  if (D && SanOpts.has(SanitizerKind::Null))
    if (const auto *FD = dyn_cast<FunctionDecl>(D))
      if (FD->getBody() &&
          FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass)
        SanOpts.Mask &= ~SanitizerKind::Null;

  // Apply xray attributes to the function (as a string, for now)
  bool AlwaysXRayAttr = false;
  if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) {
    if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
            XRayInstrKind::FunctionEntry) ||
        CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
            XRayInstrKind::FunctionExit)) {
      if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) {
        Fn->addFnAttr("function-instrument", "xray-always");
        AlwaysXRayAttr = true;
      }
      if (XRayAttr->neverXRayInstrument())
        Fn->addFnAttr("function-instrument", "xray-never");
      if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>())
        if (ShouldXRayInstrumentFunction())
          Fn->addFnAttr("xray-log-args",
                        llvm::utostr(LogArgs->getArgumentCount()));
    }
  } else {
    if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc))
      Fn->addFnAttr(
          "xray-instruction-threshold",
          llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold));
  }

  if (ShouldXRayInstrumentFunction()) {
    if (CGM.getCodeGenOpts().XRayIgnoreLoops)
      Fn->addFnAttr("xray-ignore-loops");

    if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
            XRayInstrKind::FunctionExit))
      Fn->addFnAttr("xray-skip-exit");

    if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
            XRayInstrKind::FunctionEntry))
      Fn->addFnAttr("xray-skip-entry");

    auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups;
    if (FuncGroups > 1) {
      auto FuncName = llvm::makeArrayRef<uint8_t>(
          CurFn->getName().bytes_begin(), CurFn->getName().bytes_end());
      auto Group = crc32(FuncName) % FuncGroups;
      if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup &&
          !AlwaysXRayAttr)
        Fn->addFnAttr("function-instrument", "xray-never");
    }
  }

  unsigned Count, Offset;
  if (const auto *Attr =
          D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) {
    Count = Attr->getCount();
    Offset = Attr->getOffset();
  } else {
    Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount;
    Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset;
  }
  if (Count && Offset <= Count) {
    Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset));
    if (Offset)
      Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset));
  }

  // Add no-jump-tables value.
  Fn->addFnAttr("no-jump-tables",
                llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables));

  // Add no-inline-line-tables value.
  if (CGM.getCodeGenOpts().NoInlineLineTables)
    Fn->addFnAttr("no-inline-line-tables");

  // Add profile-sample-accurate value.
  if (CGM.getCodeGenOpts().ProfileSampleAccurate)
    Fn->addFnAttr("profile-sample-accurate");

  if (!CGM.getCodeGenOpts().SampleProfileFile.empty())
    Fn->addFnAttr("use-sample-profile");

  if (D && D->hasAttr<CFICanonicalJumpTableAttr>())
    Fn->addFnAttr("cfi-canonical-jump-table");

  if (getLangOpts().OpenCL) {
    // Add metadata for a kernel function.
    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
      EmitOpenCLKernelMetadata(FD, Fn);
  }

  // If we are checking function types, emit a function type signature as
  // prologue data.
  if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
    if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
      if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) {
        // Remove any (C++17) exception specifications, to allow calling e.g. a
        // noexcept function through a non-noexcept pointer.
        auto ProtoTy =
          getContext().getFunctionTypeWithExceptionSpec(FD->getType(),
                                                        EST_None);
        llvm::Constant *FTRTTIConst =
            CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
        llvm::Constant *FTRTTIConstEncoded =
            EncodeAddrForUseInPrologue(Fn, FTRTTIConst);
        llvm::Constant *PrologueStructElems[] = {PrologueSig,
                                                 FTRTTIConstEncoded};
        llvm::Constant *PrologueStructConst =
            llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
        Fn->setPrologueData(PrologueStructConst);
      }
    }
  }

  // If we're checking nullability, we need to know whether we can check the
  // return value. Initialize the flag to 'true' and refine it in EmitParmDecl.
  if (SanOpts.has(SanitizerKind::NullabilityReturn)) {
    auto Nullability = FnRetTy->getNullability(getContext());
    if (Nullability && *Nullability == NullabilityKind::NonNull) {
      if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) &&
            CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>()))
        RetValNullabilityPrecondition =
            llvm::ConstantInt::getTrue(getLLVMContext());
    }
  }

  // If we're in C++ mode and the function name is "main", it is guaranteed
  // to be norecurse by the standard (3.6.1.3 "The function main shall not be
  // used within a program").
  //
  // OpenCL C 2.0 v2.2-11 s6.9.i:
  //     Recursion is not supported.
  //
  // SYCL v1.2.1 s3.10:
  //     kernels cannot include RTTI information, exception classes,
  //     recursive code, virtual functions or make use of C++ libraries that
  //     are not compiled for the device.
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    if ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL ||
        getLangOpts().SYCLIsDevice ||
        (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))
      Fn->addFnAttr(llvm::Attribute::NoRecurse);
  }

  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
    Builder.setIsFPConstrained(FD->usesFPIntrin());
    if (FD->usesFPIntrin())
      Fn->addFnAttr(llvm::Attribute::StrictFP);
  }

  // If a custom alignment is used, force realigning to this alignment on
  // any main function which certainly will need it.
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
    if ((FD->isMain() || FD->isMSVCRTEntryPoint()) &&
        CGM.getCodeGenOpts().StackAlignment)
      Fn->addFnAttr("stackrealign");

  llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);

  // Create a marker to make it easy to insert allocas into the entryblock
  // later.  Don't create this with the builder, because we don't want it
  // folded.
  llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
  AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB);

  ReturnBlock = getJumpDestInCurrentScope("return");

  Builder.SetInsertPoint(EntryBB);

  // If we're checking the return value, allocate space for a pointer to a
  // precise source location of the checked return statement.
  if (requiresReturnValueCheck()) {
    ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr");
    InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy));
  }

  // Emit subprogram debug descriptor.
  if (CGDebugInfo *DI = getDebugInfo()) {
    // Reconstruct the type from the argument list so that implicit parameters,
    // such as 'this' and 'vtt', show up in the debug info. Preserve the calling
    // convention.
    CallingConv CC = CallingConv::CC_C;
    if (auto *FD = dyn_cast_or_null<FunctionDecl>(D))
      if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>())
        CC = SrcFnTy->getCallConv();
    SmallVector<QualType, 16> ArgTypes;
    for (const VarDecl *VD : Args)
      ArgTypes.push_back(VD->getType());
    QualType FnType = getContext().getFunctionType(
        RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
    DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk,
                          Builder);
  }

  if (ShouldInstrumentFunction()) {
    if (CGM.getCodeGenOpts().InstrumentFunctions)
      CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter");
    if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining)
      CurFn->addFnAttr("instrument-function-entry-inlined",
                       "__cyg_profile_func_enter");
    if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare)
      CurFn->addFnAttr("instrument-function-entry-inlined",
                       "__cyg_profile_func_enter_bare");
  }

  // Since emitting the mcount call here impacts optimizations such as function
  // inlining, we just add an attribute to insert a mcount call in backend.
  // The attribute "counting-function" is set to mcount function name which is
  // architecture dependent.
  if (CGM.getCodeGenOpts().InstrumentForProfiling) {
    // Calls to fentry/mcount should not be generated if function has
    // the no_instrument_function attribute.
    if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) {
      if (CGM.getCodeGenOpts().CallFEntry)
        Fn->addFnAttr("fentry-call", "true");
      else {
        Fn->addFnAttr("instrument-function-entry-inlined",
                      getTarget().getMCountName());
      }
      if (CGM.getCodeGenOpts().MNopMCount) {
        if (!CGM.getCodeGenOpts().CallFEntry)
          CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
            << "-mnop-mcount" << "-mfentry";
        Fn->addFnAttr("mnop-mcount");
      }

      if (CGM.getCodeGenOpts().RecordMCount) {
        if (!CGM.getCodeGenOpts().CallFEntry)
          CGM.getDiags().Report(diag::err_opt_not_valid_without_opt)
            << "-mrecord-mcount" << "-mfentry";
        Fn->addFnAttr("mrecord-mcount");
      }
    }
  }

  if (CGM.getCodeGenOpts().PackedStack) {
    if (getContext().getTargetInfo().getTriple().getArch() !=
        llvm::Triple::systemz)
      CGM.getDiags().Report(diag::err_opt_not_valid_on_target)
        << "-mpacked-stack";
    Fn->addFnAttr("packed-stack");
  }

  if (RetTy->isVoidType()) {
    // Void type; nothing to return.
    ReturnValue = Address::invalid();

    // Count the implicit return.
    if (!endsWithReturn(D))
      ++NumReturnExprs;
  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) {
    // Indirect return; emit returned value directly into sret slot.
    // This reduces code size, and affects correctness in C++.
    auto AI = CurFn->arg_begin();
    if (CurFnInfo->getReturnInfo().isSRetAfterThis())
      ++AI;
    ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign());
    if (!CurFnInfo->getReturnInfo().getIndirectByVal()) {
      ReturnValuePointer =
          CreateDefaultAlignTempAlloca(Int8PtrTy, "result.ptr");
      Builder.CreateStore(Builder.CreatePointerBitCastOrAddrSpaceCast(
                              ReturnValue.getPointer(), Int8PtrTy),
                          ReturnValuePointer);
    }
  } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
             !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
    // Load the sret pointer from the argument struct and return into that.
    unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
    llvm::Function::arg_iterator EI = CurFn->arg_end();
    --EI;
    llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx);
    ReturnValuePointer = Address(Addr, getPointerAlign());
    Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result");
    ReturnValue = Address(Addr, CGM.getNaturalTypeAlignment(RetTy));
  } else {
    ReturnValue = CreateIRTemp(RetTy, "retval");

    // Tell the epilog emitter to autorelease the result.  We do this
    // now so that various specialized functions can suppress it
    // during their IR-generation.
    if (getLangOpts().ObjCAutoRefCount &&
        !CurFnInfo->isReturnsRetained() &&
        RetTy->isObjCRetainableType())
      AutoreleaseResult = true;
  }

  EmitStartEHSpec(CurCodeDecl);

  PrologueCleanupDepth = EHStack.stable_begin();

  // Emit OpenMP specific initialization of the device functions.
  if (getLangOpts().OpenMP && CurCodeDecl)
    CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl);

  EmitFunctionProlog(*CurFnInfo, CurFn, Args);

  if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
    CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
    const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
    if (MD->getParent()->isLambda() &&
        MD->getOverloadedOperator() == OO_Call) {
      // We're in a lambda; figure out the captures.
      MD->getParent()->getCaptureFields(LambdaCaptureFields,
                                        LambdaThisCaptureField);
      if (LambdaThisCaptureField) {
        // If the lambda captures the object referred to by '*this' - either by
        // value or by reference, make sure CXXThisValue points to the correct
        // object.

        // Get the lvalue for the field (which is a copy of the enclosing object
        // or contains the address of the enclosing object).
        LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
        if (!LambdaThisCaptureField->getType()->isPointerType()) {
          // If the enclosing object was captured by value, just use its address.
          CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer();
        } else {
          // Load the lvalue pointed to by the field, since '*this' was captured
          // by reference.
          CXXThisValue =
              EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal();
        }
      }
      for (auto *FD : MD->getParent()->fields()) {
        if (FD->hasCapturedVLAType()) {
          auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
                                           SourceLocation()).getScalarVal();
          auto VAT = FD->getCapturedVLAType();
          VLASizeMap[VAT->getSizeExpr()] = ExprArg;
        }
      }
    } else {
      // Not in a lambda; just use 'this' from the method.
      // FIXME: Should we generate a new load for each use of 'this'?  The
      // fast register allocator would be happier...
      CXXThisValue = CXXABIThisValue;
    }

    // Check the 'this' pointer once per function, if it's available.
    if (CXXABIThisValue) {
      SanitizerSet SkippedChecks;
      SkippedChecks.set(SanitizerKind::ObjectSize, true);
      QualType ThisTy = MD->getThisType();

      // If this is the call operator of a lambda with no capture-default, it
      // may have a static invoker function, which may call this operator with
      // a null 'this' pointer.
      if (isLambdaCallOperator(MD) &&
          MD->getParent()->getLambdaCaptureDefault() == LCD_None)
        SkippedChecks.set(SanitizerKind::Null, true);

      EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall
                                                : TCK_MemberCall,
                    Loc, CXXABIThisValue, ThisTy,
                    getContext().getTypeAlignInChars(ThisTy->getPointeeType()),
                    SkippedChecks);
    }
  }

  // If any of the arguments have a variably modified type, make sure to
  // emit the type size.
  for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
       i != e; ++i) {
    const VarDecl *VD = *i;

    // Dig out the type as written from ParmVarDecls; it's unclear whether
    // the standard (C99 6.9.1p10) requires this, but we're following the
    // precedent set by gcc.
    QualType Ty;
    if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
      Ty = PVD->getOriginalType();
    else
      Ty = VD->getType();

    if (Ty->isVariablyModifiedType())
      EmitVariablyModifiedType(Ty);
  }
  // Emit a location at the end of the prologue.
  if (CGDebugInfo *DI = getDebugInfo())
    DI->EmitLocation(Builder, StartLoc);

  // TODO: Do we need to handle this in two places like we do with
  // target-features/target-cpu?
  if (CurFuncDecl)
    if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>())
      LargestVectorWidth = VecWidth->getVectorWidth();
}

void CodeGenFunction::EmitFunctionBody(const Stmt *Body) {
  incrementProfileCounter(Body);
  if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
    EmitCompoundStmtWithoutScope(*S);
  else
    EmitStmt(Body);
}

/// When instrumenting to collect profile data, the counts for some blocks
/// such as switch cases need to not include the fall-through counts, so
/// emit a branch around the instrumentation code. When not instrumenting,
/// this just calls EmitBlock().
void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
                                               const Stmt *S) {
  llvm::BasicBlock *SkipCountBB = nullptr;
  if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) {
    // When instrumenting for profiling, the fallthrough to certain
    // statements needs to skip over the instrumentation code so that we
    // get an accurate count.
    SkipCountBB = createBasicBlock("skipcount");
    EmitBranch(SkipCountBB);
  }
  EmitBlock(BB);
  uint64_t CurrentCount = getCurrentProfileCount();
  incrementProfileCounter(S);
  setCurrentProfileCount(getCurrentProfileCount() + CurrentCount);
  if (SkipCountBB)
    EmitBlock(SkipCountBB);
}

/// Tries to mark the given function nounwind based on the
/// non-existence of any throwing calls within it.  We believe this is
/// lightweight enough to do at -O0.
static void TryMarkNoThrow(llvm::Function *F) {
  // LLVM treats 'nounwind' on a function as part of the type, so we
  // can't do this on functions that can be overwritten.
  if (F->isInterposable()) return;

  for (llvm::BasicBlock &BB : *F)
    for (llvm::Instruction &I : BB)
      if (I.mayThrow())
        return;

  F->setDoesNotThrow();
}

QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD,
                                               FunctionArgList &Args) {
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
  QualType ResTy = FD->getReturnType();

  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
  if (MD && MD->isInstance()) {
    if (CGM.getCXXABI().HasThisReturn(GD))
      ResTy = MD->getThisType();
    else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
      ResTy = CGM.getContext().VoidPtrTy;
    CGM.getCXXABI().buildThisParam(*this, Args);
  }

  // The base version of an inheriting constructor whose constructed base is a
  // virtual base is not passed any arguments (because it doesn't actually call
  // the inherited constructor).
  bool PassedParams = true;
  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
    if (auto Inherited = CD->getInheritedConstructor())
      PassedParams =
          getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType());

  if (PassedParams) {
    for (auto *Param : FD->parameters()) {
      Args.push_back(Param);
      if (!Param->hasAttr<PassObjectSizeAttr>())
        continue;

      auto *Implicit = ImplicitParamDecl::Create(
          getContext(), Param->getDeclContext(), Param->getLocation(),
          /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other);
      SizeArguments[Param] = Implicit;
      Args.push_back(Implicit);
    }
  }

  if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
    CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);

  return ResTy;
}

static bool
shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD,
                                             const ASTContext &Context) {
  QualType T = FD->getReturnType();
  // Avoid the optimization for functions that return a record type with a
  // trivial destructor or another trivially copyable type.
  if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) {
    if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
      return !ClassDecl->hasTrivialDestructor();
  }
  return !T.isTriviallyCopyableType(Context);
}

void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
                                   const CGFunctionInfo &FnInfo) {
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
  CurGD = GD;

  FunctionArgList Args;
  QualType ResTy = BuildFunctionArgList(GD, Args);

  // Check if we should generate debug info for this function.
  if (FD->hasAttr<NoDebugAttr>())
    DebugInfo = nullptr; // disable debug info indefinitely for this function

  // The function might not have a body if we're generating thunks for a
  // function declaration.
  SourceRange BodyRange;
  if (Stmt *Body = FD->getBody())
    BodyRange = Body->getSourceRange();
  else
    BodyRange = FD->getLocation();
  CurEHLocation = BodyRange.getEnd();

  // Use the location of the start of the function to determine where
  // the function definition is located. By default use the location
  // of the declaration as the location for the subprogram. A function
  // may lack a declaration in the source code if it is created by code
  // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
  SourceLocation Loc = FD->getLocation();

  // If this is a function specialization then use the pattern body
  // as the location for the function.
  if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
    if (SpecDecl->hasBody(SpecDecl))
      Loc = SpecDecl->getLocation();

  Stmt *Body = FD->getBody();

  // Initialize helper which will detect jumps which can cause invalid lifetime
  // markers.
  if (Body && ShouldEmitLifetimeMarkers)
    Bypasses.Init(Body);

  // Emit the standard function prologue.
  StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());

  // Generate the body of the function.
  PGO.assignRegionCounters(GD, CurFn);
  if (isa<CXXDestructorDecl>(FD))
    EmitDestructorBody(Args);
  else if (isa<CXXConstructorDecl>(FD))
    EmitConstructorBody(Args);
  else if (getLangOpts().CUDA &&
           !getLangOpts().CUDAIsDevice &&
           FD->hasAttr<CUDAGlobalAttr>())
    CGM.getCUDARuntime().emitDeviceStub(*this, Args);
  else if (isa<CXXMethodDecl>(FD) &&
           cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
    // The lambda static invoker function is special, because it forwards or
    // clones the body of the function call operator (but is actually static).
    EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD));
  } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
             (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
              cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
    // Implicit copy-assignment gets the same special treatment as implicit
    // copy-constructors.
    emitImplicitAssignmentOperatorBody(Args);
  } else if (Body) {
    EmitFunctionBody(Body);
  } else
    llvm_unreachable("no definition for emitted function");

  // C++11 [stmt.return]p2:
  //   Flowing off the end of a function [...] results in undefined behavior in
  //   a value-returning function.
  // C11 6.9.1p12:
  //   If the '}' that terminates a function is reached, and the value of the
  //   function call is used by the caller, the behavior is undefined.
  if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
      !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
    bool ShouldEmitUnreachable =
        CGM.getCodeGenOpts().StrictReturn ||
        shouldUseUndefinedBehaviorReturnOptimization(FD, getContext());
    if (SanOpts.has(SanitizerKind::Return)) {
      SanitizerScope SanScope(this);
      llvm::Value *IsFalse = Builder.getFalse();
      EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
                SanitizerHandler::MissingReturn,
                EmitCheckSourceLocation(FD->getLocation()), None);
    } else if (ShouldEmitUnreachable) {
      if (CGM.getCodeGenOpts().OptimizationLevel == 0)
        EmitTrapCall(llvm::Intrinsic::trap);
    }
    if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) {
      Builder.CreateUnreachable();
      Builder.ClearInsertionPoint();
    }
  }

  // Emit the standard function epilogue.
  FinishFunction(BodyRange.getEnd());

  // If we haven't marked the function nothrow through other means, do
  // a quick pass now to see if we can.
  if (!CurFn->doesNotThrow())
    TryMarkNoThrow(CurFn);
}

/// ContainsLabel - Return true if the statement contains a label in it.  If
/// this statement is not executed normally, it not containing a label means
/// that we can just remove the code.
bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
  // Null statement, not a label!
  if (!S) return false;

  // If this is a label, we have to emit the code, consider something like:
  // if (0) {  ...  foo:  bar(); }  goto foo;
  //
  // TODO: If anyone cared, we could track __label__'s, since we know that you
  // can't jump to one from outside their declared region.
  if (isa<LabelStmt>(S))
    return true;

  // If this is a case/default statement, and we haven't seen a switch, we have
  // to emit the code.
  if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
    return true;

  // If this is a switch statement, we want to ignore cases below it.
  if (isa<SwitchStmt>(S))
    IgnoreCaseStmts = true;

  // Scan subexpressions for verboten labels.
  for (const Stmt *SubStmt : S->children())
    if (ContainsLabel(SubStmt, IgnoreCaseStmts))
      return true;

  return false;
}

/// containsBreak - Return true if the statement contains a break out of it.
/// If the statement (recursively) contains a switch or loop with a break
/// inside of it, this is fine.
bool CodeGenFunction::containsBreak(const Stmt *S) {
  // Null statement, not a label!
  if (!S) return false;

  // If this is a switch or loop that defines its own break scope, then we can
  // include it and anything inside of it.
  if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
      isa<ForStmt>(S))
    return false;

  if (isa<BreakStmt>(S))
    return true;

  // Scan subexpressions for verboten breaks.
  for (const Stmt *SubStmt : S->children())
    if (containsBreak(SubStmt))
      return true;

  return false;
}

bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) {
  if (!S) return false;

  // Some statement kinds add a scope and thus never add a decl to the current
  // scope. Note, this list is longer than the list of statements that might
  // have an unscoped decl nested within them, but this way is conservatively
  // correct even if more statement kinds are added.
  if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) ||
      isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) ||
      isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) ||
      isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S))
    return false;

  if (isa<DeclStmt>(S))
    return true;

  for (const Stmt *SubStmt : S->children())
    if (mightAddDeclToScope(SubStmt))
      return true;

  return false;
}

/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
/// to a constant, or if it does but contains a label, return false.  If it
/// constant folds return true and set the boolean result in Result.
bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
                                                   bool &ResultBool,
                                                   bool AllowLabels) {
  llvm::APSInt ResultInt;
  if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels))
    return false;

  ResultBool = ResultInt.getBoolValue();
  return true;
}

/// ConstantFoldsToSimpleInteger - If the specified expression does not fold
/// to a constant, or if it does but contains a label, return false.  If it
/// constant folds return true and set the folded value.
bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
                                                   llvm::APSInt &ResultInt,
                                                   bool AllowLabels) {
  // FIXME: Rename and handle conversion of other evaluatable things
  // to bool.
  Expr::EvalResult Result;
  if (!Cond->EvaluateAsInt(Result, getContext()))
    return false;  // Not foldable, not integer or not fully evaluatable.

  llvm::APSInt Int = Result.Val.getInt();
  if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond))
    return false;  // Contains a label.

  ResultInt = Int;
  return true;
}

static Optional<std::pair<uint32_t, uint32_t>>
getLikelihoodWeights(Stmt::Likelihood LH) {
  switch (LH) {
  case Stmt::LH_Unlikely:
    return std::pair<uint32_t, uint32_t>(llvm::UnlikelyBranchWeight,
                                         llvm::LikelyBranchWeight);
  case Stmt::LH_None:
    return None;
  case Stmt::LH_Likely:
    return std::pair<uint32_t, uint32_t>(llvm::LikelyBranchWeight,
                                         llvm::UnlikelyBranchWeight);
  }
  llvm_unreachable("Unknown Likelihood");
}

/// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
/// statement) to the specified blocks.  Based on the condition, this might try
/// to simplify the codegen of the conditional based on the branch.
/// \param LH The value of the likelihood attribute on the True branch.
void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
                                           llvm::BasicBlock *TrueBlock,
                                           llvm::BasicBlock *FalseBlock,
                                           uint64_t TrueCount,
                                           Stmt::Likelihood LH) {
  Cond = Cond->IgnoreParens();

  if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {

    // Handle X && Y in a condition.
    if (CondBOp->getOpcode() == BO_LAnd) {
      // If we have "1 && X", simplify the code.  "0 && X" would have constant
      // folded if the case was simple enough.
      bool ConstantBool = false;
      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
          ConstantBool) {
        // br(1 && X) -> br(X).
        incrementProfileCounter(CondBOp);
        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
                                    TrueCount, LH);
      }

      // If we have "X && 1", simplify the code to use an uncond branch.
      // "X && 0" would have been constant folded to 0.
      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
          ConstantBool) {
        // br(X && 1) -> br(X).
        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
                                    TrueCount, LH);
      }

      // Emit the LHS as a conditional.  If the LHS conditional is false, we
      // want to jump to the FalseBlock.
      llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
      // The counter tells us how often we evaluate RHS, and all of TrueCount
      // can be propagated to that branch.
      uint64_t RHSCount = getProfileCount(CondBOp->getRHS());

      ConditionalEvaluation eval(*this);
      {
        ApplyDebugLocation DL(*this, Cond);
        // Propagate the likelihood attribute like __builtin_expect
        // __builtin_expect(X && Y, 1) -> X and Y are likely
        // __builtin_expect(X && Y, 0) -> only Y is unlikely
        EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount,
                             LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH);
        EmitBlock(LHSTrue);
      }

      incrementProfileCounter(CondBOp);
      setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));

      // Any temporaries created here are conditional.
      eval.begin(*this);
      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount,
                           LH);
      eval.end(*this);

      return;
    }

    if (CondBOp->getOpcode() == BO_LOr) {
      // If we have "0 || X", simplify the code.  "1 || X" would have constant
      // folded if the case was simple enough.
      bool ConstantBool = false;
      if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
          !ConstantBool) {
        // br(0 || X) -> br(X).
        incrementProfileCounter(CondBOp);
        return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
                                    TrueCount, LH);
      }

      // If we have "X || 0", simplify the code to use an uncond branch.
      // "X || 1" would have been constant folded to 1.
      if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
          !ConstantBool) {
        // br(X || 0) -> br(X).
        return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
                                    TrueCount, LH);
      }

      // Emit the LHS as a conditional.  If the LHS conditional is true, we
      // want to jump to the TrueBlock.
      llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
      // We have the count for entry to the RHS and for the whole expression
      // being true, so we can divy up True count between the short circuit and
      // the RHS.
      uint64_t LHSCount =
          getCurrentProfileCount() - getProfileCount(CondBOp->getRHS());
      uint64_t RHSCount = TrueCount - LHSCount;

      ConditionalEvaluation eval(*this);
      {
        // Propagate the likelihood attribute like __builtin_expect
        // __builtin_expect(X || Y, 1) -> only Y is likely
        // __builtin_expect(X || Y, 0) -> both X and Y are unlikely
        ApplyDebugLocation DL(*this, Cond);
        EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount,
                             LH == Stmt::LH_Likely ? Stmt::LH_None : LH);
        EmitBlock(LHSFalse);
      }

      incrementProfileCounter(CondBOp);
      setCurrentProfileCount(getProfileCount(CondBOp->getRHS()));

      // Any temporaries created here are conditional.
      eval.begin(*this);
      EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount,
                           LH);

      eval.end(*this);

      return;
    }
  }

  if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
    // br(!x, t, f) -> br(x, f, t)
    if (CondUOp->getOpcode() == UO_LNot) {
      // Negate the count.
      uint64_t FalseCount = getCurrentProfileCount() - TrueCount;
      // The values of the enum are chosen to make this negation possible.
      LH = static_cast<Stmt::Likelihood>(-LH);
      // Negate the condition and swap the destination blocks.
      return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
                                  FalseCount, LH);
    }
  }

  if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
    // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
    llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
    llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");

    // The ConditionalOperator itself has no likelihood information for its
    // true and false branches. This matches the behavior of __builtin_expect.
    ConditionalEvaluation cond(*this);
    EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock,
                         getProfileCount(CondOp), Stmt::LH_None);

    // When computing PGO branch weights, we only know the overall count for
    // the true block. This code is essentially doing tail duplication of the
    // naive code-gen, introducing new edges for which counts are not
    // available. Divide the counts proportionally between the LHS and RHS of
    // the conditional operator.
    uint64_t LHSScaledTrueCount = 0;
    if (TrueCount) {
      double LHSRatio =
          getProfileCount(CondOp) / (double)getCurrentProfileCount();
      LHSScaledTrueCount = TrueCount * LHSRatio;
    }

    cond.begin(*this);
    EmitBlock(LHSBlock);
    incrementProfileCounter(CondOp);
    {
      ApplyDebugLocation DL(*this, Cond);
      EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
                           LHSScaledTrueCount, LH);
    }
    cond.end(*this);

    cond.begin(*this);
    EmitBlock(RHSBlock);
    EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
                         TrueCount - LHSScaledTrueCount, LH);
    cond.end(*this);

    return;
  }

  if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
    // Conditional operator handling can give us a throw expression as a
    // condition for a case like:
    //   br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
    // Fold this to:
    //   br(c, throw x, br(y, t, f))
    EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
    return;
  }

  // If the branch has a condition wrapped by __builtin_unpredictable,
  // create metadata that specifies that the branch is unpredictable.
  // Don't bother if not optimizing because that metadata would not be used.
  llvm::MDNode *Unpredictable = nullptr;
  auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts());
  if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
    auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
    if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
      llvm::MDBuilder MDHelper(getLLVMContext());
      Unpredictable = MDHelper.createUnpredictable();
    }
  }

  llvm::MDNode *Weights = nullptr;
  Optional<std::pair<uint32_t, uint32_t>> LHW = getLikelihoodWeights(LH);
  if (LHW) {
    llvm::MDBuilder MDHelper(CGM.getLLVMContext());
    Weights = MDHelper.createBranchWeights(LHW->first, LHW->second);
  }
  if (!Weights) {
    uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount);
    Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount);
  }

  // Emit the code with the fully general case.
  llvm::Value *CondV;
  {
    ApplyDebugLocation DL(*this, Cond);
    CondV = EvaluateExprAsBool(Cond);
  }
  Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable);
}

/// ErrorUnsupported - Print out an error that codegen doesn't support the
/// specified stmt yet.
void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
  CGM.ErrorUnsupported(S, Type);
}

/// emitNonZeroVLAInit - Emit the "zero" initialization of a
/// variable-length array whose elements have a non-zero bit-pattern.
///
/// \param baseType the inner-most element type of the array
/// \param src - a char* pointing to the bit-pattern for a single
/// base element of the array
/// \param sizeInChars - the total size of the VLA, in chars
static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
                               Address dest, Address src,
                               llvm::Value *sizeInChars) {
  CGBuilderTy &Builder = CGF.Builder;

  CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType);
  llvm::Value *baseSizeInChars
    = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity());

  Address begin =
    Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin");
  llvm::Value *end =
    Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end");

  llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
  llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
  llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");

  // Make a loop over the VLA.  C99 guarantees that the VLA element
  // count must be nonzero.
  CGF.EmitBlock(loopBB);

  llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur");
  cur->addIncoming(begin.getPointer(), originBB);

  CharUnits curAlign =
    dest.getAlignment().alignmentOfArrayElement(baseSize);

  // memcpy the individual element bit-pattern.
  Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars,
                       /*volatile*/ false);

  // Go to the next element.
  llvm::Value *next =
    Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next");

  // Leave if that's the end of the VLA.
  llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
  Builder.CreateCondBr(done, contBB, loopBB);
  cur->addIncoming(next, loopBB);

  CGF.EmitBlock(contBB);
}

void
CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) {
  // Ignore empty classes in C++.
  if (getLangOpts().CPlusPlus) {
    if (const RecordType *RT = Ty->getAs<RecordType>()) {
      if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
        return;
    }
  }

  // Cast the dest ptr to the appropriate i8 pointer type.
  if (DestPtr.getElementType() != Int8Ty)
    DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);

  // Get size and alignment info for this aggregate.
  CharUnits size = getContext().getTypeSizeInChars(Ty);

  llvm::Value *SizeVal;
  const VariableArrayType *vla;

  // Don't bother emitting a zero-byte memset.
  if (size.isZero()) {
    // But note that getTypeInfo returns 0 for a VLA.
    if (const VariableArrayType *vlaType =
          dyn_cast_or_null<VariableArrayType>(
                                          getContext().getAsArrayType(Ty))) {
      auto VlaSize = getVLASize(vlaType);
      SizeVal = VlaSize.NumElts;
      CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type);
      if (!eltSize.isOne())
        SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
      vla = vlaType;
    } else {
      return;
    }
  } else {
    SizeVal = CGM.getSize(size);
    vla = nullptr;
  }

  // If the type contains a pointer to data member we can't memset it to zero.
  // Instead, create a null constant and copy it to the destination.
  // TODO: there are other patterns besides zero that we can usefully memset,
  // like -1, which happens to be the pattern used by member-pointers.
  if (!CGM.getTypes().isZeroInitializable(Ty)) {
    // For a VLA, emit a single element, then splat that over the VLA.
    if (vla) Ty = getContext().getBaseElementType(vla);

    llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);

    llvm::GlobalVariable *NullVariable =
      new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
                               /*isConstant=*/true,
                               llvm::GlobalVariable::PrivateLinkage,
                               NullConstant, Twine());
    CharUnits NullAlign = DestPtr.getAlignment();
    NullVariable->setAlignment(NullAlign.getAsAlign());
    Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()),
                   NullAlign);

    if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);

    // Get and call the appropriate llvm.memcpy overload.
    Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false);
    return;
  }

  // Otherwise, just memset the whole thing to zero.  This is legal
  // because in LLVM, all default initializers (other than the ones we just
  // handled above) are guaranteed to have a bit pattern of all zeros.
  Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false);
}

llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
  // Make sure that there is a block for the indirect goto.
  if (!IndirectBranch)
    GetIndirectGotoBlock();

  llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();

  // Make sure the indirect branch includes all of the address-taken blocks.
  IndirectBranch->addDestination(BB);
  return llvm::BlockAddress::get(CurFn, BB);
}

llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
  // If we already made the indirect branch for indirect goto, return its block.
  if (IndirectBranch) return IndirectBranch->getParent();

  CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto"));

  // Create the PHI node that indirect gotos will add entries to.
  llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
                                              "indirect.goto.dest");

  // Create the indirect branch instruction.
  IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
  return IndirectBranch->getParent();
}

/// Computes the length of an array in elements, as well as the base
/// element type and a properly-typed first element pointer.
llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
                                              QualType &baseType,
                                              Address &addr) {
  const ArrayType *arrayType = origArrayType;

  // If it's a VLA, we have to load the stored size.  Note that
  // this is the size of the VLA in bytes, not its size in elements.
  llvm::Value *numVLAElements = nullptr;
  if (isa<VariableArrayType>(arrayType)) {
    numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts;

    // Walk into all VLAs.  This doesn't require changes to addr,
    // which has type T* where T is the first non-VLA element type.
    do {
      QualType elementType = arrayType->getElementType();
      arrayType = getContext().getAsArrayType(elementType);

      // If we only have VLA components, 'addr' requires no adjustment.
      if (!arrayType) {
        baseType = elementType;
        return numVLAElements;
      }
    } while (isa<VariableArrayType>(arrayType));

    // We get out here only if we find a constant array type
    // inside the VLA.
  }

  // We have some number of constant-length arrays, so addr should
  // have LLVM type [M x [N x [...]]]*.  Build a GEP that walks
  // down to the first element of addr.
  SmallVector<llvm::Value*, 8> gepIndices;

  // GEP down to the array type.
  llvm::ConstantInt *zero = Builder.getInt32(0);
  gepIndices.push_back(zero);

  uint64_t countFromCLAs = 1;
  QualType eltType;

  llvm::ArrayType *llvmArrayType =
    dyn_cast<llvm::ArrayType>(addr.getElementType());
  while (llvmArrayType) {
    assert(isa<ConstantArrayType>(arrayType));
    assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
             == llvmArrayType->getNumElements());

    gepIndices.push_back(zero);
    countFromCLAs *= llvmArrayType->getNumElements();
    eltType = arrayType->getElementType();

    llvmArrayType =
      dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
    arrayType = getContext().getAsArrayType(arrayType->getElementType());
    assert((!llvmArrayType || arrayType) &&
           "LLVM and Clang types are out-of-synch");
  }

  if (arrayType) {
    // From this point onwards, the Clang array type has been emitted
    // as some other type (probably a packed struct). Compute the array
    // size, and just emit the 'begin' expression as a bitcast.
    while (arrayType) {
      countFromCLAs *=
          cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
      eltType = arrayType->getElementType();
      arrayType = getContext().getAsArrayType(eltType);
    }

    llvm::Type *baseType = ConvertType(eltType);
    addr = Builder.CreateElementBitCast(addr, baseType, "array.begin");
  } else {
    // Create the actual GEP.
    addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(),
                                             gepIndices, "array.begin"),
                   addr.getAlignment());
  }

  baseType = eltType;

  llvm::Value *numElements
    = llvm::ConstantInt::get(SizeTy, countFromCLAs);

  // If we had any VLA dimensions, factor them in.
  if (numVLAElements)
    numElements = Builder.CreateNUWMul(numVLAElements, numElements);

  return numElements;
}

CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) {
  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
  assert(vla && "type was not a variable array type!");
  return getVLASize(vla);
}

CodeGenFunction::VlaSizePair
CodeGenFunction::getVLASize(const VariableArrayType *type) {
  // The number of elements so far; always size_t.
  llvm::Value *numElements = nullptr;

  QualType elementType;
  do {
    elementType = type->getElementType();
    llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
    assert(vlaSize && "no size for VLA!");
    assert(vlaSize->getType() == SizeTy);

    if (!numElements) {
      numElements = vlaSize;
    } else {
      // It's undefined behavior if this wraps around, so mark it that way.
      // FIXME: Teach -fsanitize=undefined to trap this.
      numElements = Builder.CreateNUWMul(numElements, vlaSize);
    }
  } while ((type = getContext().getAsVariableArrayType(elementType)));

  return { numElements, elementType };
}

CodeGenFunction::VlaSizePair
CodeGenFunction::getVLAElements1D(QualType type) {
  const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
  assert(vla && "type was not a variable array type!");
  return getVLAElements1D(vla);
}

CodeGenFunction::VlaSizePair
CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) {
  llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()];
  assert(VlaSize && "no size for VLA!");
  assert(VlaSize->getType() == SizeTy);
  return { VlaSize, Vla->getElementType() };
}

void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
  assert(type->isVariablyModifiedType() &&
         "Must pass variably modified type to EmitVLASizes!");

  EnsureInsertPoint();

  // We're going to walk down into the type and look for VLA
  // expressions.
  do {
    assert(type->isVariablyModifiedType());

    const Type *ty = type.getTypePtr();
    switch (ty->getTypeClass()) {

#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
#include "clang/AST/TypeNodes.inc"
      llvm_unreachable("unexpected dependent type!");

    // These types are never variably-modified.
    case Type::Builtin:
    case Type::Complex:
    case Type::Vector:
    case Type::ExtVector:
    case Type::ConstantMatrix:
    case Type::Record:
    case Type::Enum:
    case Type::Elaborated:
    case Type::TemplateSpecialization:
    case Type::ObjCTypeParam:
    case Type::ObjCObject:
    case Type::ObjCInterface:
    case Type::ObjCObjectPointer:
    case Type::ExtInt:
      llvm_unreachable("type class is never variably-modified!");

    case Type::Adjusted:
      type = cast<AdjustedType>(ty)->getAdjustedType();
      break;

    case Type::Decayed:
      type = cast<DecayedType>(ty)->getPointeeType();
      break;

    case Type::Pointer:
      type = cast<PointerType>(ty)->getPointeeType();
      break;

    case Type::BlockPointer:
      type = cast<BlockPointerType>(ty)->getPointeeType();
      break;

    case Type::LValueReference:
    case Type::RValueReference:
      type = cast<ReferenceType>(ty)->getPointeeType();
      break;

    case Type::MemberPointer:
      type = cast<MemberPointerType>(ty)->getPointeeType();
      break;

    case Type::ConstantArray:
    case Type::IncompleteArray:
      // Losing element qualification here is fine.
      type = cast<ArrayType>(ty)->getElementType();
      break;

    case Type::VariableArray: {
      // Losing element qualification here is fine.
      const VariableArrayType *vat = cast<VariableArrayType>(ty);

      // Unknown size indication requires no size computation.
      // Otherwise, evaluate and record it.
      if (const Expr *size = vat->getSizeExpr()) {
        // It's possible that we might have emitted this already,
        // e.g. with a typedef and a pointer to it.
        llvm::Value *&entry = VLASizeMap[size];
        if (!entry) {
          llvm::Value *Size = EmitScalarExpr(size);

          // C11 6.7.6.2p5:
          //   If the size is an expression that is not an integer constant
          //   expression [...] each time it is evaluated it shall have a value
          //   greater than zero.
          if (SanOpts.has(SanitizerKind::VLABound) &&
              size->getType()->isSignedIntegerType()) {
            SanitizerScope SanScope(this);
            llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
            llvm::Constant *StaticArgs[] = {
                EmitCheckSourceLocation(size->getBeginLoc()),
                EmitCheckTypeDescriptor(size->getType())};
            EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
                                     SanitizerKind::VLABound),
                      SanitizerHandler::VLABoundNotPositive, StaticArgs, Size);
          }

          // Always zexting here would be wrong if it weren't
          // undefined behavior to have a negative bound.
          entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
        }
      }
      type = vat->getElementType();
      break;
    }

    case Type::FunctionProto:
    case Type::FunctionNoProto:
      type = cast<FunctionType>(ty)->getReturnType();
      break;

    case Type::Paren:
    case Type::TypeOf:
    case Type::UnaryTransform:
    case Type::Attributed:
    case Type::SubstTemplateTypeParm:
    case Type::MacroQualified:
      // Keep walking after single level desugaring.
      type = type.getSingleStepDesugaredType(getContext());
      break;

    case Type::Typedef:
    case Type::Decltype:
    case Type::Auto:
    case Type::DeducedTemplateSpecialization:
      // Stop walking: nothing to do.
      return;

    case Type::TypeOfExpr:
      // Stop walking: emit typeof expression.
      EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
      return;

    case Type::Atomic:
      type = cast<AtomicType>(ty)->getValueType();
      break;

    case Type::Pipe:
      type = cast<PipeType>(ty)->getElementType();
      break;
    }
  } while (type->isVariablyModifiedType());
}

Address CodeGenFunction::EmitVAListRef(const Expr* E) {
  if (getContext().getBuiltinVaListType()->isArrayType())
    return EmitPointerWithAlignment(E);
  return EmitLValue(E).getAddress(*this);
}

Address CodeGenFunction::EmitMSVAListRef(const Expr *E) {
  return EmitLValue(E).getAddress(*this);
}

void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
                                              const APValue &Init) {
  assert(Init.hasValue() && "Invalid DeclRefExpr initializer!");
  if (CGDebugInfo *Dbg = getDebugInfo())
    if (CGM.getCodeGenOpts().hasReducedDebugInfo())
      Dbg->EmitGlobalVariable(E->getDecl(), Init);
}

CodeGenFunction::PeepholeProtection
CodeGenFunction::protectFromPeepholes(RValue rvalue) {
  // At the moment, the only aggressive peephole we do in IR gen
  // is trunc(zext) folding, but if we add more, we can easily
  // extend this protection.

  if (!rvalue.isScalar()) return PeepholeProtection();
  llvm::Value *value = rvalue.getScalarVal();
  if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();

  // Just make an extra bitcast.
  assert(HaveInsertPoint());
  llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
                                                  Builder.GetInsertBlock());

  PeepholeProtection protection;
  protection.Inst = inst;
  return protection;
}

void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
  if (!protection.Inst) return;

  // In theory, we could try to duplicate the peepholes now, but whatever.
  protection.Inst->eraseFromParent();
}

void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
                                              QualType Ty, SourceLocation Loc,
                                              SourceLocation AssumptionLoc,
                                              llvm::Value *Alignment,
                                              llvm::Value *OffsetValue) {
  if (Alignment->getType() != IntPtrTy)
    Alignment =
        Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align");
  if (OffsetValue && OffsetValue->getType() != IntPtrTy)
    OffsetValue =
        Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset");
  llvm::Value *TheCheck = nullptr;
  if (SanOpts.has(SanitizerKind::Alignment)) {
    llvm::Value *PtrIntValue =
        Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");

    if (OffsetValue) {
      bool IsOffsetZero = false;
      if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue))
        IsOffsetZero = CI->isZero();

      if (!IsOffsetZero)
        PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr");
    }

    llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0);
    llvm::Value *Mask =
        Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1));
    llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr");
    TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond");
  }
  llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption(
      CGM.getDataLayout(), PtrValue, Alignment, OffsetValue);

  if (!SanOpts.has(SanitizerKind::Alignment))
    return;
  emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
                               OffsetValue, TheCheck, Assumption);
}

void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue,
                                              const Expr *E,
                                              SourceLocation AssumptionLoc,
                                              llvm::Value *Alignment,
                                              llvm::Value *OffsetValue) {
  if (auto *CE = dyn_cast<CastExpr>(E))
    E = CE->getSubExprAsWritten();
  QualType Ty = E->getType();
  SourceLocation Loc = E->getExprLoc();

  emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment,
                          OffsetValue);
}

llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn,
                                                 llvm::Value *AnnotatedVal,
                                                 StringRef AnnotationStr,
                                                 SourceLocation Location) {
  llvm::Value *Args[4] = {
    AnnotatedVal,
    Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
    Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
    CGM.EmitAnnotationLineNo(Location)
  };
  return Builder.CreateCall(AnnotationFn, Args);
}

void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
  // FIXME We create a new bitcast for every annotation because that's what
  // llvm-gcc was doing.
  for (const auto *I : D->specific_attrs<AnnotateAttr>())
    EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
                       Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
                       I->getAnnotation(), D->getLocation());
}

Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
                                              Address Addr) {
  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
  llvm::Value *V = Addr.getPointer();
  llvm::Type *VTy = V->getType();
  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
                                    CGM.Int8PtrTy);

  for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
    // FIXME Always emit the cast inst so we can differentiate between
    // annotation on the first field of a struct and annotation on the struct
    // itself.
    if (VTy != CGM.Int8PtrTy)
      V = Builder.CreateBitCast(V, CGM.Int8PtrTy);
    V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
    V = Builder.CreateBitCast(V, VTy);
  }

  return Address(V, Addr.getAlignment());
}

CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }

CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
    : CGF(CGF) {
  assert(!CGF->IsSanitizerScope);
  CGF->IsSanitizerScope = true;
}

CodeGenFunction::SanitizerScope::~SanitizerScope() {
  CGF->IsSanitizerScope = false;
}

void CodeGenFunction::InsertHelper(llvm::Instruction *I,
                                   const llvm::Twine &Name,
                                   llvm::BasicBlock *BB,
                                   llvm::BasicBlock::iterator InsertPt) const {
  LoopStack.InsertHelper(I);
  if (IsSanitizerScope)
    CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
}

void CGBuilderInserter::InsertHelper(
    llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
    llvm::BasicBlock::iterator InsertPt) const {
  llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
  if (CGF)
    CGF->InsertHelper(I, Name, BB, InsertPt);
}

static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures,
                                CodeGenModule &CGM, const FunctionDecl *FD,
                                std::string &FirstMissing) {
  // If there aren't any required features listed then go ahead and return.
  if (ReqFeatures.empty())
    return false;

  // Now build up the set of caller features and verify that all the required
  // features are there.
  llvm::StringMap<bool> CallerFeatureMap;
  CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD);

  // If we have at least one of the features in the feature list return
  // true, otherwise return false.
  return std::all_of(
      ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) {
        SmallVector<StringRef, 1> OrFeatures;
        Feature.split(OrFeatures, '|');
        return llvm::any_of(OrFeatures, [&](StringRef Feature) {
          if (!CallerFeatureMap.lookup(Feature)) {
            FirstMissing = Feature.str();
            return false;
          }
          return true;
        });
      });
}

// Emits an error if we don't have a valid set of target features for the
// called function.
void CodeGenFunction::checkTargetFeatures(const CallExpr *E,
                                          const FunctionDecl *TargetDecl) {
  return checkTargetFeatures(E->getBeginLoc(), TargetDecl);
}

// Emits an error if we don't have a valid set of target features for the
// called function.
void CodeGenFunction::checkTargetFeatures(SourceLocation Loc,
                                          const FunctionDecl *TargetDecl) {
  // Early exit if this is an indirect call.
  if (!TargetDecl)
    return;

  // Get the current enclosing function if it exists. If it doesn't
  // we can't check the target features anyhow.
  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
  if (!FD)
    return;

  // Grab the required features for the call. For a builtin this is listed in
  // the td file with the default cpu, for an always_inline function this is any
  // listed cpu and any listed features.
  unsigned BuiltinID = TargetDecl->getBuiltinID();
  std::string MissingFeature;
  if (BuiltinID) {
    SmallVector<StringRef, 1> ReqFeatures;
    const char *FeatureList =
        CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);
    // Return if the builtin doesn't have any required features.
    if (!FeatureList || StringRef(FeatureList) == "")
      return;
    StringRef(FeatureList).split(ReqFeatures, ',');
    if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
      CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature)
          << TargetDecl->getDeclName()
          << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID);

  } else if (!TargetDecl->isMultiVersion() &&
             TargetDecl->hasAttr<TargetAttr>()) {
    // Get the required features for the callee.

    const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>();
    ParsedTargetAttr ParsedAttr =
        CGM.getContext().filterFunctionTargetAttrs(TD);

    SmallVector<StringRef, 1> ReqFeatures;
    llvm::StringMap<bool> CalleeFeatureMap;
    CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl);

    for (const auto &F : ParsedAttr.Features) {
      if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1)))
        ReqFeatures.push_back(StringRef(F).substr(1));
    }

    for (const auto &F : CalleeFeatureMap) {
      // Only positive features are "required".
      if (F.getValue())
        ReqFeatures.push_back(F.getKey());
    }
    if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature))
      CGM.getDiags().Report(Loc, diag::err_function_needs_feature)
          << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature;
  }
}

void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) {
  if (!CGM.getCodeGenOpts().SanitizeStats)
    return;

  llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint());
  IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation());
  CGM.getSanStats().create(IRB, SSK);
}

llvm::Value *
CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) {
  llvm::Value *Condition = nullptr;

  if (!RO.Conditions.Architecture.empty())
    Condition = EmitX86CpuIs(RO.Conditions.Architecture);

  if (!RO.Conditions.Features.empty()) {
    llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features);
    Condition =
        Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond;
  }
  return Condition;
}

static void CreateMultiVersionResolverReturn(CodeGenModule &CGM,
                                             llvm::Function *Resolver,
                                             CGBuilderTy &Builder,
                                             llvm::Function *FuncToReturn,
                                             bool SupportsIFunc) {
  if (SupportsIFunc) {
    Builder.CreateRet(FuncToReturn);
    return;
  }

  llvm::SmallVector<llvm::Value *, 10> Args;
  llvm::for_each(Resolver->args(),
                 [&](llvm::Argument &Arg) { Args.push_back(&Arg); });

  llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args);
  Result->setTailCallKind(llvm::CallInst::TCK_MustTail);

  if (Resolver->getReturnType()->isVoidTy())
    Builder.CreateRetVoid();
  else
    Builder.CreateRet(Result);
}

void CodeGenFunction::EmitMultiVersionResolver(
    llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) {
  assert(getContext().getTargetInfo().getTriple().isX86() &&
         "Only implemented for x86 targets");

  bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc();

  // Main function's basic block.
  llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver);
  Builder.SetInsertPoint(CurBlock);
  EmitX86CpuInit();

  for (const MultiVersionResolverOption &RO : Options) {
    Builder.SetInsertPoint(CurBlock);
    llvm::Value *Condition = FormResolverCondition(RO);

    // The 'default' or 'generic' case.
    if (!Condition) {
      assert(&RO == Options.end() - 1 &&
             "Default or Generic case must be last");
      CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function,
                                       SupportsIFunc);
      return;
    }

    llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver);
    CGBuilderTy RetBuilder(*this, RetBlock);
    CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function,
                                     SupportsIFunc);
    CurBlock = createBasicBlock("resolver_else", Resolver);
    Builder.CreateCondBr(Condition, RetBlock, CurBlock);
  }

  // If no generic/default, emit an unreachable.
  Builder.SetInsertPoint(CurBlock);
  llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
  TrapCall->setDoesNotReturn();
  TrapCall->setDoesNotThrow();
  Builder.CreateUnreachable();
  Builder.ClearInsertionPoint();
}

// Loc - where the diagnostic will point, where in the source code this
//  alignment has failed.
// SecondaryLoc - if present (will be present if sufficiently different from
//  Loc), the diagnostic will additionally point a "Note:" to this location.
//  It should be the location where the __attribute__((assume_aligned))
//  was written e.g.
void CodeGenFunction::emitAlignmentAssumptionCheck(
    llvm::Value *Ptr, QualType Ty, SourceLocation Loc,
    SourceLocation SecondaryLoc, llvm::Value *Alignment,
    llvm::Value *OffsetValue, llvm::Value *TheCheck,
    llvm::Instruction *Assumption) {
  assert(Assumption && isa<llvm::CallInst>(Assumption) &&
         cast<llvm::CallInst>(Assumption)->getCalledOperand() ==
             llvm::Intrinsic::getDeclaration(
                 Builder.GetInsertBlock()->getParent()->getParent(),
                 llvm::Intrinsic::assume) &&
         "Assumption should be a call to llvm.assume().");
  assert(&(Builder.GetInsertBlock()->back()) == Assumption &&
         "Assumption should be the last instruction of the basic block, "
         "since the basic block is still being generated.");

  if (!SanOpts.has(SanitizerKind::Alignment))
    return;

  // Don't check pointers to volatile data. The behavior here is implementation-
  // defined.
  if (Ty->getPointeeType().isVolatileQualified())
    return;

  // We need to temorairly remove the assumption so we can insert the
  // sanitizer check before it, else the check will be dropped by optimizations.
  Assumption->removeFromParent();

  {
    SanitizerScope SanScope(this);

    if (!OffsetValue)
      OffsetValue = Builder.getInt1(0); // no offset.

    llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc),
                                    EmitCheckSourceLocation(SecondaryLoc),
                                    EmitCheckTypeDescriptor(Ty)};
    llvm::Value *DynamicData[] = {EmitCheckValue(Ptr),
                                  EmitCheckValue(Alignment),
                                  EmitCheckValue(OffsetValue)};
    EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)},
              SanitizerHandler::AlignmentAssumption, StaticData, DynamicData);
  }

  // We are now in the (new, empty) "cont" basic block.
  // Reintroduce the assumption.
  Builder.Insert(Assumption);
  // FIXME: Assumption still has it's original basic block as it's Parent.
}

llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) {
  if (CGDebugInfo *DI = getDebugInfo())
    return DI->SourceLocToDebugLoc(Location);

  return llvm::DebugLoc();
}