CGStmt.cpp 93.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Stmt nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGDebugInfo.h"
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "TargetInfo.h"
#include "clang/AST/Attr.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/PrettyStackTrace.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/Support/SaveAndRestore.h"

using namespace clang;
using namespace CodeGen;

//===----------------------------------------------------------------------===//
//                              Statement Emission
//===----------------------------------------------------------------------===//

void CodeGenFunction::EmitStopPoint(const Stmt *S) {
  if (CGDebugInfo *DI = getDebugInfo()) {
    SourceLocation Loc;
    Loc = S->getBeginLoc();
    DI->EmitLocation(Builder, Loc);

    LastStopPoint = Loc;
  }
}

void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
  assert(S && "Null statement?");
  PGO.setCurrentStmt(S);

  // These statements have their own debug info handling.
  if (EmitSimpleStmt(S))
    return;

  // Check if we are generating unreachable code.
  if (!HaveInsertPoint()) {
    // If so, and the statement doesn't contain a label, then we do not need to
    // generate actual code. This is safe because (1) the current point is
    // unreachable, so we don't need to execute the code, and (2) we've already
    // handled the statements which update internal data structures (like the
    // local variable map) which could be used by subsequent statements.
    if (!ContainsLabel(S)) {
      // Verify that any decl statements were handled as simple, they may be in
      // scope of subsequent reachable statements.
      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
      return;
    }

    // Otherwise, make a new block to hold the code.
    EnsureInsertPoint();
  }

  // Generate a stoppoint if we are emitting debug info.
  EmitStopPoint(S);

  // Ignore all OpenMP directives except for simd if OpenMP with Simd is
  // enabled.
  if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
    if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
      EmitSimpleOMPExecutableDirective(*D);
      return;
    }
  }

  switch (S->getStmtClass()) {
  case Stmt::NoStmtClass:
  case Stmt::CXXCatchStmtClass:
  case Stmt::SEHExceptStmtClass:
  case Stmt::SEHFinallyStmtClass:
  case Stmt::MSDependentExistsStmtClass:
    llvm_unreachable("invalid statement class to emit generically");
  case Stmt::NullStmtClass:
  case Stmt::CompoundStmtClass:
  case Stmt::DeclStmtClass:
  case Stmt::LabelStmtClass:
  case Stmt::AttributedStmtClass:
  case Stmt::GotoStmtClass:
  case Stmt::BreakStmtClass:
  case Stmt::ContinueStmtClass:
  case Stmt::DefaultStmtClass:
  case Stmt::CaseStmtClass:
  case Stmt::SEHLeaveStmtClass:
    llvm_unreachable("should have emitted these statements as simple");

#define STMT(Type, Base)
#define ABSTRACT_STMT(Op)
#define EXPR(Type, Base) \
  case Stmt::Type##Class:
#include "clang/AST/StmtNodes.inc"
  {
    // Remember the block we came in on.
    llvm::BasicBlock *incoming = Builder.GetInsertBlock();
    assert(incoming && "expression emission must have an insertion point");

    EmitIgnoredExpr(cast<Expr>(S));

    llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
    assert(outgoing && "expression emission cleared block!");

    // The expression emitters assume (reasonably!) that the insertion
    // point is always set.  To maintain that, the call-emission code
    // for noreturn functions has to enter a new block with no
    // predecessors.  We want to kill that block and mark the current
    // insertion point unreachable in the common case of a call like
    // "exit();".  Since expression emission doesn't otherwise create
    // blocks with no predecessors, we can just test for that.
    // However, we must be careful not to do this to our incoming
    // block, because *statement* emission does sometimes create
    // reachable blocks which will have no predecessors until later in
    // the function.  This occurs with, e.g., labels that are not
    // reachable by fallthrough.
    if (incoming != outgoing && outgoing->use_empty()) {
      outgoing->eraseFromParent();
      Builder.ClearInsertionPoint();
    }
    break;
  }

  case Stmt::IndirectGotoStmtClass:
    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;

  case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
  case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
  case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
  case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;

  case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;

  case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
  case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
  case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
  case Stmt::CoroutineBodyStmtClass:
    EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
    break;
  case Stmt::CoreturnStmtClass:
    EmitCoreturnStmt(cast<CoreturnStmt>(*S));
    break;
  case Stmt::CapturedStmtClass: {
    const CapturedStmt *CS = cast<CapturedStmt>(S);
    EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
    }
    break;
  case Stmt::ObjCAtTryStmtClass:
    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
    break;
  case Stmt::ObjCAtCatchStmtClass:
    llvm_unreachable(
                    "@catch statements should be handled by EmitObjCAtTryStmt");
  case Stmt::ObjCAtFinallyStmtClass:
    llvm_unreachable(
                  "@finally statements should be handled by EmitObjCAtTryStmt");
  case Stmt::ObjCAtThrowStmtClass:
    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
    break;
  case Stmt::ObjCAtSynchronizedStmtClass:
    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
    break;
  case Stmt::ObjCForCollectionStmtClass:
    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
    break;
  case Stmt::ObjCAutoreleasePoolStmtClass:
    EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
    break;

  case Stmt::CXXTryStmtClass:
    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
    break;
  case Stmt::CXXForRangeStmtClass:
    EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
    break;
  case Stmt::SEHTryStmtClass:
    EmitSEHTryStmt(cast<SEHTryStmt>(*S));
    break;
  case Stmt::OMPParallelDirectiveClass:
    EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
    break;
  case Stmt::OMPSimdDirectiveClass:
    EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
    break;
  case Stmt::OMPForDirectiveClass:
    EmitOMPForDirective(cast<OMPForDirective>(*S));
    break;
  case Stmt::OMPForSimdDirectiveClass:
    EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
    break;
  case Stmt::OMPSectionsDirectiveClass:
    EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
    break;
  case Stmt::OMPSectionDirectiveClass:
    EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
    break;
  case Stmt::OMPSingleDirectiveClass:
    EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
    break;
  case Stmt::OMPMasterDirectiveClass:
    EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
    break;
  case Stmt::OMPCriticalDirectiveClass:
    EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
    break;
  case Stmt::OMPParallelForDirectiveClass:
    EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
    break;
  case Stmt::OMPParallelForSimdDirectiveClass:
    EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
    break;
  case Stmt::OMPParallelMasterDirectiveClass:
    EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
    break;
  case Stmt::OMPParallelSectionsDirectiveClass:
    EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
    break;
  case Stmt::OMPTaskDirectiveClass:
    EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
    break;
  case Stmt::OMPTaskyieldDirectiveClass:
    EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
    break;
  case Stmt::OMPBarrierDirectiveClass:
    EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
    break;
  case Stmt::OMPTaskwaitDirectiveClass:
    EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
    break;
  case Stmt::OMPTaskgroupDirectiveClass:
    EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
    break;
  case Stmt::OMPFlushDirectiveClass:
    EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
    break;
  case Stmt::OMPDepobjDirectiveClass:
    EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
    break;
  case Stmt::OMPScanDirectiveClass:
    EmitOMPScanDirective(cast<OMPScanDirective>(*S));
    break;
  case Stmt::OMPOrderedDirectiveClass:
    EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
    break;
  case Stmt::OMPAtomicDirectiveClass:
    EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
    break;
  case Stmt::OMPTargetDirectiveClass:
    EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
    break;
  case Stmt::OMPTeamsDirectiveClass:
    EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
    break;
  case Stmt::OMPCancellationPointDirectiveClass:
    EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
    break;
  case Stmt::OMPCancelDirectiveClass:
    EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
    break;
  case Stmt::OMPTargetDataDirectiveClass:
    EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
    break;
  case Stmt::OMPTargetEnterDataDirectiveClass:
    EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
    break;
  case Stmt::OMPTargetExitDataDirectiveClass:
    EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
    break;
  case Stmt::OMPTargetParallelDirectiveClass:
    EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
    break;
  case Stmt::OMPTargetParallelForDirectiveClass:
    EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
    break;
  case Stmt::OMPTaskLoopDirectiveClass:
    EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
    break;
  case Stmt::OMPTaskLoopSimdDirectiveClass:
    EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
    break;
  case Stmt::OMPMasterTaskLoopDirectiveClass:
    EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
    break;
  case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
    EmitOMPMasterTaskLoopSimdDirective(
        cast<OMPMasterTaskLoopSimdDirective>(*S));
    break;
  case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
    EmitOMPParallelMasterTaskLoopDirective(
        cast<OMPParallelMasterTaskLoopDirective>(*S));
    break;
  case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
    EmitOMPParallelMasterTaskLoopSimdDirective(
        cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
    break;
  case Stmt::OMPDistributeDirectiveClass:
    EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
    break;
  case Stmt::OMPTargetUpdateDirectiveClass:
    EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
    break;
  case Stmt::OMPDistributeParallelForDirectiveClass:
    EmitOMPDistributeParallelForDirective(
        cast<OMPDistributeParallelForDirective>(*S));
    break;
  case Stmt::OMPDistributeParallelForSimdDirectiveClass:
    EmitOMPDistributeParallelForSimdDirective(
        cast<OMPDistributeParallelForSimdDirective>(*S));
    break;
  case Stmt::OMPDistributeSimdDirectiveClass:
    EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
    break;
  case Stmt::OMPTargetParallelForSimdDirectiveClass:
    EmitOMPTargetParallelForSimdDirective(
        cast<OMPTargetParallelForSimdDirective>(*S));
    break;
  case Stmt::OMPTargetSimdDirectiveClass:
    EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
    break;
  case Stmt::OMPTeamsDistributeDirectiveClass:
    EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
    break;
  case Stmt::OMPTeamsDistributeSimdDirectiveClass:
    EmitOMPTeamsDistributeSimdDirective(
        cast<OMPTeamsDistributeSimdDirective>(*S));
    break;
  case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
    EmitOMPTeamsDistributeParallelForSimdDirective(
        cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
    break;
  case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
    EmitOMPTeamsDistributeParallelForDirective(
        cast<OMPTeamsDistributeParallelForDirective>(*S));
    break;
  case Stmt::OMPTargetTeamsDirectiveClass:
    EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
    break;
  case Stmt::OMPTargetTeamsDistributeDirectiveClass:
    EmitOMPTargetTeamsDistributeDirective(
        cast<OMPTargetTeamsDistributeDirective>(*S));
    break;
  case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
    EmitOMPTargetTeamsDistributeParallelForDirective(
        cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
    break;
  case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
    EmitOMPTargetTeamsDistributeParallelForSimdDirective(
        cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
    break;
  case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
    EmitOMPTargetTeamsDistributeSimdDirective(
        cast<OMPTargetTeamsDistributeSimdDirective>(*S));
    break;
  }
}

bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
  switch (S->getStmtClass()) {
  default: return false;
  case Stmt::NullStmtClass: break;
  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
  case Stmt::AttributedStmtClass:
                            EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
  case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
  }

  return true;
}

/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
/// this captures the expression result of the last sub-statement and returns it
/// (for use by the statement expression extension).
Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
                                          AggValueSlot AggSlot) {
  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
                             "LLVM IR generation of compound statement ('{}')");

  // Keep track of the current cleanup stack depth, including debug scopes.
  LexicalScope Scope(*this, S.getSourceRange());

  return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
}

Address
CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
                                              bool GetLast,
                                              AggValueSlot AggSlot) {

  const Stmt *ExprResult = S.getStmtExprResult();
  assert((!GetLast || (GetLast && ExprResult)) &&
         "If GetLast is true then the CompoundStmt must have a StmtExprResult");

  Address RetAlloca = Address::invalid();

  for (auto *CurStmt : S.body()) {
    if (GetLast && ExprResult == CurStmt) {
      // We have to special case labels here.  They are statements, but when put
      // at the end of a statement expression, they yield the value of their
      // subexpression.  Handle this by walking through all labels we encounter,
      // emitting them before we evaluate the subexpr.
      // Similar issues arise for attributed statements.
      while (!isa<Expr>(ExprResult)) {
        if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
          EmitLabel(LS->getDecl());
          ExprResult = LS->getSubStmt();
        } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
          // FIXME: Update this if we ever have attributes that affect the
          // semantics of an expression.
          ExprResult = AS->getSubStmt();
        } else {
          llvm_unreachable("unknown value statement");
        }
      }

      EnsureInsertPoint();

      const Expr *E = cast<Expr>(ExprResult);
      QualType ExprTy = E->getType();
      if (hasAggregateEvaluationKind(ExprTy)) {
        EmitAggExpr(E, AggSlot);
      } else {
        // We can't return an RValue here because there might be cleanups at
        // the end of the StmtExpr.  Because of that, we have to emit the result
        // here into a temporary alloca.
        RetAlloca = CreateMemTemp(ExprTy);
        EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
                         /*IsInit*/ false);
      }
    } else {
      EmitStmt(CurStmt);
    }
  }

  return RetAlloca;
}

void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());

  // If there is a cleanup stack, then we it isn't worth trying to
  // simplify this block (we would need to remove it from the scope map
  // and cleanup entry).
  if (!EHStack.empty())
    return;

  // Can only simplify direct branches.
  if (!BI || !BI->isUnconditional())
    return;

  // Can only simplify empty blocks.
  if (BI->getIterator() != BB->begin())
    return;

  BB->replaceAllUsesWith(BI->getSuccessor(0));
  BI->eraseFromParent();
  BB->eraseFromParent();
}

void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();

  // Fall out of the current block (if necessary).
  EmitBranch(BB);

  if (IsFinished && BB->use_empty()) {
    delete BB;
    return;
  }

  // Place the block after the current block, if possible, or else at
  // the end of the function.
  if (CurBB && CurBB->getParent())
    CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
  else
    CurFn->getBasicBlockList().push_back(BB);
  Builder.SetInsertPoint(BB);
}

void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
  // Emit a branch from the current block to the target one if this
  // was a real block.  If this was just a fall-through block after a
  // terminator, don't emit it.
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();

  if (!CurBB || CurBB->getTerminator()) {
    // If there is no insert point or the previous block is already
    // terminated, don't touch it.
  } else {
    // Otherwise, create a fall-through branch.
    Builder.CreateBr(Target);
  }

  Builder.ClearInsertionPoint();
}

void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
  bool inserted = false;
  for (llvm::User *u : block->users()) {
    if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
      CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
                                             block);
      inserted = true;
      break;
    }
  }

  if (!inserted)
    CurFn->getBasicBlockList().push_back(block);

  Builder.SetInsertPoint(block);
}

CodeGenFunction::JumpDest
CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
  JumpDest &Dest = LabelMap[D];
  if (Dest.isValid()) return Dest;

  // Create, but don't insert, the new block.
  Dest = JumpDest(createBasicBlock(D->getName()),
                  EHScopeStack::stable_iterator::invalid(),
                  NextCleanupDestIndex++);
  return Dest;
}

void CodeGenFunction::EmitLabel(const LabelDecl *D) {
  // Add this label to the current lexical scope if we're within any
  // normal cleanups.  Jumps "in" to this label --- when permitted by
  // the language --- may need to be routed around such cleanups.
  if (EHStack.hasNormalCleanups() && CurLexicalScope)
    CurLexicalScope->addLabel(D);

  JumpDest &Dest = LabelMap[D];

  // If we didn't need a forward reference to this label, just go
  // ahead and create a destination at the current scope.
  if (!Dest.isValid()) {
    Dest = getJumpDestInCurrentScope(D->getName());

  // Otherwise, we need to give this label a target depth and remove
  // it from the branch-fixups list.
  } else {
    assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
    Dest.setScopeDepth(EHStack.stable_begin());
    ResolveBranchFixups(Dest.getBlock());
  }

  EmitBlock(Dest.getBlock());

  // Emit debug info for labels.
  if (CGDebugInfo *DI = getDebugInfo()) {
    if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
      DI->setLocation(D->getLocation());
      DI->EmitLabel(D, Builder);
    }
  }

  incrementProfileCounter(D->getStmt());
}

/// Change the cleanup scope of the labels in this lexical scope to
/// match the scope of the enclosing context.
void CodeGenFunction::LexicalScope::rescopeLabels() {
  assert(!Labels.empty());
  EHScopeStack::stable_iterator innermostScope
    = CGF.EHStack.getInnermostNormalCleanup();

  // Change the scope depth of all the labels.
  for (SmallVectorImpl<const LabelDecl*>::const_iterator
         i = Labels.begin(), e = Labels.end(); i != e; ++i) {
    assert(CGF.LabelMap.count(*i));
    JumpDest &dest = CGF.LabelMap.find(*i)->second;
    assert(dest.getScopeDepth().isValid());
    assert(innermostScope.encloses(dest.getScopeDepth()));
    dest.setScopeDepth(innermostScope);
  }

  // Reparent the labels if the new scope also has cleanups.
  if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
    ParentScope->Labels.append(Labels.begin(), Labels.end());
  }
}


void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
  EmitLabel(S.getDecl());
  EmitStmt(S.getSubStmt());
}

void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
  bool nomerge = false;
  for (const auto *A : S.getAttrs())
    if (A->getKind() == attr::NoMerge) {
      nomerge = true;
      break;
    }
  SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
  EmitStmt(S.getSubStmt(), S.getAttrs());
}

void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
  // If this code is reachable then emit a stop point (if generating
  // debug info). We have to do this ourselves because we are on the
  // "simple" statement path.
  if (HaveInsertPoint())
    EmitStopPoint(&S);

  EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
}


void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
  if (const LabelDecl *Target = S.getConstantTarget()) {
    EmitBranchThroughCleanup(getJumpDestForLabel(Target));
    return;
  }

  // Ensure that we have an i8* for our PHI node.
  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
                                         Int8PtrTy, "addr");
  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();

  // Get the basic block for the indirect goto.
  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();

  // The first instruction in the block has to be the PHI for the switch dest,
  // add an entry for this branch.
  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);

  EmitBranch(IndGotoBB);
}

void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
  // C99 6.8.4.1: The first substatement is executed if the expression compares
  // unequal to 0.  The condition must be a scalar type.
  LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());

  if (S.getInit())
    EmitStmt(S.getInit());

  if (S.getConditionVariable())
    EmitDecl(*S.getConditionVariable());

  // If the condition constant folds and can be elided, try to avoid emitting
  // the condition and the dead arm of the if/else.
  bool CondConstant;
  if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
                                   S.isConstexpr())) {
    // Figure out which block (then or else) is executed.
    const Stmt *Executed = S.getThen();
    const Stmt *Skipped  = S.getElse();
    if (!CondConstant)  // Condition false?
      std::swap(Executed, Skipped);

    // If the skipped block has no labels in it, just emit the executed block.
    // This avoids emitting dead code and simplifies the CFG substantially.
    if (S.isConstexpr() || !ContainsLabel(Skipped)) {
      if (CondConstant)
        incrementProfileCounter(&S);
      if (Executed) {
        RunCleanupsScope ExecutedScope(*this);
        EmitStmt(Executed);
      }
      return;
    }
  }

  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
  // the conditional branch.
  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
  llvm::BasicBlock *ElseBlock = ContBlock;
  if (S.getElse())
    ElseBlock = createBasicBlock("if.else");

  // Prefer the PGO based weights over the likelihood attribute.
  // When the build isn't optimized the metadata isn't used, so don't generate
  // it.
  Stmt::Likelihood LH = Stmt::LH_None;
  uint64_t Count = getProfileCount(S.getThen());
  if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
    LH = Stmt::getLikelihood(S.getThen(), S.getElse());
  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);

  // Emit the 'then' code.
  EmitBlock(ThenBlock);
  incrementProfileCounter(&S);
  {
    RunCleanupsScope ThenScope(*this);
    EmitStmt(S.getThen());
  }
  EmitBranch(ContBlock);

  // Emit the 'else' code if present.
  if (const Stmt *Else = S.getElse()) {
    {
      // There is no need to emit line number for an unconditional branch.
      auto NL = ApplyDebugLocation::CreateEmpty(*this);
      EmitBlock(ElseBlock);
    }
    {
      RunCleanupsScope ElseScope(*this);
      EmitStmt(Else);
    }
    {
      // There is no need to emit line number for an unconditional branch.
      auto NL = ApplyDebugLocation::CreateEmpty(*this);
      EmitBranch(ContBlock);
    }
  }

  // Emit the continuation block for code after the if.
  EmitBlock(ContBlock, true);
}

void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
                                    ArrayRef<const Attr *> WhileAttrs) {
  // Emit the header for the loop, which will also become
  // the continue target.
  JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
  EmitBlock(LoopHeader.getBlock());

  const SourceRange &R = S.getSourceRange();
  LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
                 WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
                 SourceLocToDebugLoc(R.getEnd()));

  // Create an exit block for when the condition fails, which will
  // also become the break target.
  JumpDest LoopExit = getJumpDestInCurrentScope("while.end");

  // Store the blocks to use for break and continue.
  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));

  // C++ [stmt.while]p2:
  //   When the condition of a while statement is a declaration, the
  //   scope of the variable that is declared extends from its point
  //   of declaration (3.3.2) to the end of the while statement.
  //   [...]
  //   The object created in a condition is destroyed and created
  //   with each iteration of the loop.
  RunCleanupsScope ConditionScope(*this);

  if (S.getConditionVariable())
    EmitDecl(*S.getConditionVariable());

  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
  // evaluation of the controlling expression takes place before each
  // execution of the loop body.
  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());

  // while(1) is common, avoid extra exit blocks.  Be sure
  // to correctly handle break/continue though.
  bool EmitBoolCondBranch = true;
  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    if (C->isOne())
      EmitBoolCondBranch = false;

  // As long as the condition is true, go to the loop body.
  llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
  if (EmitBoolCondBranch) {
    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    if (ConditionScope.requiresCleanups())
      ExitBlock = createBasicBlock("while.exit");
    Builder.CreateCondBr(
        BoolCondVal, LoopBody, ExitBlock,
        createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));

    if (ExitBlock != LoopExit.getBlock()) {
      EmitBlock(ExitBlock);
      EmitBranchThroughCleanup(LoopExit);
    }
  }

  // Emit the loop body.  We have to emit this in a cleanup scope
  // because it might be a singleton DeclStmt.
  {
    RunCleanupsScope BodyScope(*this);
    EmitBlock(LoopBody);
    incrementProfileCounter(&S);
    EmitStmt(S.getBody());
  }

  BreakContinueStack.pop_back();

  // Immediately force cleanup.
  ConditionScope.ForceCleanup();

  EmitStopPoint(&S);
  // Branch to the loop header again.
  EmitBranch(LoopHeader.getBlock());

  LoopStack.pop();

  // Emit the exit block.
  EmitBlock(LoopExit.getBlock(), true);

  // The LoopHeader typically is just a branch if we skipped emitting
  // a branch, try to erase it.
  if (!EmitBoolCondBranch)
    SimplifyForwardingBlocks(LoopHeader.getBlock());
}

void CodeGenFunction::EmitDoStmt(const DoStmt &S,
                                 ArrayRef<const Attr *> DoAttrs) {
  JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
  JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");

  uint64_t ParentCount = getCurrentProfileCount();

  // Store the blocks to use for break and continue.
  BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));

  // Emit the body of the loop.
  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");

  EmitBlockWithFallThrough(LoopBody, &S);
  {
    RunCleanupsScope BodyScope(*this);
    EmitStmt(S.getBody());
  }

  EmitBlock(LoopCond.getBlock());

  const SourceRange &R = S.getSourceRange();
  LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
                 SourceLocToDebugLoc(R.getBegin()),
                 SourceLocToDebugLoc(R.getEnd()));

  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
  // after each execution of the loop body."

  // Evaluate the conditional in the while header.
  // C99 6.8.5p2/p4: The first substatement is executed if the expression
  // compares unequal to 0.  The condition must be a scalar type.
  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());

  BreakContinueStack.pop_back();

  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
  // to correctly handle break/continue though.
  bool EmitBoolCondBranch = true;
  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
    if (C->isZero())
      EmitBoolCondBranch = false;

  // As long as the condition is true, iterate the loop.
  if (EmitBoolCondBranch) {
    uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
    Builder.CreateCondBr(
        BoolCondVal, LoopBody, LoopExit.getBlock(),
        createProfileWeightsForLoop(S.getCond(), BackedgeCount));
  }

  LoopStack.pop();

  // Emit the exit block.
  EmitBlock(LoopExit.getBlock());

  // The DoCond block typically is just a branch if we skipped
  // emitting a branch, try to erase it.
  if (!EmitBoolCondBranch)
    SimplifyForwardingBlocks(LoopCond.getBlock());
}

void CodeGenFunction::EmitForStmt(const ForStmt &S,
                                  ArrayRef<const Attr *> ForAttrs) {
  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");

  LexicalScope ForScope(*this, S.getSourceRange());

  // Evaluate the first part before the loop.
  if (S.getInit())
    EmitStmt(S.getInit());

  // Start the loop with a block that tests the condition.
  // If there's an increment, the continue scope will be overwritten
  // later.
  JumpDest Continue = getJumpDestInCurrentScope("for.cond");
  llvm::BasicBlock *CondBlock = Continue.getBlock();
  EmitBlock(CondBlock);

  const SourceRange &R = S.getSourceRange();
  LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
                 SourceLocToDebugLoc(R.getBegin()),
                 SourceLocToDebugLoc(R.getEnd()));

  // If the for loop doesn't have an increment we can just use the
  // condition as the continue block.  Otherwise we'll need to create
  // a block for it (in the current scope, i.e. in the scope of the
  // condition), and that we will become our continue block.
  if (S.getInc())
    Continue = getJumpDestInCurrentScope("for.inc");

  // Store the blocks to use for break and continue.
  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));

  // Create a cleanup scope for the condition variable cleanups.
  LexicalScope ConditionScope(*this, S.getSourceRange());

  if (S.getCond()) {
    // If the for statement has a condition scope, emit the local variable
    // declaration.
    if (S.getConditionVariable()) {
      EmitDecl(*S.getConditionVariable());
    }

    llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
    // If there are any cleanups between here and the loop-exit scope,
    // create a block to stage a loop exit along.
    if (ForScope.requiresCleanups())
      ExitBlock = createBasicBlock("for.cond.cleanup");

    // As long as the condition is true, iterate the loop.
    llvm::BasicBlock *ForBody = createBasicBlock("for.body");

    // C99 6.8.5p2/p4: The first substatement is executed if the expression
    // compares unequal to 0.  The condition must be a scalar type.
    llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
    Builder.CreateCondBr(
        BoolCondVal, ForBody, ExitBlock,
        createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));

    if (ExitBlock != LoopExit.getBlock()) {
      EmitBlock(ExitBlock);
      EmitBranchThroughCleanup(LoopExit);
    }

    EmitBlock(ForBody);
  } else {
    // Treat it as a non-zero constant.  Don't even create a new block for the
    // body, just fall into it.
  }
  incrementProfileCounter(&S);

  {
    // Create a separate cleanup scope for the body, in case it is not
    // a compound statement.
    RunCleanupsScope BodyScope(*this);
    EmitStmt(S.getBody());
  }

  // If there is an increment, emit it next.
  if (S.getInc()) {
    EmitBlock(Continue.getBlock());
    EmitStmt(S.getInc());
  }

  BreakContinueStack.pop_back();

  ConditionScope.ForceCleanup();

  EmitStopPoint(&S);
  EmitBranch(CondBlock);

  ForScope.ForceCleanup();

  LoopStack.pop();

  // Emit the fall-through block.
  EmitBlock(LoopExit.getBlock(), true);
}

void
CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
                                     ArrayRef<const Attr *> ForAttrs) {
  JumpDest LoopExit = getJumpDestInCurrentScope("for.end");

  LexicalScope ForScope(*this, S.getSourceRange());

  // Evaluate the first pieces before the loop.
  if (S.getInit())
    EmitStmt(S.getInit());
  EmitStmt(S.getRangeStmt());
  EmitStmt(S.getBeginStmt());
  EmitStmt(S.getEndStmt());

  // Start the loop with a block that tests the condition.
  // If there's an increment, the continue scope will be overwritten
  // later.
  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
  EmitBlock(CondBlock);

  const SourceRange &R = S.getSourceRange();
  LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
                 SourceLocToDebugLoc(R.getBegin()),
                 SourceLocToDebugLoc(R.getEnd()));

  // If there are any cleanups between here and the loop-exit scope,
  // create a block to stage a loop exit along.
  llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
  if (ForScope.requiresCleanups())
    ExitBlock = createBasicBlock("for.cond.cleanup");

  // The loop body, consisting of the specified body and the loop variable.
  llvm::BasicBlock *ForBody = createBasicBlock("for.body");

  // The body is executed if the expression, contextually converted
  // to bool, is true.
  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
  Builder.CreateCondBr(
      BoolCondVal, ForBody, ExitBlock,
      createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));

  if (ExitBlock != LoopExit.getBlock()) {
    EmitBlock(ExitBlock);
    EmitBranchThroughCleanup(LoopExit);
  }

  EmitBlock(ForBody);
  incrementProfileCounter(&S);

  // Create a block for the increment. In case of a 'continue', we jump there.
  JumpDest Continue = getJumpDestInCurrentScope("for.inc");

  // Store the blocks to use for break and continue.
  BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));

  {
    // Create a separate cleanup scope for the loop variable and body.
    LexicalScope BodyScope(*this, S.getSourceRange());
    EmitStmt(S.getLoopVarStmt());
    EmitStmt(S.getBody());
  }

  EmitStopPoint(&S);
  // If there is an increment, emit it next.
  EmitBlock(Continue.getBlock());
  EmitStmt(S.getInc());

  BreakContinueStack.pop_back();

  EmitBranch(CondBlock);

  ForScope.ForceCleanup();

  LoopStack.pop();

  // Emit the fall-through block.
  EmitBlock(LoopExit.getBlock(), true);
}

void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
  if (RV.isScalar()) {
    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
  } else if (RV.isAggregate()) {
    LValue Dest = MakeAddrLValue(ReturnValue, Ty);
    LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
    EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
  } else {
    EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
                       /*init*/ true);
  }
  EmitBranchThroughCleanup(ReturnBlock);
}

namespace {
// RAII struct used to save and restore a return statment's result expression.
struct SaveRetExprRAII {
  SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
      : OldRetExpr(CGF.RetExpr), CGF(CGF) {
    CGF.RetExpr = RetExpr;
  }
  ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
  const Expr *OldRetExpr;
  CodeGenFunction &CGF;
};
} // namespace

/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
/// if the function returns void, or may be missing one if the function returns
/// non-void.  Fun stuff :).
void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
  if (requiresReturnValueCheck()) {
    llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
    auto *SLocPtr =
        new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
                                 llvm::GlobalVariable::PrivateLinkage, SLoc);
    SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
    assert(ReturnLocation.isValid() && "No valid return location");
    Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
                        ReturnLocation);
  }

  // Returning from an outlined SEH helper is UB, and we already warn on it.
  if (IsOutlinedSEHHelper) {
    Builder.CreateUnreachable();
    Builder.ClearInsertionPoint();
  }

  // Emit the result value, even if unused, to evaluate the side effects.
  const Expr *RV = S.getRetValue();

  // Record the result expression of the return statement. The recorded
  // expression is used to determine whether a block capture's lifetime should
  // end at the end of the full expression as opposed to the end of the scope
  // enclosing the block expression.
  //
  // This permits a small, easily-implemented exception to our over-conservative
  // rules about not jumping to statements following block literals with
  // non-trivial cleanups.
  SaveRetExprRAII SaveRetExpr(RV, *this);

  RunCleanupsScope cleanupScope(*this);
  if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
    RV = EWC->getSubExpr();
  // FIXME: Clean this up by using an LValue for ReturnTemp,
  // EmitStoreThroughLValue, and EmitAnyExpr.
  // Check if the NRVO candidate was not globalized in OpenMP mode.
  if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
      S.getNRVOCandidate()->isNRVOVariable() &&
      (!getLangOpts().OpenMP ||
       !CGM.getOpenMPRuntime()
            .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
            .isValid())) {
    // Apply the named return value optimization for this return statement,
    // which means doing nothing: the appropriate result has already been
    // constructed into the NRVO variable.

    // If there is an NRVO flag for this variable, set it to 1 into indicate
    // that the cleanup code should not destroy the variable.
    if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
      Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
  } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
    // Make sure not to return anything, but evaluate the expression
    // for side effects.
    if (RV)
      EmitAnyExpr(RV);
  } else if (!RV) {
    // Do nothing (return value is left uninitialized)
  } else if (FnRetTy->isReferenceType()) {
    // If this function returns a reference, take the address of the expression
    // rather than the value.
    RValue Result = EmitReferenceBindingToExpr(RV);
    Builder.CreateStore(Result.getScalarVal(), ReturnValue);
  } else {
    switch (getEvaluationKind(RV->getType())) {
    case TEK_Scalar:
      Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
      break;
    case TEK_Complex:
      EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
                                /*isInit*/ true);
      break;
    case TEK_Aggregate:
      EmitAggExpr(RV, AggValueSlot::forAddr(
                          ReturnValue, Qualifiers(),
                          AggValueSlot::IsDestructed,
                          AggValueSlot::DoesNotNeedGCBarriers,
                          AggValueSlot::IsNotAliased,
                          getOverlapForReturnValue()));
      break;
    }
  }

  ++NumReturnExprs;
  if (!RV || RV->isEvaluatable(getContext()))
    ++NumSimpleReturnExprs;

  cleanupScope.ForceCleanup();
  EmitBranchThroughCleanup(ReturnBlock);
}

void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
  // As long as debug info is modeled with instructions, we have to ensure we
  // have a place to insert here and write the stop point here.
  if (HaveInsertPoint())
    EmitStopPoint(&S);

  for (const auto *I : S.decls())
    EmitDecl(*I);
}

void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");

  // If this code is reachable then emit a stop point (if generating
  // debug info). We have to do this ourselves because we are on the
  // "simple" statement path.
  if (HaveInsertPoint())
    EmitStopPoint(&S);

  EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
}

void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");

  // If this code is reachable then emit a stop point (if generating
  // debug info). We have to do this ourselves because we are on the
  // "simple" statement path.
  if (HaveInsertPoint())
    EmitStopPoint(&S);

  EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
}

/// EmitCaseStmtRange - If case statement range is not too big then
/// add multiple cases to switch instruction, one for each value within
/// the range. If range is too big then emit "if" condition check.
void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
  assert(S.getRHS() && "Expected RHS value in CaseStmt");

  llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
  llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());

  // Emit the code for this case. We do this first to make sure it is
  // properly chained from our predecessor before generating the
  // switch machinery to enter this block.
  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
  EmitBlockWithFallThrough(CaseDest, &S);
  EmitStmt(S.getSubStmt());

  // If range is empty, do nothing.
  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
    return;

  llvm::APInt Range = RHS - LHS;
  // FIXME: parameters such as this should not be hardcoded.
  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
    // Range is small enough to add multiple switch instruction cases.
    uint64_t Total = getProfileCount(&S);
    unsigned NCases = Range.getZExtValue() + 1;
    // We only have one region counter for the entire set of cases here, so we
    // need to divide the weights evenly between the generated cases, ensuring
    // that the total weight is preserved. E.g., a weight of 5 over three cases
    // will be distributed as weights of 2, 2, and 1.
    uint64_t Weight = Total / NCases, Rem = Total % NCases;
    for (unsigned I = 0; I != NCases; ++I) {
      if (SwitchWeights)
        SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
      if (Rem)
        Rem--;
      SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
      ++LHS;
    }
    return;
  }

  // The range is too big. Emit "if" condition into a new block,
  // making sure to save and restore the current insertion point.
  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();

  // Push this test onto the chain of range checks (which terminates
  // in the default basic block). The switch's default will be changed
  // to the top of this chain after switch emission is complete.
  llvm::BasicBlock *FalseDest = CaseRangeBlock;
  CaseRangeBlock = createBasicBlock("sw.caserange");

  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
  Builder.SetInsertPoint(CaseRangeBlock);

  // Emit range check.
  llvm::Value *Diff =
    Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
  llvm::Value *Cond =
    Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");

  llvm::MDNode *Weights = nullptr;
  if (SwitchWeights) {
    uint64_t ThisCount = getProfileCount(&S);
    uint64_t DefaultCount = (*SwitchWeights)[0];
    Weights = createProfileWeights(ThisCount, DefaultCount);

    // Since we're chaining the switch default through each large case range, we
    // need to update the weight for the default, ie, the first case, to include
    // this case.
    (*SwitchWeights)[0] += ThisCount;
  }
  Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);

  // Restore the appropriate insertion point.
  if (RestoreBB)
    Builder.SetInsertPoint(RestoreBB);
  else
    Builder.ClearInsertionPoint();
}

void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
  // If there is no enclosing switch instance that we're aware of, then this
  // case statement and its block can be elided.  This situation only happens
  // when we've constant-folded the switch, are emitting the constant case,
  // and part of the constant case includes another case statement.  For
  // instance: switch (4) { case 4: do { case 5: } while (1); }
  if (!SwitchInsn) {
    EmitStmt(S.getSubStmt());
    return;
  }

  // Handle case ranges.
  if (S.getRHS()) {
    EmitCaseStmtRange(S);
    return;
  }

  llvm::ConstantInt *CaseVal =
    Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));

  // If the body of the case is just a 'break', try to not emit an empty block.
  // If we're profiling or we're not optimizing, leave the block in for better
  // debug and coverage analysis.
  if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
      CGM.getCodeGenOpts().OptimizationLevel > 0 &&
      isa<BreakStmt>(S.getSubStmt())) {
    JumpDest Block = BreakContinueStack.back().BreakBlock;

    // Only do this optimization if there are no cleanups that need emitting.
    if (isObviouslyBranchWithoutCleanups(Block)) {
      if (SwitchWeights)
        SwitchWeights->push_back(getProfileCount(&S));
      SwitchInsn->addCase(CaseVal, Block.getBlock());

      // If there was a fallthrough into this case, make sure to redirect it to
      // the end of the switch as well.
      if (Builder.GetInsertBlock()) {
        Builder.CreateBr(Block.getBlock());
        Builder.ClearInsertionPoint();
      }
      return;
    }
  }

  llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
  EmitBlockWithFallThrough(CaseDest, &S);
  if (SwitchWeights)
    SwitchWeights->push_back(getProfileCount(&S));
  SwitchInsn->addCase(CaseVal, CaseDest);

  // Recursively emitting the statement is acceptable, but is not wonderful for
  // code where we have many case statements nested together, i.e.:
  //  case 1:
  //    case 2:
  //      case 3: etc.
  // Handling this recursively will create a new block for each case statement
  // that falls through to the next case which is IR intensive.  It also causes
  // deep recursion which can run into stack depth limitations.  Handle
  // sequential non-range case statements specially.
  const CaseStmt *CurCase = &S;
  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());

  // Otherwise, iteratively add consecutive cases to this switch stmt.
  while (NextCase && NextCase->getRHS() == nullptr) {
    CurCase = NextCase;
    llvm::ConstantInt *CaseVal =
      Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));

    if (SwitchWeights)
      SwitchWeights->push_back(getProfileCount(NextCase));
    if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
      CaseDest = createBasicBlock("sw.bb");
      EmitBlockWithFallThrough(CaseDest, &S);
    }

    SwitchInsn->addCase(CaseVal, CaseDest);
    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
  }

  // Normal default recursion for non-cases.
  EmitStmt(CurCase->getSubStmt());
}

void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
  // If there is no enclosing switch instance that we're aware of, then this
  // default statement can be elided. This situation only happens when we've
  // constant-folded the switch.
  if (!SwitchInsn) {
    EmitStmt(S.getSubStmt());
    return;
  }

  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
  assert(DefaultBlock->empty() &&
         "EmitDefaultStmt: Default block already defined?");

  EmitBlockWithFallThrough(DefaultBlock, &S);

  EmitStmt(S.getSubStmt());
}

/// CollectStatementsForCase - Given the body of a 'switch' statement and a
/// constant value that is being switched on, see if we can dead code eliminate
/// the body of the switch to a simple series of statements to emit.  Basically,
/// on a switch (5) we want to find these statements:
///    case 5:
///      printf(...);    <--
///      ++i;            <--
///      break;
///
/// and add them to the ResultStmts vector.  If it is unsafe to do this
/// transformation (for example, one of the elided statements contains a label
/// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
/// should include statements after it (e.g. the printf() line is a substmt of
/// the case) then return CSFC_FallThrough.  If we handled it and found a break
/// statement, then return CSFC_Success.
///
/// If Case is non-null, then we are looking for the specified case, checking
/// that nothing we jump over contains labels.  If Case is null, then we found
/// the case and are looking for the break.
///
/// If the recursive walk actually finds our Case, then we set FoundCase to
/// true.
///
enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
static CSFC_Result CollectStatementsForCase(const Stmt *S,
                                            const SwitchCase *Case,
                                            bool &FoundCase,
                              SmallVectorImpl<const Stmt*> &ResultStmts) {
  // If this is a null statement, just succeed.
  if (!S)
    return Case ? CSFC_Success : CSFC_FallThrough;

  // If this is the switchcase (case 4: or default) that we're looking for, then
  // we're in business.  Just add the substatement.
  if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
    if (S == Case) {
      FoundCase = true;
      return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
                                      ResultStmts);
    }

    // Otherwise, this is some other case or default statement, just ignore it.
    return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
                                    ResultStmts);
  }

  // If we are in the live part of the code and we found our break statement,
  // return a success!
  if (!Case && isa<BreakStmt>(S))
    return CSFC_Success;

  // If this is a switch statement, then it might contain the SwitchCase, the
  // break, or neither.
  if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
    // Handle this as two cases: we might be looking for the SwitchCase (if so
    // the skipped statements must be skippable) or we might already have it.
    CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
    bool StartedInLiveCode = FoundCase;
    unsigned StartSize = ResultStmts.size();

    // If we've not found the case yet, scan through looking for it.
    if (Case) {
      // Keep track of whether we see a skipped declaration.  The code could be
      // using the declaration even if it is skipped, so we can't optimize out
      // the decl if the kept statements might refer to it.
      bool HadSkippedDecl = false;

      // If we're looking for the case, just see if we can skip each of the
      // substatements.
      for (; Case && I != E; ++I) {
        HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);

        switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
        case CSFC_Failure: return CSFC_Failure;
        case CSFC_Success:
          // A successful result means that either 1) that the statement doesn't
          // have the case and is skippable, or 2) does contain the case value
          // and also contains the break to exit the switch.  In the later case,
          // we just verify the rest of the statements are elidable.
          if (FoundCase) {
            // If we found the case and skipped declarations, we can't do the
            // optimization.
            if (HadSkippedDecl)
              return CSFC_Failure;

            for (++I; I != E; ++I)
              if (CodeGenFunction::ContainsLabel(*I, true))
                return CSFC_Failure;
            return CSFC_Success;
          }
          break;
        case CSFC_FallThrough:
          // If we have a fallthrough condition, then we must have found the
          // case started to include statements.  Consider the rest of the
          // statements in the compound statement as candidates for inclusion.
          assert(FoundCase && "Didn't find case but returned fallthrough?");
          // We recursively found Case, so we're not looking for it anymore.
          Case = nullptr;

          // If we found the case and skipped declarations, we can't do the
          // optimization.
          if (HadSkippedDecl)
            return CSFC_Failure;
          break;
        }
      }

      if (!FoundCase)
        return CSFC_Success;

      assert(!HadSkippedDecl && "fallthrough after skipping decl");
    }

    // If we have statements in our range, then we know that the statements are
    // live and need to be added to the set of statements we're tracking.
    bool AnyDecls = false;
    for (; I != E; ++I) {
      AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);

      switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
      case CSFC_Failure: return CSFC_Failure;
      case CSFC_FallThrough:
        // A fallthrough result means that the statement was simple and just
        // included in ResultStmt, keep adding them afterwards.
        break;
      case CSFC_Success:
        // A successful result means that we found the break statement and
        // stopped statement inclusion.  We just ensure that any leftover stmts
        // are skippable and return success ourselves.
        for (++I; I != E; ++I)
          if (CodeGenFunction::ContainsLabel(*I, true))
            return CSFC_Failure;
        return CSFC_Success;
      }
    }

    // If we're about to fall out of a scope without hitting a 'break;', we
    // can't perform the optimization if there were any decls in that scope
    // (we'd lose their end-of-lifetime).
    if (AnyDecls) {
      // If the entire compound statement was live, there's one more thing we
      // can try before giving up: emit the whole thing as a single statement.
      // We can do that unless the statement contains a 'break;'.
      // FIXME: Such a break must be at the end of a construct within this one.
      // We could emit this by just ignoring the BreakStmts entirely.
      if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
        ResultStmts.resize(StartSize);
        ResultStmts.push_back(S);
      } else {
        return CSFC_Failure;
      }
    }

    return CSFC_FallThrough;
  }

  // Okay, this is some other statement that we don't handle explicitly, like a
  // for statement or increment etc.  If we are skipping over this statement,
  // just verify it doesn't have labels, which would make it invalid to elide.
  if (Case) {
    if (CodeGenFunction::ContainsLabel(S, true))
      return CSFC_Failure;
    return CSFC_Success;
  }

  // Otherwise, we want to include this statement.  Everything is cool with that
  // so long as it doesn't contain a break out of the switch we're in.
  if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;

  // Otherwise, everything is great.  Include the statement and tell the caller
  // that we fall through and include the next statement as well.
  ResultStmts.push_back(S);
  return CSFC_FallThrough;
}

/// FindCaseStatementsForValue - Find the case statement being jumped to and
/// then invoke CollectStatementsForCase to find the list of statements to emit
/// for a switch on constant.  See the comment above CollectStatementsForCase
/// for more details.
static bool FindCaseStatementsForValue(const SwitchStmt &S,
                                       const llvm::APSInt &ConstantCondValue,
                                SmallVectorImpl<const Stmt*> &ResultStmts,
                                       ASTContext &C,
                                       const SwitchCase *&ResultCase) {
  // First step, find the switch case that is being branched to.  We can do this
  // efficiently by scanning the SwitchCase list.
  const SwitchCase *Case = S.getSwitchCaseList();
  const DefaultStmt *DefaultCase = nullptr;

  for (; Case; Case = Case->getNextSwitchCase()) {
    // It's either a default or case.  Just remember the default statement in
    // case we're not jumping to any numbered cases.
    if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
      DefaultCase = DS;
      continue;
    }

    // Check to see if this case is the one we're looking for.
    const CaseStmt *CS = cast<CaseStmt>(Case);
    // Don't handle case ranges yet.
    if (CS->getRHS()) return false;

    // If we found our case, remember it as 'case'.
    if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
      break;
  }

  // If we didn't find a matching case, we use a default if it exists, or we
  // elide the whole switch body!
  if (!Case) {
    // It is safe to elide the body of the switch if it doesn't contain labels
    // etc.  If it is safe, return successfully with an empty ResultStmts list.
    if (!DefaultCase)
      return !CodeGenFunction::ContainsLabel(&S);
    Case = DefaultCase;
  }

  // Ok, we know which case is being jumped to, try to collect all the
  // statements that follow it.  This can fail for a variety of reasons.  Also,
  // check to see that the recursive walk actually found our case statement.
  // Insane cases like this can fail to find it in the recursive walk since we
  // don't handle every stmt kind:
  // switch (4) {
  //   while (1) {
  //     case 4: ...
  bool FoundCase = false;
  ResultCase = Case;
  return CollectStatementsForCase(S.getBody(), Case, FoundCase,
                                  ResultStmts) != CSFC_Failure &&
         FoundCase;
}

void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
  // Handle nested switch statements.
  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
  SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;

  // See if we can constant fold the condition of the switch and therefore only
  // emit the live case statement (if any) of the switch.
  llvm::APSInt ConstantCondValue;
  if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
    SmallVector<const Stmt*, 4> CaseStmts;
    const SwitchCase *Case = nullptr;
    if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
                                   getContext(), Case)) {
      if (Case)
        incrementProfileCounter(Case);
      RunCleanupsScope ExecutedScope(*this);

      if (S.getInit())
        EmitStmt(S.getInit());

      // Emit the condition variable if needed inside the entire cleanup scope
      // used by this special case for constant folded switches.
      if (S.getConditionVariable())
        EmitDecl(*S.getConditionVariable());

      // At this point, we are no longer "within" a switch instance, so
      // we can temporarily enforce this to ensure that any embedded case
      // statements are not emitted.
      SwitchInsn = nullptr;

      // Okay, we can dead code eliminate everything except this case.  Emit the
      // specified series of statements and we're good.
      for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
        EmitStmt(CaseStmts[i]);
      incrementProfileCounter(&S);

      // Now we want to restore the saved switch instance so that nested
      // switches continue to function properly
      SwitchInsn = SavedSwitchInsn;

      return;
    }
  }

  JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");

  RunCleanupsScope ConditionScope(*this);

  if (S.getInit())
    EmitStmt(S.getInit());

  if (S.getConditionVariable())
    EmitDecl(*S.getConditionVariable());
  llvm::Value *CondV = EmitScalarExpr(S.getCond());

  // Create basic block to hold stuff that comes after switch
  // statement. We also need to create a default block now so that
  // explicit case ranges tests can have a place to jump to on
  // failure.
  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
  if (PGO.haveRegionCounts()) {
    // Walk the SwitchCase list to find how many there are.
    uint64_t DefaultCount = 0;
    unsigned NumCases = 0;
    for (const SwitchCase *Case = S.getSwitchCaseList();
         Case;
         Case = Case->getNextSwitchCase()) {
      if (isa<DefaultStmt>(Case))
        DefaultCount = getProfileCount(Case);
      NumCases += 1;
    }
    SwitchWeights = new SmallVector<uint64_t, 16>();
    SwitchWeights->reserve(NumCases);
    // The default needs to be first. We store the edge count, so we already
    // know the right weight.
    SwitchWeights->push_back(DefaultCount);
  }
  CaseRangeBlock = DefaultBlock;

  // Clear the insertion point to indicate we are in unreachable code.
  Builder.ClearInsertionPoint();

  // All break statements jump to NextBlock. If BreakContinueStack is non-empty
  // then reuse last ContinueBlock.
  JumpDest OuterContinue;
  if (!BreakContinueStack.empty())
    OuterContinue = BreakContinueStack.back().ContinueBlock;

  BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));

  // Emit switch body.
  EmitStmt(S.getBody());

  BreakContinueStack.pop_back();

  // Update the default block in case explicit case range tests have
  // been chained on top.
  SwitchInsn->setDefaultDest(CaseRangeBlock);

  // If a default was never emitted:
  if (!DefaultBlock->getParent()) {
    // If we have cleanups, emit the default block so that there's a
    // place to jump through the cleanups from.
    if (ConditionScope.requiresCleanups()) {
      EmitBlock(DefaultBlock);

    // Otherwise, just forward the default block to the switch end.
    } else {
      DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
      delete DefaultBlock;
    }
  }

  ConditionScope.ForceCleanup();

  // Emit continuation.
  EmitBlock(SwitchExit.getBlock(), true);
  incrementProfileCounter(&S);

  // If the switch has a condition wrapped by __builtin_unpredictable,
  // create metadata that specifies that the switch is unpredictable.
  // Don't bother if not optimizing because that metadata would not be used.
  auto *Call = dyn_cast<CallExpr>(S.getCond());
  if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
    auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
    if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
      llvm::MDBuilder MDHelper(getLLVMContext());
      SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
                              MDHelper.createUnpredictable());
    }
  }

  if (SwitchWeights) {
    assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
           "switch weights do not match switch cases");
    // If there's only one jump destination there's no sense weighting it.
    if (SwitchWeights->size() > 1)
      SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
                              createProfileWeights(*SwitchWeights));
    delete SwitchWeights;
  }
  SwitchInsn = SavedSwitchInsn;
  SwitchWeights = SavedSwitchWeights;
  CaseRangeBlock = SavedCRBlock;
}

static std::string
SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
                 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
  std::string Result;

  while (*Constraint) {
    switch (*Constraint) {
    default:
      Result += Target.convertConstraint(Constraint);
      break;
    // Ignore these
    case '*':
    case '?':
    case '!':
    case '=': // Will see this and the following in mult-alt constraints.
    case '+':
      break;
    case '#': // Ignore the rest of the constraint alternative.
      while (Constraint[1] && Constraint[1] != ',')
        Constraint++;
      break;
    case '&':
    case '%':
      Result += *Constraint;
      while (Constraint[1] && Constraint[1] == *Constraint)
        Constraint++;
      break;
    case ',':
      Result += "|";
      break;
    case 'g':
      Result += "imr";
      break;
    case '[': {
      assert(OutCons &&
             "Must pass output names to constraints with a symbolic name");
      unsigned Index;
      bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
      assert(result && "Could not resolve symbolic name"); (void)result;
      Result += llvm::utostr(Index);
      break;
    }
    }

    Constraint++;
  }

  return Result;
}

/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
/// as using a particular register add that as a constraint that will be used
/// in this asm stmt.
static std::string
AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
                       const TargetInfo &Target, CodeGenModule &CGM,
                       const AsmStmt &Stmt, const bool EarlyClobber) {
  const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
  if (!AsmDeclRef)
    return Constraint;
  const ValueDecl &Value = *AsmDeclRef->getDecl();
  const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
  if (!Variable)
    return Constraint;
  if (Variable->getStorageClass() != SC_Register)
    return Constraint;
  AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
  if (!Attr)
    return Constraint;
  StringRef Register = Attr->getLabel();
  assert(Target.isValidGCCRegisterName(Register));
  // We're using validateOutputConstraint here because we only care if
  // this is a register constraint.
  TargetInfo::ConstraintInfo Info(Constraint, "");
  if (Target.validateOutputConstraint(Info) &&
      !Info.allowsRegister()) {
    CGM.ErrorUnsupported(&Stmt, "__asm__");
    return Constraint;
  }
  // Canonicalize the register here before returning it.
  Register = Target.getNormalizedGCCRegisterName(Register);
  return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
}

llvm::Value*
CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
                                    LValue InputValue, QualType InputType,
                                    std::string &ConstraintStr,
                                    SourceLocation Loc) {
  llvm::Value *Arg;
  if (Info.allowsRegister() || !Info.allowsMemory()) {
    if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
      Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
    } else {
      llvm::Type *Ty = ConvertType(InputType);
      uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
        Ty = llvm::IntegerType::get(getLLVMContext(), Size);
        Ty = llvm::PointerType::getUnqual(Ty);

        Arg = Builder.CreateLoad(
            Builder.CreateBitCast(InputValue.getAddress(*this), Ty));
      } else {
        Arg = InputValue.getPointer(*this);
        ConstraintStr += '*';
      }
    }
  } else {
    Arg = InputValue.getPointer(*this);
    ConstraintStr += '*';
  }

  return Arg;
}

llvm::Value* CodeGenFunction::EmitAsmInput(
                                         const TargetInfo::ConstraintInfo &Info,
                                           const Expr *InputExpr,
                                           std::string &ConstraintStr) {
  // If this can't be a register or memory, i.e., has to be a constant
  // (immediate or symbolic), try to emit it as such.
  if (!Info.allowsRegister() && !Info.allowsMemory()) {
    if (Info.requiresImmediateConstant()) {
      Expr::EvalResult EVResult;
      InputExpr->EvaluateAsRValue(EVResult, getContext(), true);

      llvm::APSInt IntResult;
      if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
                                          getContext()))
        return llvm::ConstantInt::get(getLLVMContext(), IntResult);
    }

    Expr::EvalResult Result;
    if (InputExpr->EvaluateAsInt(Result, getContext()))
      return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
  }

  if (Info.allowsRegister() || !Info.allowsMemory())
    if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
      return EmitScalarExpr(InputExpr);
  if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
    return EmitScalarExpr(InputExpr);
  InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
  LValue Dest = EmitLValue(InputExpr);
  return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
                            InputExpr->getExprLoc());
}

/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
/// asm call instruction.  The !srcloc MDNode contains a list of constant
/// integers which are the source locations of the start of each line in the
/// asm.
static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
                                      CodeGenFunction &CGF) {
  SmallVector<llvm::Metadata *, 8> Locs;
  // Add the location of the first line to the MDNode.
  Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
      CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
  StringRef StrVal = Str->getString();
  if (!StrVal.empty()) {
    const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
    const LangOptions &LangOpts = CGF.CGM.getLangOpts();
    unsigned StartToken = 0;
    unsigned ByteOffset = 0;

    // Add the location of the start of each subsequent line of the asm to the
    // MDNode.
    for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
      if (StrVal[i] != '\n') continue;
      SourceLocation LineLoc = Str->getLocationOfByte(
          i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
      Locs.push_back(llvm::ConstantAsMetadata::get(
          llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
    }
  }

  return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
}

static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
                              bool ReadOnly, bool ReadNone, bool NoMerge,
                              const AsmStmt &S,
                              const std::vector<llvm::Type *> &ResultRegTypes,
                              CodeGenFunction &CGF,
                              std::vector<llvm::Value *> &RegResults) {
  Result.addAttribute(llvm::AttributeList::FunctionIndex,
                      llvm::Attribute::NoUnwind);
  if (NoMerge)
    Result.addAttribute(llvm::AttributeList::FunctionIndex,
                        llvm::Attribute::NoMerge);
  // Attach readnone and readonly attributes.
  if (!HasSideEffect) {
    if (ReadNone)
      Result.addAttribute(llvm::AttributeList::FunctionIndex,
                          llvm::Attribute::ReadNone);
    else if (ReadOnly)
      Result.addAttribute(llvm::AttributeList::FunctionIndex,
                          llvm::Attribute::ReadOnly);
  }

  // Slap the source location of the inline asm into a !srcloc metadata on the
  // call.
  if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
    Result.setMetadata("srcloc",
                       getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
  else {
    // At least put the line number on MS inline asm blobs.
    llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty,
                                        S.getAsmLoc().getRawEncoding());
    Result.setMetadata("srcloc",
                       llvm::MDNode::get(CGF.getLLVMContext(),
                                         llvm::ConstantAsMetadata::get(Loc)));
  }

  if (CGF.getLangOpts().assumeFunctionsAreConvergent())
    // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
    // convergent (meaning, they may call an intrinsically convergent op, such
    // as bar.sync, and so can't have certain optimizations applied around
    // them).
    Result.addAttribute(llvm::AttributeList::FunctionIndex,
                        llvm::Attribute::Convergent);
  // Extract all of the register value results from the asm.
  if (ResultRegTypes.size() == 1) {
    RegResults.push_back(&Result);
  } else {
    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
      llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
      RegResults.push_back(Tmp);
    }
  }
}

void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
  // Assemble the final asm string.
  std::string AsmString = S.generateAsmString(getContext());

  // Get all the output and input constraints together.
  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;

  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
    StringRef Name;
    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
      Name = GAS->getOutputName(i);
    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
    bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
    assert(IsValid && "Failed to parse output constraint");
    OutputConstraintInfos.push_back(Info);
  }

  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
    StringRef Name;
    if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
      Name = GAS->getInputName(i);
    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
    bool IsValid =
      getTarget().validateInputConstraint(OutputConstraintInfos, Info);
    assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
    InputConstraintInfos.push_back(Info);
  }

  std::string Constraints;

  std::vector<LValue> ResultRegDests;
  std::vector<QualType> ResultRegQualTys;
  std::vector<llvm::Type *> ResultRegTypes;
  std::vector<llvm::Type *> ResultTruncRegTypes;
  std::vector<llvm::Type *> ArgTypes;
  std::vector<llvm::Value*> Args;
  llvm::BitVector ResultTypeRequiresCast;

  // Keep track of inout constraints.
  std::string InOutConstraints;
  std::vector<llvm::Value*> InOutArgs;
  std::vector<llvm::Type*> InOutArgTypes;

  // Keep track of out constraints for tied input operand.
  std::vector<std::string> OutputConstraints;

  // An inline asm can be marked readonly if it meets the following conditions:
  //  - it doesn't have any sideeffects
  //  - it doesn't clobber memory
  //  - it doesn't return a value by-reference
  // It can be marked readnone if it doesn't have any input memory constraints
  // in addition to meeting the conditions listed above.
  bool ReadOnly = true, ReadNone = true;

  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];

    // Simplify the output constraint.
    std::string OutputConstraint(S.getOutputConstraint(i));
    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
                                          getTarget(), &OutputConstraintInfos);

    const Expr *OutExpr = S.getOutputExpr(i);
    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());

    OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
                                              getTarget(), CGM, S,
                                              Info.earlyClobber());
    OutputConstraints.push_back(OutputConstraint);
    LValue Dest = EmitLValue(OutExpr);
    if (!Constraints.empty())
      Constraints += ',';

    // If this is a register output, then make the inline asm return it
    // by-value.  If this is a memory result, return the value by-reference.
    bool isScalarizableAggregate =
        hasAggregateEvaluationKind(OutExpr->getType());
    if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) ||
                                 isScalarizableAggregate)) {
      Constraints += "=" + OutputConstraint;
      ResultRegQualTys.push_back(OutExpr->getType());
      ResultRegDests.push_back(Dest);
      ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
      if (Info.allowsRegister() && isScalarizableAggregate) {
        ResultTypeRequiresCast.push_back(true);
        unsigned Size = getContext().getTypeSize(OutExpr->getType());
        llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size);
        ResultRegTypes.push_back(ConvTy);
      } else {
        ResultTypeRequiresCast.push_back(false);
        ResultRegTypes.push_back(ResultTruncRegTypes.back());
      }
      // If this output is tied to an input, and if the input is larger, then
      // we need to set the actual result type of the inline asm node to be the
      // same as the input type.
      if (Info.hasMatchingInput()) {
        unsigned InputNo;
        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
          if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
            break;
        }
        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");

        QualType InputTy = S.getInputExpr(InputNo)->getType();
        QualType OutputType = OutExpr->getType();

        uint64_t InputSize = getContext().getTypeSize(InputTy);
        if (getContext().getTypeSize(OutputType) < InputSize) {
          // Form the asm to return the value as a larger integer or fp type.
          ResultRegTypes.back() = ConvertType(InputTy);
        }
      }
      if (llvm::Type* AdjTy =
            getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
                                                 ResultRegTypes.back()))
        ResultRegTypes.back() = AdjTy;
      else {
        CGM.getDiags().Report(S.getAsmLoc(),
                              diag::err_asm_invalid_type_in_input)
            << OutExpr->getType() << OutputConstraint;
      }

      // Update largest vector width for any vector types.
      if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
        LargestVectorWidth =
            std::max((uint64_t)LargestVectorWidth,
                     VT->getPrimitiveSizeInBits().getKnownMinSize());
    } else {
      ArgTypes.push_back(Dest.getAddress(*this).getType());
      Args.push_back(Dest.getPointer(*this));
      Constraints += "=*";
      Constraints += OutputConstraint;
      ReadOnly = ReadNone = false;
    }

    if (Info.isReadWrite()) {
      InOutConstraints += ',';

      const Expr *InputExpr = S.getOutputExpr(i);
      llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
                                            InOutConstraints,
                                            InputExpr->getExprLoc());

      if (llvm::Type* AdjTy =
          getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
                                               Arg->getType()))
        Arg = Builder.CreateBitCast(Arg, AdjTy);

      // Update largest vector width for any vector types.
      if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
        LargestVectorWidth =
            std::max((uint64_t)LargestVectorWidth,
                     VT->getPrimitiveSizeInBits().getKnownMinSize());
      if (Info.allowsRegister())
        InOutConstraints += llvm::utostr(i);
      else
        InOutConstraints += OutputConstraint;

      InOutArgTypes.push_back(Arg->getType());
      InOutArgs.push_back(Arg);
    }
  }

  // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
  // to the return value slot. Only do this when returning in registers.
  if (isa<MSAsmStmt>(&S)) {
    const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
    if (RetAI.isDirect() || RetAI.isExtend()) {
      // Make a fake lvalue for the return value slot.
      LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
      CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
          *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
          ResultRegDests, AsmString, S.getNumOutputs());
      SawAsmBlock = true;
    }
  }

  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
    const Expr *InputExpr = S.getInputExpr(i);

    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];

    if (Info.allowsMemory())
      ReadNone = false;

    if (!Constraints.empty())
      Constraints += ',';

    // Simplify the input constraint.
    std::string InputConstraint(S.getInputConstraint(i));
    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
                                         &OutputConstraintInfos);

    InputConstraint = AddVariableConstraints(
        InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
        getTarget(), CGM, S, false /* No EarlyClobber */);

    std::string ReplaceConstraint (InputConstraint);
    llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);

    // If this input argument is tied to a larger output result, extend the
    // input to be the same size as the output.  The LLVM backend wants to see
    // the input and output of a matching constraint be the same size.  Note
    // that GCC does not define what the top bits are here.  We use zext because
    // that is usually cheaper, but LLVM IR should really get an anyext someday.
    if (Info.hasTiedOperand()) {
      unsigned Output = Info.getTiedOperand();
      QualType OutputType = S.getOutputExpr(Output)->getType();
      QualType InputTy = InputExpr->getType();

      if (getContext().getTypeSize(OutputType) >
          getContext().getTypeSize(InputTy)) {
        // Use ptrtoint as appropriate so that we can do our extension.
        if (isa<llvm::PointerType>(Arg->getType()))
          Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
        llvm::Type *OutputTy = ConvertType(OutputType);
        if (isa<llvm::IntegerType>(OutputTy))
          Arg = Builder.CreateZExt(Arg, OutputTy);
        else if (isa<llvm::PointerType>(OutputTy))
          Arg = Builder.CreateZExt(Arg, IntPtrTy);
        else {
          assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
          Arg = Builder.CreateFPExt(Arg, OutputTy);
        }
      }
      // Deal with the tied operands' constraint code in adjustInlineAsmType.
      ReplaceConstraint = OutputConstraints[Output];
    }
    if (llvm::Type* AdjTy =
          getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
                                                   Arg->getType()))
      Arg = Builder.CreateBitCast(Arg, AdjTy);
    else
      CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
          << InputExpr->getType() << InputConstraint;

    // Update largest vector width for any vector types.
    if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
      LargestVectorWidth =
          std::max((uint64_t)LargestVectorWidth,
                   VT->getPrimitiveSizeInBits().getKnownMinSize());

    ArgTypes.push_back(Arg->getType());
    Args.push_back(Arg);
    Constraints += InputConstraint;
  }

  // Labels
  SmallVector<llvm::BasicBlock *, 16> Transfer;
  llvm::BasicBlock *Fallthrough = nullptr;
  bool IsGCCAsmGoto = false;
  if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
    IsGCCAsmGoto = GS->isAsmGoto();
    if (IsGCCAsmGoto) {
      for (const auto *E : GS->labels()) {
        JumpDest Dest = getJumpDestForLabel(E->getLabel());
        Transfer.push_back(Dest.getBlock());
        llvm::BlockAddress *BA =
            llvm::BlockAddress::get(CurFn, Dest.getBlock());
        Args.push_back(BA);
        ArgTypes.push_back(BA->getType());
        if (!Constraints.empty())
          Constraints += ',';
        Constraints += 'X';
      }
      Fallthrough = createBasicBlock("asm.fallthrough");
    }
  }

  // Append the "input" part of inout constraints last.
  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
    ArgTypes.push_back(InOutArgTypes[i]);
    Args.push_back(InOutArgs[i]);
  }
  Constraints += InOutConstraints;

  // Clobbers
  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
    StringRef Clobber = S.getClobber(i);

    if (Clobber == "memory")
      ReadOnly = ReadNone = false;
    else if (Clobber != "cc") {
      Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
      if (CGM.getCodeGenOpts().StackClashProtector &&
          getTarget().isSPRegName(Clobber)) {
        CGM.getDiags().Report(S.getAsmLoc(),
                              diag::warn_stack_clash_protection_inline_asm);
      }
    }

    if (!Constraints.empty())
      Constraints += ',';

    Constraints += "~{";
    Constraints += Clobber;
    Constraints += '}';
  }

  // Add machine specific clobbers
  std::string MachineClobbers = getTarget().getClobbers();
  if (!MachineClobbers.empty()) {
    if (!Constraints.empty())
      Constraints += ',';
    Constraints += MachineClobbers;
  }

  llvm::Type *ResultType;
  if (ResultRegTypes.empty())
    ResultType = VoidTy;
  else if (ResultRegTypes.size() == 1)
    ResultType = ResultRegTypes[0];
  else
    ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);

  llvm::FunctionType *FTy =
    llvm::FunctionType::get(ResultType, ArgTypes, false);

  bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
  llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
    llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
  llvm::InlineAsm *IA =
    llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
                         /* IsAlignStack */ false, AsmDialect);
  std::vector<llvm::Value*> RegResults;
  if (IsGCCAsmGoto) {
    llvm::CallBrInst *Result =
        Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
    EmitBlock(Fallthrough);
    UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
                      ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
                      *this, RegResults);
  } else {
    llvm::CallInst *Result =
        Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
    UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
                      ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
                      *this, RegResults);
  }

  assert(RegResults.size() == ResultRegTypes.size());
  assert(RegResults.size() == ResultTruncRegTypes.size());
  assert(RegResults.size() == ResultRegDests.size());
  // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
  // in which case its size may grow.
  assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
    llvm::Value *Tmp = RegResults[i];

    // If the result type of the LLVM IR asm doesn't match the result type of
    // the expression, do the conversion.
    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
      llvm::Type *TruncTy = ResultTruncRegTypes[i];

      // Truncate the integer result to the right size, note that TruncTy can be
      // a pointer.
      if (TruncTy->isFloatingPointTy())
        Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
      else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
        uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
        Tmp = Builder.CreateTrunc(Tmp,
                   llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
      } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
        uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
        Tmp = Builder.CreatePtrToInt(Tmp,
                   llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
        Tmp = Builder.CreateTrunc(Tmp, TruncTy);
      } else if (TruncTy->isIntegerTy()) {
        Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
      } else if (TruncTy->isVectorTy()) {
        Tmp = Builder.CreateBitCast(Tmp, TruncTy);
      }
    }

    LValue Dest = ResultRegDests[i];
    // ResultTypeRequiresCast elements correspond to the first
    // ResultTypeRequiresCast.size() elements of RegResults.
    if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
      unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
      Address A = Builder.CreateBitCast(Dest.getAddress(*this),
                                        ResultRegTypes[i]->getPointerTo());
      QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
      if (Ty.isNull()) {
        const Expr *OutExpr = S.getOutputExpr(i);
        CGM.Error(
            OutExpr->getExprLoc(),
            "impossible constraint in asm: can't store value into a register");
        return;
      }
      Dest = MakeAddrLValue(A, Ty);
    }
    EmitStoreThroughLValue(RValue::get(Tmp), Dest);
  }
}

LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
  const RecordDecl *RD = S.getCapturedRecordDecl();
  QualType RecordTy = getContext().getRecordType(RD);

  // Initialize the captured struct.
  LValue SlotLV =
    MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);

  RecordDecl::field_iterator CurField = RD->field_begin();
  for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
                                                 E = S.capture_init_end();
       I != E; ++I, ++CurField) {
    LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
    if (CurField->hasCapturedVLAType()) {
      EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
    } else {
      EmitInitializerForField(*CurField, LV, *I);
    }
  }

  return SlotLV;
}

/// Generate an outlined function for the body of a CapturedStmt, store any
/// captured variables into the captured struct, and call the outlined function.
llvm::Function *
CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
  LValue CapStruct = InitCapturedStruct(S);

  // Emit the CapturedDecl
  CodeGenFunction CGF(CGM, true);
  CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
  llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
  delete CGF.CapturedStmtInfo;

  // Emit call to the helper function.
  EmitCallOrInvoke(F, CapStruct.getPointer(*this));

  return F;
}

Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
  LValue CapStruct = InitCapturedStruct(S);
  return CapStruct.getAddress(*this);
}

/// Creates the outlined function for a CapturedStmt.
llvm::Function *
CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
  assert(CapturedStmtInfo &&
    "CapturedStmtInfo should be set when generating the captured function");
  const CapturedDecl *CD = S.getCapturedDecl();
  const RecordDecl *RD = S.getCapturedRecordDecl();
  SourceLocation Loc = S.getBeginLoc();
  assert(CD->hasBody() && "missing CapturedDecl body");

  // Build the argument list.
  ASTContext &Ctx = CGM.getContext();
  FunctionArgList Args;
  Args.append(CD->param_begin(), CD->param_end());

  // Create the function declaration.
  const CGFunctionInfo &FuncInfo =
    CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
  llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);

  llvm::Function *F =
    llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
                           CapturedStmtInfo->getHelperName(), &CGM.getModule());
  CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
  if (CD->isNothrow())
    F->addFnAttr(llvm::Attribute::NoUnwind);

  // Generate the function.
  StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
                CD->getBody()->getBeginLoc());
  // Set the context parameter in CapturedStmtInfo.
  Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
  CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));

  // Initialize variable-length arrays.
  LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
                                           Ctx.getTagDeclType(RD));
  for (auto *FD : RD->fields()) {
    if (FD->hasCapturedVLAType()) {
      auto *ExprArg =
          EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
              .getScalarVal();
      auto VAT = FD->getCapturedVLAType();
      VLASizeMap[VAT->getSizeExpr()] = ExprArg;
    }
  }

  // If 'this' is captured, load it into CXXThisValue.
  if (CapturedStmtInfo->isCXXThisExprCaptured()) {
    FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
    LValue ThisLValue = EmitLValueForField(Base, FD);
    CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
  }

  PGO.assignRegionCounters(GlobalDecl(CD), F);
  CapturedStmtInfo->EmitBody(*this, CD->getBody());
  FinishFunction(CD->getBodyRBrace());

  return F;
}