CGExprScalar.cpp 194 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CGCXXABI.h"
#include "CGCleanup.h"
#include "CGDebugInfo.h"
#include "CGObjCRuntime.h"
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/APFixedPoint.h"
#include "llvm/ADT/Optional.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/FixedPointBuilder.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/IR/MatrixBuilder.h"
#include "llvm/IR/Module.h"
#include <cstdarg>

using namespace clang;
using namespace CodeGen;
using llvm::Value;

//===----------------------------------------------------------------------===//
//                         Scalar Expression Emitter
//===----------------------------------------------------------------------===//

namespace {

/// Determine whether the given binary operation may overflow.
/// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul,
/// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem},
/// the returned overflow check is precise. The returned value is 'true' for
/// all other opcodes, to be conservative.
bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS,
                             BinaryOperator::Opcode Opcode, bool Signed,
                             llvm::APInt &Result) {
  // Assume overflow is possible, unless we can prove otherwise.
  bool Overflow = true;
  const auto &LHSAP = LHS->getValue();
  const auto &RHSAP = RHS->getValue();
  if (Opcode == BO_Add) {
    if (Signed)
      Result = LHSAP.sadd_ov(RHSAP, Overflow);
    else
      Result = LHSAP.uadd_ov(RHSAP, Overflow);
  } else if (Opcode == BO_Sub) {
    if (Signed)
      Result = LHSAP.ssub_ov(RHSAP, Overflow);
    else
      Result = LHSAP.usub_ov(RHSAP, Overflow);
  } else if (Opcode == BO_Mul) {
    if (Signed)
      Result = LHSAP.smul_ov(RHSAP, Overflow);
    else
      Result = LHSAP.umul_ov(RHSAP, Overflow);
  } else if (Opcode == BO_Div || Opcode == BO_Rem) {
    if (Signed && !RHS->isZero())
      Result = LHSAP.sdiv_ov(RHSAP, Overflow);
    else
      return false;
  }
  return Overflow;
}

struct BinOpInfo {
  Value *LHS;
  Value *RHS;
  QualType Ty;  // Computation Type.
  BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
  FPOptions FPFeatures;
  const Expr *E;      // Entire expr, for error unsupported.  May not be binop.

  /// Check if the binop can result in integer overflow.
  bool mayHaveIntegerOverflow() const {
    // Without constant input, we can't rule out overflow.
    auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS);
    auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS);
    if (!LHSCI || !RHSCI)
      return true;

    llvm::APInt Result;
    return ::mayHaveIntegerOverflow(
        LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result);
  }

  /// Check if the binop computes a division or a remainder.
  bool isDivremOp() const {
    return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign ||
           Opcode == BO_RemAssign;
  }

  /// Check if the binop can result in an integer division by zero.
  bool mayHaveIntegerDivisionByZero() const {
    if (isDivremOp())
      if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS))
        return CI->isZero();
    return true;
  }

  /// Check if the binop can result in a float division by zero.
  bool mayHaveFloatDivisionByZero() const {
    if (isDivremOp())
      if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS))
        return CFP->isZero();
    return true;
  }

  /// Check if at least one operand is a fixed point type. In such cases, this
  /// operation did not follow usual arithmetic conversion and both operands
  /// might not be of the same type.
  bool isFixedPointOp() const {
    // We cannot simply check the result type since comparison operations return
    // an int.
    if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
      QualType LHSType = BinOp->getLHS()->getType();
      QualType RHSType = BinOp->getRHS()->getType();
      return LHSType->isFixedPointType() || RHSType->isFixedPointType();
    }
    if (const auto *UnOp = dyn_cast<UnaryOperator>(E))
      return UnOp->getSubExpr()->getType()->isFixedPointType();
    return false;
  }
};

static bool MustVisitNullValue(const Expr *E) {
  // If a null pointer expression's type is the C++0x nullptr_t, then
  // it's not necessarily a simple constant and it must be evaluated
  // for its potential side effects.
  return E->getType()->isNullPtrType();
}

/// If \p E is a widened promoted integer, get its base (unpromoted) type.
static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx,
                                                        const Expr *E) {
  const Expr *Base = E->IgnoreImpCasts();
  if (E == Base)
    return llvm::None;

  QualType BaseTy = Base->getType();
  if (!BaseTy->isPromotableIntegerType() ||
      Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType()))
    return llvm::None;

  return BaseTy;
}

/// Check if \p E is a widened promoted integer.
static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) {
  return getUnwidenedIntegerType(Ctx, E).hasValue();
}

/// Check if we can skip the overflow check for \p Op.
static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) {
  assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) &&
         "Expected a unary or binary operator");

  // If the binop has constant inputs and we can prove there is no overflow,
  // we can elide the overflow check.
  if (!Op.mayHaveIntegerOverflow())
    return true;

  // If a unary op has a widened operand, the op cannot overflow.
  if (const auto *UO = dyn_cast<UnaryOperator>(Op.E))
    return !UO->canOverflow();

  // We usually don't need overflow checks for binops with widened operands.
  // Multiplication with promoted unsigned operands is a special case.
  const auto *BO = cast<BinaryOperator>(Op.E);
  auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS());
  if (!OptionalLHSTy)
    return false;

  auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS());
  if (!OptionalRHSTy)
    return false;

  QualType LHSTy = *OptionalLHSTy;
  QualType RHSTy = *OptionalRHSTy;

  // This is the simple case: binops without unsigned multiplication, and with
  // widened operands. No overflow check is needed here.
  if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) ||
      !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType())
    return true;

  // For unsigned multiplication the overflow check can be elided if either one
  // of the unpromoted types are less than half the size of the promoted type.
  unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType());
  return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize ||
         (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize;
}

class ScalarExprEmitter
  : public StmtVisitor<ScalarExprEmitter, Value*> {
  CodeGenFunction &CGF;
  CGBuilderTy &Builder;
  bool IgnoreResultAssign;
  llvm::LLVMContext &VMContext;
public:

  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
      VMContext(cgf.getLLVMContext()) {
  }

  //===--------------------------------------------------------------------===//
  //                               Utilities
  //===--------------------------------------------------------------------===//

  bool TestAndClearIgnoreResultAssign() {
    bool I = IgnoreResultAssign;
    IgnoreResultAssign = false;
    return I;
  }

  llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
  LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
    return CGF.EmitCheckedLValue(E, TCK);
  }

  void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
                      const BinOpInfo &Info);

  Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
    return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
  }

  void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
    const AlignValueAttr *AVAttr = nullptr;
    if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
      const ValueDecl *VD = DRE->getDecl();

      if (VD->getType()->isReferenceType()) {
        if (const auto *TTy =
            dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
          AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
      } else {
        // Assumptions for function parameters are emitted at the start of the
        // function, so there is no need to repeat that here,
        // unless the alignment-assumption sanitizer is enabled,
        // then we prefer the assumption over alignment attribute
        // on IR function param.
        if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment))
          return;

        AVAttr = VD->getAttr<AlignValueAttr>();
      }
    }

    if (!AVAttr)
      if (const auto *TTy =
          dyn_cast<TypedefType>(E->getType()))
        AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();

    if (!AVAttr)
      return;

    Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
    llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
    CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI);
  }

  /// EmitLoadOfLValue - Given an expression with complex type that represents a
  /// value l-value, this method emits the address of the l-value, then loads
  /// and returns the result.
  Value *EmitLoadOfLValue(const Expr *E) {
    Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
                                E->getExprLoc());

    EmitLValueAlignmentAssumption(E, V);
    return V;
  }

  /// EmitConversionToBool - Convert the specified expression value to a
  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
  Value *EmitConversionToBool(Value *Src, QualType DstTy);

  /// Emit a check that a conversion from a floating-point type does not
  /// overflow.
  void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
                                Value *Src, QualType SrcType, QualType DstType,
                                llvm::Type *DstTy, SourceLocation Loc);

  /// Known implicit conversion check kinds.
  /// Keep in sync with the enum of the same name in ubsan_handlers.h
  enum ImplicitConversionCheckKind : unsigned char {
    ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7.
    ICCK_UnsignedIntegerTruncation = 1,
    ICCK_SignedIntegerTruncation = 2,
    ICCK_IntegerSignChange = 3,
    ICCK_SignedIntegerTruncationOrSignChange = 4,
  };

  /// Emit a check that an [implicit] truncation of an integer  does not
  /// discard any bits. It is not UB, so we use the value after truncation.
  void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst,
                                  QualType DstType, SourceLocation Loc);

  /// Emit a check that an [implicit] conversion of an integer does not change
  /// the sign of the value. It is not UB, so we use the value after conversion.
  /// NOTE: Src and Dst may be the exact same value! (point to the same thing)
  void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst,
                                  QualType DstType, SourceLocation Loc);

  /// Emit a conversion from the specified type to the specified destination
  /// type, both of which are LLVM scalar types.
  struct ScalarConversionOpts {
    bool TreatBooleanAsSigned;
    bool EmitImplicitIntegerTruncationChecks;
    bool EmitImplicitIntegerSignChangeChecks;

    ScalarConversionOpts()
        : TreatBooleanAsSigned(false),
          EmitImplicitIntegerTruncationChecks(false),
          EmitImplicitIntegerSignChangeChecks(false) {}

    ScalarConversionOpts(clang::SanitizerSet SanOpts)
        : TreatBooleanAsSigned(false),
          EmitImplicitIntegerTruncationChecks(
              SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)),
          EmitImplicitIntegerSignChangeChecks(
              SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {}
  };
  Value *
  EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
                       SourceLocation Loc,
                       ScalarConversionOpts Opts = ScalarConversionOpts());

  /// Convert between either a fixed point and other fixed point or fixed point
  /// and an integer.
  Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy,
                                  SourceLocation Loc);

  /// Emit a conversion from the specified complex type to the specified
  /// destination type, where the destination type is an LLVM scalar type.
  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
                                       QualType SrcTy, QualType DstTy,
                                       SourceLocation Loc);

  /// EmitNullValue - Emit a value that corresponds to null for the given type.
  Value *EmitNullValue(QualType Ty);

  /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
  Value *EmitFloatToBoolConversion(Value *V) {
    // Compare against 0.0 for fp scalars.
    llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
    return Builder.CreateFCmpUNE(V, Zero, "tobool");
  }

  /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
  Value *EmitPointerToBoolConversion(Value *V, QualType QT) {
    Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT);

    return Builder.CreateICmpNE(V, Zero, "tobool");
  }

  Value *EmitIntToBoolConversion(Value *V) {
    // Because of the type rules of C, we often end up computing a
    // logical value, then zero extending it to int, then wanting it
    // as a logical value again.  Optimize this common case.
    if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
      if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
        Value *Result = ZI->getOperand(0);
        // If there aren't any more uses, zap the instruction to save space.
        // Note that there can be more uses, for example if this
        // is the result of an assignment.
        if (ZI->use_empty())
          ZI->eraseFromParent();
        return Result;
      }
    }

    return Builder.CreateIsNotNull(V, "tobool");
  }

  //===--------------------------------------------------------------------===//
  //                            Visitor Methods
  //===--------------------------------------------------------------------===//

  Value *Visit(Expr *E) {
    ApplyDebugLocation DL(CGF, E);
    return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
  }

  Value *VisitStmt(Stmt *S) {
    S->dump(llvm::errs(), CGF.getContext());
    llvm_unreachable("Stmt can't have complex result type!");
  }
  Value *VisitExpr(Expr *S);

  Value *VisitConstantExpr(ConstantExpr *E) {
    if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) {
      if (E->isGLValue())
        return CGF.Builder.CreateLoad(Address(
            Result, CGF.getContext().getTypeAlignInChars(E->getType())));
      return Result;
    }
    return Visit(E->getSubExpr());
  }
  Value *VisitParenExpr(ParenExpr *PE) {
    return Visit(PE->getSubExpr());
  }
  Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    return Visit(E->getReplacement());
  }
  Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    return Visit(GE->getResultExpr());
  }
  Value *VisitCoawaitExpr(CoawaitExpr *S) {
    return CGF.EmitCoawaitExpr(*S).getScalarVal();
  }
  Value *VisitCoyieldExpr(CoyieldExpr *S) {
    return CGF.EmitCoyieldExpr(*S).getScalarVal();
  }
  Value *VisitUnaryCoawait(const UnaryOperator *E) {
    return Visit(E->getSubExpr());
  }

  // Leaves.
  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
    return Builder.getInt(E->getValue());
  }
  Value *VisitFixedPointLiteral(const FixedPointLiteral *E) {
    return Builder.getInt(E->getValue());
  }
  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
    return llvm::ConstantFP::get(VMContext, E->getValue());
  }
  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  }
  Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  }
  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  }
  Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
    return EmitNullValue(E->getType());
  }
  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
    return EmitNullValue(E->getType());
  }
  Value *VisitOffsetOfExpr(OffsetOfExpr *E);
  Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
    return Builder.CreateBitCast(V, ConvertType(E->getType()));
  }

  Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
    return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
  }

  Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
    return CGF.EmitPseudoObjectRValue(E).getScalarVal();
  }

  Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
    if (E->isGLValue())
      return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E),
                              E->getExprLoc());

    // Otherwise, assume the mapping is the scalar directly.
    return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal();
  }

  // l-values.
  Value *VisitDeclRefExpr(DeclRefExpr *E) {
    if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E))
      return CGF.emitScalarConstant(Constant, E);
    return EmitLoadOfLValue(E);
  }

  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
    return CGF.EmitObjCSelectorExpr(E);
  }
  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
    return CGF.EmitObjCProtocolExpr(E);
  }
  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    return EmitLoadOfLValue(E);
  }
  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
    if (E->getMethodDecl() &&
        E->getMethodDecl()->getReturnType()->isReferenceType())
      return EmitLoadOfLValue(E);
    return CGF.EmitObjCMessageExpr(E).getScalarVal();
  }

  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
    LValue LV = CGF.EmitObjCIsaExpr(E);
    Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
    return V;
  }

  Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) {
    VersionTuple Version = E->getVersion();

    // If we're checking for a platform older than our minimum deployment
    // target, we can fold the check away.
    if (Version <= CGF.CGM.getTarget().getPlatformMinVersion())
      return llvm::ConstantInt::get(Builder.getInt1Ty(), 1);

    Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor();
    llvm::Value *Args[] = {
        llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()),
        llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0),
        llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0),
    };

    return CGF.EmitBuiltinAvailable(Args);
  }

  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
  Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E);
  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
  Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
  Value *VisitMemberExpr(MemberExpr *E);
  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which
    // transitively calls EmitCompoundLiteralLValue, here in C++ since compound
    // literals aren't l-values in C++. We do so simply because that's the
    // cleanest way to handle compound literals in C++.
    // See the discussion here: https://reviews.llvm.org/D64464
    return EmitLoadOfLValue(E);
  }

  Value *VisitInitListExpr(InitListExpr *E);

  Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) {
    assert(CGF.getArrayInitIndex() &&
           "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?");
    return CGF.getArrayInitIndex();
  }

  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
    return EmitNullValue(E->getType());
  }
  Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
    CGF.CGM.EmitExplicitCastExprType(E, &CGF);
    return VisitCastExpr(E);
  }
  Value *VisitCastExpr(CastExpr *E);

  Value *VisitCallExpr(const CallExpr *E) {
    if (E->getCallReturnType(CGF.getContext())->isReferenceType())
      return EmitLoadOfLValue(E);

    Value *V = CGF.EmitCallExpr(E).getScalarVal();

    EmitLValueAlignmentAssumption(E, V);
    return V;
  }

  Value *VisitStmtExpr(const StmtExpr *E);

  // Unary Operators.
  Value *VisitUnaryPostDec(const UnaryOperator *E) {
    LValue LV = EmitLValue(E->getSubExpr());
    return EmitScalarPrePostIncDec(E, LV, false, false);
  }
  Value *VisitUnaryPostInc(const UnaryOperator *E) {
    LValue LV = EmitLValue(E->getSubExpr());
    return EmitScalarPrePostIncDec(E, LV, true, false);
  }
  Value *VisitUnaryPreDec(const UnaryOperator *E) {
    LValue LV = EmitLValue(E->getSubExpr());
    return EmitScalarPrePostIncDec(E, LV, false, true);
  }
  Value *VisitUnaryPreInc(const UnaryOperator *E) {
    LValue LV = EmitLValue(E->getSubExpr());
    return EmitScalarPrePostIncDec(E, LV, true, true);
  }

  llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
                                                  llvm::Value *InVal,
                                                  bool IsInc);

  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
                                       bool isInc, bool isPre);


  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
    if (isa<MemberPointerType>(E->getType())) // never sugared
      return CGF.CGM.getMemberPointerConstant(E);

    return EmitLValue(E->getSubExpr()).getPointer(CGF);
  }
  Value *VisitUnaryDeref(const UnaryOperator *E) {
    if (E->getType()->isVoidType())
      return Visit(E->getSubExpr()); // the actual value should be unused
    return EmitLoadOfLValue(E);
  }
  Value *VisitUnaryPlus(const UnaryOperator *E) {
    // This differs from gcc, though, most likely due to a bug in gcc.
    TestAndClearIgnoreResultAssign();
    return Visit(E->getSubExpr());
  }
  Value *VisitUnaryMinus    (const UnaryOperator *E);
  Value *VisitUnaryNot      (const UnaryOperator *E);
  Value *VisitUnaryLNot     (const UnaryOperator *E);
  Value *VisitUnaryReal     (const UnaryOperator *E);
  Value *VisitUnaryImag     (const UnaryOperator *E);
  Value *VisitUnaryExtension(const UnaryOperator *E) {
    return Visit(E->getSubExpr());
  }

  // C++
  Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
    return EmitLoadOfLValue(E);
  }
  Value *VisitSourceLocExpr(SourceLocExpr *SLE) {
    auto &Ctx = CGF.getContext();
    APValue Evaluated =
        SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr());
    return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated,
                                             SLE->getType());
  }

  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE);
    return Visit(DAE->getExpr());
  }
  Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
    CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE);
    return Visit(DIE->getExpr());
  }
  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
    return CGF.LoadCXXThis();
  }

  Value *VisitExprWithCleanups(ExprWithCleanups *E);
  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
    return CGF.EmitCXXNewExpr(E);
  }
  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
    CGF.EmitCXXDeleteExpr(E);
    return nullptr;
  }

  Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
  }

  Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) {
    return Builder.getInt1(E->isSatisfied());
  }

  Value *VisitRequiresExpr(const RequiresExpr *E) {
    return Builder.getInt1(E->isSatisfied());
  }

  Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
    return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
  }

  Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
    return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
  }

  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
    // C++ [expr.pseudo]p1:
    //   The result shall only be used as the operand for the function call
    //   operator (), and the result of such a call has type void. The only
    //   effect is the evaluation of the postfix-expression before the dot or
    //   arrow.
    CGF.EmitScalarExpr(E->getBase());
    return nullptr;
  }

  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
    return EmitNullValue(E->getType());
  }

  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
    CGF.EmitCXXThrowExpr(E);
    return nullptr;
  }

  Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
    return Builder.getInt1(E->getValue());
  }

  // Binary Operators.
  Value *EmitMul(const BinOpInfo &Ops) {
    if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
      case LangOptions::SOB_Defined:
        return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
      case LangOptions::SOB_Undefined:
        if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
          return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
        LLVM_FALLTHROUGH;
      case LangOptions::SOB_Trapping:
        if (CanElideOverflowCheck(CGF.getContext(), Ops))
          return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
        return EmitOverflowCheckedBinOp(Ops);
      }
    }

    if (Ops.Ty->isConstantMatrixType()) {
      llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
      // We need to check the types of the operands of the operator to get the
      // correct matrix dimensions.
      auto *BO = cast<BinaryOperator>(Ops.E);
      auto *LHSMatTy = dyn_cast<ConstantMatrixType>(
          BO->getLHS()->getType().getCanonicalType());
      auto *RHSMatTy = dyn_cast<ConstantMatrixType>(
          BO->getRHS()->getType().getCanonicalType());
      if (LHSMatTy && RHSMatTy)
        return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(),
                                       LHSMatTy->getNumColumns(),
                                       RHSMatTy->getNumColumns());
      return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS);
    }

    if (Ops.Ty->isUnsignedIntegerType() &&
        CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
        !CanElideOverflowCheck(CGF.getContext(), Ops))
      return EmitOverflowCheckedBinOp(Ops);

    if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
      //  Preserve the old values
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
    }
    if (Ops.isFixedPointOp())
      return EmitFixedPointBinOp(Ops);
    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
  }
  /// Create a binary op that checks for overflow.
  /// Currently only supports +, - and *.
  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);

  // Check for undefined division and modulus behaviors.
  void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
                                                  llvm::Value *Zero,bool isDiv);
  // Common helper for getting how wide LHS of shift is.
  static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);

  // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for
  // non powers of two.
  Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name);

  Value *EmitDiv(const BinOpInfo &Ops);
  Value *EmitRem(const BinOpInfo &Ops);
  Value *EmitAdd(const BinOpInfo &Ops);
  Value *EmitSub(const BinOpInfo &Ops);
  Value *EmitShl(const BinOpInfo &Ops);
  Value *EmitShr(const BinOpInfo &Ops);
  Value *EmitAnd(const BinOpInfo &Ops) {
    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
  }
  Value *EmitXor(const BinOpInfo &Ops) {
    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
  }
  Value *EmitOr (const BinOpInfo &Ops) {
    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
  }

  // Helper functions for fixed point binary operations.
  Value *EmitFixedPointBinOp(const BinOpInfo &Ops);

  BinOpInfo EmitBinOps(const BinaryOperator *E);
  LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
                                  Value *&Result);

  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));

  // Binary operators and binary compound assignment operators.
#define HANDLEBINOP(OP) \
  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
    return Emit ## OP(EmitBinOps(E));                                      \
  }                                                                        \
  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
  }
  HANDLEBINOP(Mul)
  HANDLEBINOP(Div)
  HANDLEBINOP(Rem)
  HANDLEBINOP(Add)
  HANDLEBINOP(Sub)
  HANDLEBINOP(Shl)
  HANDLEBINOP(Shr)
  HANDLEBINOP(And)
  HANDLEBINOP(Xor)
  HANDLEBINOP(Or)
#undef HANDLEBINOP

  // Comparisons.
  Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
                     llvm::CmpInst::Predicate SICmpOpc,
                     llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling);
#define VISITCOMP(CODE, UI, SI, FP, SIG) \
    Value *VisitBin##CODE(const BinaryOperator *E) { \
      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
                         llvm::FCmpInst::FP, SIG); }
  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true)
  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true)
  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true)
  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true)
  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false)
  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false)
#undef VISITCOMP

  Value *VisitBinAssign     (const BinaryOperator *E);

  Value *VisitBinLAnd       (const BinaryOperator *E);
  Value *VisitBinLOr        (const BinaryOperator *E);
  Value *VisitBinComma      (const BinaryOperator *E);

  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }

  Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) {
    return Visit(E->getSemanticForm());
  }

  // Other Operators.
  Value *VisitBlockExpr(const BlockExpr *BE);
  Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
  Value *VisitChooseExpr(ChooseExpr *CE);
  Value *VisitVAArgExpr(VAArgExpr *VE);
  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
    return CGF.EmitObjCStringLiteral(E);
  }
  Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
    return CGF.EmitObjCBoxedExpr(E);
  }
  Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
    return CGF.EmitObjCArrayLiteral(E);
  }
  Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
    return CGF.EmitObjCDictionaryLiteral(E);
  }
  Value *VisitAsTypeExpr(AsTypeExpr *CE);
  Value *VisitAtomicExpr(AtomicExpr *AE);
};
}  // end anonymous namespace.

//===----------------------------------------------------------------------===//
//                                Utilities
//===----------------------------------------------------------------------===//

/// EmitConversionToBool - Convert the specified expression value to a
/// boolean (i1) truth value.  This is equivalent to "Val != 0".
Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");

  if (SrcType->isRealFloatingType())
    return EmitFloatToBoolConversion(Src);

  if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);

  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
         "Unknown scalar type to convert");

  if (isa<llvm::IntegerType>(Src->getType()))
    return EmitIntToBoolConversion(Src);

  assert(isa<llvm::PointerType>(Src->getType()));
  return EmitPointerToBoolConversion(Src, SrcType);
}

void ScalarExprEmitter::EmitFloatConversionCheck(
    Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
    QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
  assert(SrcType->isFloatingType() && "not a conversion from floating point");
  if (!isa<llvm::IntegerType>(DstTy))
    return;

  CodeGenFunction::SanitizerScope SanScope(&CGF);
  using llvm::APFloat;
  using llvm::APSInt;

  llvm::Value *Check = nullptr;
  const llvm::fltSemantics &SrcSema =
    CGF.getContext().getFloatTypeSemantics(OrigSrcType);

  // Floating-point to integer. This has undefined behavior if the source is
  // +-Inf, NaN, or doesn't fit into the destination type (after truncation
  // to an integer).
  unsigned Width = CGF.getContext().getIntWidth(DstType);
  bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();

  APSInt Min = APSInt::getMinValue(Width, Unsigned);
  APFloat MinSrc(SrcSema, APFloat::uninitialized);
  if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
      APFloat::opOverflow)
    // Don't need an overflow check for lower bound. Just check for
    // -Inf/NaN.
    MinSrc = APFloat::getInf(SrcSema, true);
  else
    // Find the largest value which is too small to represent (before
    // truncation toward zero).
    MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);

  APSInt Max = APSInt::getMaxValue(Width, Unsigned);
  APFloat MaxSrc(SrcSema, APFloat::uninitialized);
  if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
      APFloat::opOverflow)
    // Don't need an overflow check for upper bound. Just check for
    // +Inf/NaN.
    MaxSrc = APFloat::getInf(SrcSema, false);
  else
    // Find the smallest value which is too large to represent (before
    // truncation toward zero).
    MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);

  // If we're converting from __half, convert the range to float to match
  // the type of src.
  if (OrigSrcType->isHalfType()) {
    const llvm::fltSemantics &Sema =
      CGF.getContext().getFloatTypeSemantics(SrcType);
    bool IsInexact;
    MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
    MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
  }

  llvm::Value *GE =
    Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
  llvm::Value *LE =
    Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
  Check = Builder.CreateAnd(GE, LE);

  llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
                                  CGF.EmitCheckTypeDescriptor(OrigSrcType),
                                  CGF.EmitCheckTypeDescriptor(DstType)};
  CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
                SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc);
}

// Should be called within CodeGenFunction::SanitizerScope RAII scope.
// Returns 'i1 false' when the truncation Src -> Dst was lossy.
static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
                 std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst,
                                 QualType DstType, CGBuilderTy &Builder) {
  llvm::Type *SrcTy = Src->getType();
  llvm::Type *DstTy = Dst->getType();
  (void)DstTy; // Only used in assert()

  // This should be truncation of integral types.
  assert(Src != Dst);
  assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits());
  assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
         "non-integer llvm type");

  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();

  // If both (src and dst) types are unsigned, then it's an unsigned truncation.
  // Else, it is a signed truncation.
  ScalarExprEmitter::ImplicitConversionCheckKind Kind;
  SanitizerMask Mask;
  if (!SrcSigned && !DstSigned) {
    Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation;
    Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation;
  } else {
    Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation;
    Mask = SanitizerKind::ImplicitSignedIntegerTruncation;
  }

  llvm::Value *Check = nullptr;
  // 1. Extend the truncated value back to the same width as the Src.
  Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext");
  // 2. Equality-compare with the original source value
  Check = Builder.CreateICmpEQ(Check, Src, "truncheck");
  // If the comparison result is 'i1 false', then the truncation was lossy.
  return std::make_pair(Kind, std::make_pair(Check, Mask));
}

static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
    QualType SrcType, QualType DstType) {
  return SrcType->isIntegerType() && DstType->isIntegerType();
}

void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType,
                                                   Value *Dst, QualType DstType,
                                                   SourceLocation Loc) {
  if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation))
    return;

  // We only care about int->int conversions here.
  // We ignore conversions to/from pointer and/or bool.
  if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
                                                                       DstType))
    return;

  unsigned SrcBits = Src->getType()->getScalarSizeInBits();
  unsigned DstBits = Dst->getType()->getScalarSizeInBits();
  // This must be truncation. Else we do not care.
  if (SrcBits <= DstBits)
    return;

  assert(!DstType->isBooleanType() && "we should not get here with booleans.");

  // If the integer sign change sanitizer is enabled,
  // and we are truncating from larger unsigned type to smaller signed type,
  // let that next sanitizer deal with it.
  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
  if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) &&
      (!SrcSigned && DstSigned))
    return;

  CodeGenFunction::SanitizerScope SanScope(&CGF);

  std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
            std::pair<llvm::Value *, SanitizerMask>>
      Check =
          EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
  // If the comparison result is 'i1 false', then the truncation was lossy.

  // Do we care about this type of truncation?
  if (!CGF.SanOpts.has(Check.second.second))
    return;

  llvm::Constant *StaticArgs[] = {
      CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
      CGF.EmitCheckTypeDescriptor(DstType),
      llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)};
  CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs,
                {Src, Dst});
}

// Should be called within CodeGenFunction::SanitizerScope RAII scope.
// Returns 'i1 false' when the conversion Src -> Dst changed the sign.
static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
                 std::pair<llvm::Value *, SanitizerMask>>
EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst,
                                 QualType DstType, CGBuilderTy &Builder) {
  llvm::Type *SrcTy = Src->getType();
  llvm::Type *DstTy = Dst->getType();

  assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) &&
         "non-integer llvm type");

  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
  (void)SrcSigned; // Only used in assert()
  (void)DstSigned; // Only used in assert()
  unsigned SrcBits = SrcTy->getScalarSizeInBits();
  unsigned DstBits = DstTy->getScalarSizeInBits();
  (void)SrcBits; // Only used in assert()
  (void)DstBits; // Only used in assert()

  assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) &&
         "either the widths should be different, or the signednesses.");

  // NOTE: zero value is considered to be non-negative.
  auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType,
                                       const char *Name) -> Value * {
    // Is this value a signed type?
    bool VSigned = VType->isSignedIntegerOrEnumerationType();
    llvm::Type *VTy = V->getType();
    if (!VSigned) {
      // If the value is unsigned, then it is never negative.
      // FIXME: can we encounter non-scalar VTy here?
      return llvm::ConstantInt::getFalse(VTy->getContext());
    }
    // Get the zero of the same type with which we will be comparing.
    llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0);
    // %V.isnegative = icmp slt %V, 0
    // I.e is %V *strictly* less than zero, does it have negative value?
    return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero,
                              llvm::Twine(Name) + "." + V->getName() +
                                  ".negativitycheck");
  };

  // 1. Was the old Value negative?
  llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src");
  // 2. Is the new Value negative?
  llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst");
  // 3. Now, was the 'negativity status' preserved during the conversion?
  //    NOTE: conversion from negative to zero is considered to change the sign.
  //    (We want to get 'false' when the conversion changed the sign)
  //    So we should just equality-compare the negativity statuses.
  llvm::Value *Check = nullptr;
  Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck");
  // If the comparison result is 'false', then the conversion changed the sign.
  return std::make_pair(
      ScalarExprEmitter::ICCK_IntegerSignChange,
      std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange));
}

void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType,
                                                   Value *Dst, QualType DstType,
                                                   SourceLocation Loc) {
  if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange))
    return;

  llvm::Type *SrcTy = Src->getType();
  llvm::Type *DstTy = Dst->getType();

  // We only care about int->int conversions here.
  // We ignore conversions to/from pointer and/or bool.
  if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType,
                                                                       DstType))
    return;

  bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType();
  bool DstSigned = DstType->isSignedIntegerOrEnumerationType();
  unsigned SrcBits = SrcTy->getScalarSizeInBits();
  unsigned DstBits = DstTy->getScalarSizeInBits();

  // Now, we do not need to emit the check in *all* of the cases.
  // We can avoid emitting it in some obvious cases where it would have been
  // dropped by the opt passes (instcombine) always anyways.
  // If it's a cast between effectively the same type, no check.
  // NOTE: this is *not* equivalent to checking the canonical types.
  if (SrcSigned == DstSigned && SrcBits == DstBits)
    return;
  // At least one of the values needs to have signed type.
  // If both are unsigned, then obviously, neither of them can be negative.
  if (!SrcSigned && !DstSigned)
    return;
  // If the conversion is to *larger* *signed* type, then no check is needed.
  // Because either sign-extension happens (so the sign will remain),
  // or zero-extension will happen (the sign bit will be zero.)
  if ((DstBits > SrcBits) && DstSigned)
    return;
  if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
      (SrcBits > DstBits) && SrcSigned) {
    // If the signed integer truncation sanitizer is enabled,
    // and this is a truncation from signed type, then no check is needed.
    // Because here sign change check is interchangeable with truncation check.
    return;
  }
  // That's it. We can't rule out any more cases with the data we have.

  CodeGenFunction::SanitizerScope SanScope(&CGF);

  std::pair<ScalarExprEmitter::ImplicitConversionCheckKind,
            std::pair<llvm::Value *, SanitizerMask>>
      Check;

  // Each of these checks needs to return 'false' when an issue was detected.
  ImplicitConversionCheckKind CheckKind;
  llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
  // So we can 'and' all the checks together, and still get 'false',
  // if at least one of the checks detected an issue.

  Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder);
  CheckKind = Check.first;
  Checks.emplace_back(Check.second);

  if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) &&
      (SrcBits > DstBits) && !SrcSigned && DstSigned) {
    // If the signed integer truncation sanitizer was enabled,
    // and we are truncating from larger unsigned type to smaller signed type,
    // let's handle the case we skipped in that check.
    Check =
        EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder);
    CheckKind = ICCK_SignedIntegerTruncationOrSignChange;
    Checks.emplace_back(Check.second);
    // If the comparison result is 'i1 false', then the truncation was lossy.
  }

  llvm::Constant *StaticArgs[] = {
      CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType),
      CGF.EmitCheckTypeDescriptor(DstType),
      llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)};
  // EmitCheck() will 'and' all the checks together.
  CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs,
                {Src, Dst});
}

/// Emit a conversion from the specified type to the specified destination type,
/// both of which are LLVM scalar types.
Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
                                               QualType DstType,
                                               SourceLocation Loc,
                                               ScalarConversionOpts Opts) {
  // All conversions involving fixed point types should be handled by the
  // EmitFixedPoint family functions. This is done to prevent bloating up this
  // function more, and although fixed point numbers are represented by
  // integers, we do not want to follow any logic that assumes they should be
  // treated as integers.
  // TODO(leonardchan): When necessary, add another if statement checking for
  // conversions to fixed point types from other types.
  if (SrcType->isFixedPointType()) {
    if (DstType->isBooleanType())
      // It is important that we check this before checking if the dest type is
      // an integer because booleans are technically integer types.
      // We do not need to check the padding bit on unsigned types if unsigned
      // padding is enabled because overflow into this bit is undefined
      // behavior.
      return Builder.CreateIsNotNull(Src, "tobool");
    if (DstType->isFixedPointType() || DstType->isIntegerType())
      return EmitFixedPointConversion(Src, SrcType, DstType, Loc);

    llvm_unreachable(
        "Unhandled scalar conversion from a fixed point type to another type.");
  } else if (DstType->isFixedPointType()) {
    if (SrcType->isIntegerType())
      // This also includes converting booleans and enums to fixed point types.
      return EmitFixedPointConversion(Src, SrcType, DstType, Loc);

    llvm_unreachable(
        "Unhandled scalar conversion to a fixed point type from another type.");
  }

  QualType NoncanonicalSrcType = SrcType;
  QualType NoncanonicalDstType = DstType;

  SrcType = CGF.getContext().getCanonicalType(SrcType);
  DstType = CGF.getContext().getCanonicalType(DstType);
  if (SrcType == DstType) return Src;

  if (DstType->isVoidType()) return nullptr;

  llvm::Value *OrigSrc = Src;
  QualType OrigSrcType = SrcType;
  llvm::Type *SrcTy = Src->getType();

  // Handle conversions to bool first, they are special: comparisons against 0.
  if (DstType->isBooleanType())
    return EmitConversionToBool(Src, SrcType);

  llvm::Type *DstTy = ConvertType(DstType);

  // Cast from half through float if half isn't a native type.
  if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
    // Cast to FP using the intrinsic if the half type itself isn't supported.
    if (DstTy->isFloatingPointTy()) {
      if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
        return Builder.CreateCall(
            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
            Src);
    } else {
      // Cast to other types through float, using either the intrinsic or FPExt,
      // depending on whether the half type itself is supported
      // (as opposed to operations on half, available with NativeHalfType).
      if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
        Src = Builder.CreateCall(
            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
                                 CGF.CGM.FloatTy),
            Src);
      } else {
        Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
      }
      SrcType = CGF.getContext().FloatTy;
      SrcTy = CGF.FloatTy;
    }
  }

  // Ignore conversions like int -> uint.
  if (SrcTy == DstTy) {
    if (Opts.EmitImplicitIntegerSignChangeChecks)
      EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src,
                                 NoncanonicalDstType, Loc);

    return Src;
  }

  // Handle pointer conversions next: pointers can only be converted to/from
  // other pointers and integers. Check for pointer types in terms of LLVM, as
  // some native types (like Obj-C id) may map to a pointer type.
  if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) {
    // The source value may be an integer, or a pointer.
    if (isa<llvm::PointerType>(SrcTy))
      return Builder.CreateBitCast(Src, DstTy, "conv");

    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
    // First, convert to the correct width so that we control the kind of
    // extension.
    llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT);
    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    llvm::Value* IntResult =
        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
    // Then, cast to pointer.
    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
  }

  if (isa<llvm::PointerType>(SrcTy)) {
    // Must be an ptr to int cast.
    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
    return Builder.CreatePtrToInt(Src, DstTy, "conv");
  }

  // A scalar can be splatted to an extended vector of the same element type
  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
    // Sema should add casts to make sure that the source expression's type is
    // the same as the vector's element type (sans qualifiers)
    assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() ==
               SrcType.getTypePtr() &&
           "Splatted expr doesn't match with vector element type?");

    // Splat the element across to all elements
    unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
    return Builder.CreateVectorSplat(NumElements, Src, "splat");
  }

  if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) {
    // Allow bitcast from vector to integer/fp of the same size.
    unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
    unsigned DstSize = DstTy->getPrimitiveSizeInBits();
    if (SrcSize == DstSize)
      return Builder.CreateBitCast(Src, DstTy, "conv");

    // Conversions between vectors of different sizes are not allowed except
    // when vectors of half are involved. Operations on storage-only half
    // vectors require promoting half vector operands to float vectors and
    // truncating the result, which is either an int or float vector, to a
    // short or half vector.

    // Source and destination are both expected to be vectors.
    llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType();
    llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType();
    (void)DstElementTy;

    assert(((SrcElementTy->isIntegerTy() &&
             DstElementTy->isIntegerTy()) ||
            (SrcElementTy->isFloatingPointTy() &&
             DstElementTy->isFloatingPointTy())) &&
           "unexpected conversion between a floating-point vector and an "
           "integer vector");

    // Truncate an i32 vector to an i16 vector.
    if (SrcElementTy->isIntegerTy())
      return Builder.CreateIntCast(Src, DstTy, false, "conv");

    // Truncate a float vector to a half vector.
    if (SrcSize > DstSize)
      return Builder.CreateFPTrunc(Src, DstTy, "conv");

    // Promote a half vector to a float vector.
    return Builder.CreateFPExt(Src, DstTy, "conv");
  }

  // Finally, we have the arithmetic types: real int/float.
  Value *Res = nullptr;
  llvm::Type *ResTy = DstTy;

  // An overflowing conversion has undefined behavior if either the source type
  // or the destination type is a floating-point type. However, we consider the
  // range of representable values for all floating-point types to be
  // [-inf,+inf], so no overflow can ever happen when the destination type is a
  // floating-point type.
  if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
      OrigSrcType->isFloatingType())
    EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
                             Loc);

  // Cast to half through float if half isn't a native type.
  if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
    // Make sure we cast in a single step if from another FP type.
    if (SrcTy->isFloatingPointTy()) {
      // Use the intrinsic if the half type itself isn't supported
      // (as opposed to operations on half, available with NativeHalfType).
      if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics())
        return Builder.CreateCall(
            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
      // If the half type is supported, just use an fptrunc.
      return Builder.CreateFPTrunc(Src, DstTy);
    }
    DstTy = CGF.FloatTy;
  }

  if (isa<llvm::IntegerType>(SrcTy)) {
    bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) {
      InputSigned = true;
    }
    if (isa<llvm::IntegerType>(DstTy))
      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
    else if (InputSigned)
      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
    else
      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
  } else if (isa<llvm::IntegerType>(DstTy)) {
    assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
    if (DstType->isSignedIntegerOrEnumerationType())
      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
    else
      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
  } else {
    assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
           "Unknown real conversion");
    if (DstTy->getTypeID() < SrcTy->getTypeID())
      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
    else
      Res = Builder.CreateFPExt(Src, DstTy, "conv");
  }

  if (DstTy != ResTy) {
    if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
      assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
      Res = Builder.CreateCall(
        CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
        Res);
    } else {
      Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
    }
  }

  if (Opts.EmitImplicitIntegerTruncationChecks)
    EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res,
                               NoncanonicalDstType, Loc);

  if (Opts.EmitImplicitIntegerSignChangeChecks)
    EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res,
                               NoncanonicalDstType, Loc);

  return Res;
}

Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy,
                                                   QualType DstTy,
                                                   SourceLocation Loc) {
  auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy);
  auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy);
  llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
  llvm::Value *Result;
  if (DstTy->isIntegerType())
    Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema,
                                            DstFPSema.getWidth(),
                                            DstFPSema.isSigned());
  else if (SrcTy->isIntegerType())
    Result =  FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(),
                                             DstFPSema);
  else
    Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema);
  return Result;
}

/// Emit a conversion from the specified complex type to the specified
/// destination type, where the destination type is an LLVM scalar type.
Value *ScalarExprEmitter::EmitComplexToScalarConversion(
    CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
    SourceLocation Loc) {
  // Get the source element type.
  SrcTy = SrcTy->castAs<ComplexType>()->getElementType();

  // Handle conversions to bool first, they are special: comparisons against 0.
  if (DstTy->isBooleanType()) {
    //  Complex != 0  -> (Real != 0) | (Imag != 0)
    Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
    return Builder.CreateOr(Src.first, Src.second, "tobool");
  }

  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
  // the imaginary part of the complex value is discarded and the value of the
  // real part is converted according to the conversion rules for the
  // corresponding real type.
  return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
}

Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
  return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
}

/// Emit a sanitization check for the given "binary" operation (which
/// might actually be a unary increment which has been lowered to a binary
/// operation). The check passes if all values in \p Checks (which are \c i1),
/// are \c true.
void ScalarExprEmitter::EmitBinOpCheck(
    ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
  assert(CGF.IsSanitizerScope);
  SanitizerHandler Check;
  SmallVector<llvm::Constant *, 4> StaticData;
  SmallVector<llvm::Value *, 2> DynamicData;

  BinaryOperatorKind Opcode = Info.Opcode;
  if (BinaryOperator::isCompoundAssignmentOp(Opcode))
    Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);

  StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
  const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
  if (UO && UO->getOpcode() == UO_Minus) {
    Check = SanitizerHandler::NegateOverflow;
    StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
    DynamicData.push_back(Info.RHS);
  } else {
    if (BinaryOperator::isShiftOp(Opcode)) {
      // Shift LHS negative or too large, or RHS out of bounds.
      Check = SanitizerHandler::ShiftOutOfBounds;
      const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
      StaticData.push_back(
        CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
      StaticData.push_back(
        CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
    } else if (Opcode == BO_Div || Opcode == BO_Rem) {
      // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
      Check = SanitizerHandler::DivremOverflow;
      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
    } else {
      // Arithmetic overflow (+, -, *).
      switch (Opcode) {
      case BO_Add: Check = SanitizerHandler::AddOverflow; break;
      case BO_Sub: Check = SanitizerHandler::SubOverflow; break;
      case BO_Mul: Check = SanitizerHandler::MulOverflow; break;
      default: llvm_unreachable("unexpected opcode for bin op check");
      }
      StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
    }
    DynamicData.push_back(Info.LHS);
    DynamicData.push_back(Info.RHS);
  }

  CGF.EmitCheck(Checks, Check, StaticData, DynamicData);
}

//===----------------------------------------------------------------------===//
//                            Visitor Methods
//===----------------------------------------------------------------------===//

Value *ScalarExprEmitter::VisitExpr(Expr *E) {
  CGF.ErrorUnsupported(E, "scalar expression");
  if (E->getType()->isVoidType())
    return nullptr;
  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
}

Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
  // Vector Mask Case
  if (E->getNumSubExprs() == 2) {
    Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
    Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
    Value *Mask;

    auto *LTy = cast<llvm::FixedVectorType>(LHS->getType());
    unsigned LHSElts = LTy->getNumElements();

    Mask = RHS;

    auto *MTy = cast<llvm::FixedVectorType>(Mask->getType());

    // Mask off the high bits of each shuffle index.
    Value *MaskBits =
        llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
    Mask = Builder.CreateAnd(Mask, MaskBits, "mask");

    // newv = undef
    // mask = mask & maskbits
    // for each elt
    //   n = extract mask i
    //   x = extract val n
    //   newv = insert newv, x, i
    auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(),
                                           MTy->getNumElements());
    Value* NewV = llvm::UndefValue::get(RTy);
    for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
      Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
      Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");

      Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
      NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
    }
    return NewV;
  }

  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));

  SmallVector<int, 32> Indices;
  for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
    llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
    // Check for -1 and output it as undef in the IR.
    if (Idx.isSigned() && Idx.isAllOnesValue())
      Indices.push_back(-1);
    else
      Indices.push_back(Idx.getZExtValue());
  }

  return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle");
}

Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
  QualType SrcType = E->getSrcExpr()->getType(),
           DstType = E->getType();

  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());

  SrcType = CGF.getContext().getCanonicalType(SrcType);
  DstType = CGF.getContext().getCanonicalType(DstType);
  if (SrcType == DstType) return Src;

  assert(SrcType->isVectorType() &&
         "ConvertVector source type must be a vector");
  assert(DstType->isVectorType() &&
         "ConvertVector destination type must be a vector");

  llvm::Type *SrcTy = Src->getType();
  llvm::Type *DstTy = ConvertType(DstType);

  // Ignore conversions like int -> uint.
  if (SrcTy == DstTy)
    return Src;

  QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(),
           DstEltType = DstType->castAs<VectorType>()->getElementType();

  assert(SrcTy->isVectorTy() &&
         "ConvertVector source IR type must be a vector");
  assert(DstTy->isVectorTy() &&
         "ConvertVector destination IR type must be a vector");

  llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(),
             *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType();

  if (DstEltType->isBooleanType()) {
    assert((SrcEltTy->isFloatingPointTy() ||
            isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");

    llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
    if (SrcEltTy->isFloatingPointTy()) {
      return Builder.CreateFCmpUNE(Src, Zero, "tobool");
    } else {
      return Builder.CreateICmpNE(Src, Zero, "tobool");
    }
  }

  // We have the arithmetic types: real int/float.
  Value *Res = nullptr;

  if (isa<llvm::IntegerType>(SrcEltTy)) {
    bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
    if (isa<llvm::IntegerType>(DstEltTy))
      Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
    else if (InputSigned)
      Res = Builder.CreateSIToFP(Src, DstTy, "conv");
    else
      Res = Builder.CreateUIToFP(Src, DstTy, "conv");
  } else if (isa<llvm::IntegerType>(DstEltTy)) {
    assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
    if (DstEltType->isSignedIntegerOrEnumerationType())
      Res = Builder.CreateFPToSI(Src, DstTy, "conv");
    else
      Res = Builder.CreateFPToUI(Src, DstTy, "conv");
  } else {
    assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
           "Unknown real conversion");
    if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
      Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
    else
      Res = Builder.CreateFPExt(Src, DstTy, "conv");
  }

  return Res;
}

Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
  if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) {
    CGF.EmitIgnoredExpr(E->getBase());
    return CGF.emitScalarConstant(Constant, E);
  } else {
    Expr::EvalResult Result;
    if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) {
      llvm::APSInt Value = Result.Val.getInt();
      CGF.EmitIgnoredExpr(E->getBase());
      return Builder.getInt(Value);
    }
  }

  return EmitLoadOfLValue(E);
}

Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
  TestAndClearIgnoreResultAssign();

  // Emit subscript expressions in rvalue context's.  For most cases, this just
  // loads the lvalue formed by the subscript expr.  However, we have to be
  // careful, because the base of a vector subscript is occasionally an rvalue,
  // so we can't get it as an lvalue.
  if (!E->getBase()->getType()->isVectorType())
    return EmitLoadOfLValue(E);

  // Handle the vector case.  The base must be a vector, the index must be an
  // integer value.
  Value *Base = Visit(E->getBase());
  Value *Idx  = Visit(E->getIdx());
  QualType IdxTy = E->getIdx()->getType();

  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
    CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);

  return Builder.CreateExtractElement(Base, Idx, "vecext");
}

Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) {
  TestAndClearIgnoreResultAssign();

  // Handle the vector case.  The base must be a vector, the index must be an
  // integer value.
  Value *RowIdx = Visit(E->getRowIdx());
  Value *ColumnIdx = Visit(E->getColumnIdx());
  Value *Matrix = Visit(E->getBase());

  // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds?
  llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
  return MB.CreateExtractElement(
      Matrix, RowIdx, ColumnIdx,
      E->getBase()->getType()->getAs<ConstantMatrixType>()->getNumRows());
}

static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
                      unsigned Off) {
  int MV = SVI->getMaskValue(Idx);
  if (MV == -1)
    return -1;
  return Off + MV;
}

static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
  assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) &&
         "Index operand too large for shufflevector mask!");
  return C->getZExtValue();
}

Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
  bool Ignore = TestAndClearIgnoreResultAssign();
  (void)Ignore;
  assert (Ignore == false && "init list ignored");
  unsigned NumInitElements = E->getNumInits();

  if (E->hadArrayRangeDesignator())
    CGF.ErrorUnsupported(E, "GNU array range designator extension");

  llvm::VectorType *VType =
    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));

  if (!VType) {
    if (NumInitElements == 0) {
      // C++11 value-initialization for the scalar.
      return EmitNullValue(E->getType());
    }
    // We have a scalar in braces. Just use the first element.
    return Visit(E->getInit(0));
  }

  unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements();

  // Loop over initializers collecting the Value for each, and remembering
  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
  // us to fold the shuffle for the swizzle into the shuffle for the vector
  // initializer, since LLVM optimizers generally do not want to touch
  // shuffles.
  unsigned CurIdx = 0;
  bool VIsUndefShuffle = false;
  llvm::Value *V = llvm::UndefValue::get(VType);
  for (unsigned i = 0; i != NumInitElements; ++i) {
    Expr *IE = E->getInit(i);
    Value *Init = Visit(IE);
    SmallVector<int, 16> Args;

    llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());

    // Handle scalar elements.  If the scalar initializer is actually one
    // element of a different vector of the same width, use shuffle instead of
    // extract+insert.
    if (!VVT) {
      if (isa<ExtVectorElementExpr>(IE)) {
        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);

        if (cast<llvm::FixedVectorType>(EI->getVectorOperandType())
                ->getNumElements() == ResElts) {
          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
          Value *LHS = nullptr, *RHS = nullptr;
          if (CurIdx == 0) {
            // insert into undef -> shuffle (src, undef)
            // shufflemask must use an i32
            Args.push_back(getAsInt32(C, CGF.Int32Ty));
            Args.resize(ResElts, -1);

            LHS = EI->getVectorOperand();
            RHS = V;
            VIsUndefShuffle = true;
          } else if (VIsUndefShuffle) {
            // insert into undefshuffle && size match -> shuffle (v, src)
            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
            for (unsigned j = 0; j != CurIdx; ++j)
              Args.push_back(getMaskElt(SVV, j, 0));
            Args.push_back(ResElts + C->getZExtValue());
            Args.resize(ResElts, -1);

            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
            RHS = EI->getVectorOperand();
            VIsUndefShuffle = false;
          }
          if (!Args.empty()) {
            V = Builder.CreateShuffleVector(LHS, RHS, Args);
            ++CurIdx;
            continue;
          }
        }
      }
      V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
                                      "vecinit");
      VIsUndefShuffle = false;
      ++CurIdx;
      continue;
    }

    unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements();

    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
    // input is the same width as the vector being constructed, generate an
    // optimized shuffle of the swizzle input into the result.
    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
    if (isa<ExtVectorElementExpr>(IE)) {
      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
      Value *SVOp = SVI->getOperand(0);
      auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType());

      if (OpTy->getNumElements() == ResElts) {
        for (unsigned j = 0; j != CurIdx; ++j) {
          // If the current vector initializer is a shuffle with undef, merge
          // this shuffle directly into it.
          if (VIsUndefShuffle) {
            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0));
          } else {
            Args.push_back(j);
          }
        }
        for (unsigned j = 0, je = InitElts; j != je; ++j)
          Args.push_back(getMaskElt(SVI, j, Offset));
        Args.resize(ResElts, -1);

        if (VIsUndefShuffle)
          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);

        Init = SVOp;
      }
    }

    // Extend init to result vector length, and then shuffle its contribution
    // to the vector initializer into V.
    if (Args.empty()) {
      for (unsigned j = 0; j != InitElts; ++j)
        Args.push_back(j);
      Args.resize(ResElts, -1);
      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), Args,
                                         "vext");

      Args.clear();
      for (unsigned j = 0; j != CurIdx; ++j)
        Args.push_back(j);
      for (unsigned j = 0; j != InitElts; ++j)
        Args.push_back(j + Offset);
      Args.resize(ResElts, -1);
    }

    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
    // merging subsequent shuffles into this one.
    if (CurIdx == 0)
      std::swap(V, Init);
    V = Builder.CreateShuffleVector(V, Init, Args, "vecinit");
    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
    CurIdx += InitElts;
  }

  // FIXME: evaluate codegen vs. shuffling against constant null vector.
  // Emit remaining default initializers.
  llvm::Type *EltTy = VType->getElementType();

  // Emit remaining default initializers
  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
    Value *Idx = Builder.getInt32(CurIdx);
    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
  }
  return V;
}

bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
  const Expr *E = CE->getSubExpr();

  if (CE->getCastKind() == CK_UncheckedDerivedToBase)
    return false;

  if (isa<CXXThisExpr>(E->IgnoreParens())) {
    // We always assume that 'this' is never null.
    return false;
  }

  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
    // And that glvalue casts are never null.
    if (ICE->getValueKind() != VK_RValue)
      return false;
  }

  return true;
}

// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
// have to handle a more broad range of conversions than explicit casts, as they
// handle things like function to ptr-to-function decay etc.
Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
  Expr *E = CE->getSubExpr();
  QualType DestTy = CE->getType();
  CastKind Kind = CE->getCastKind();

  // These cases are generally not written to ignore the result of
  // evaluating their sub-expressions, so we clear this now.
  bool Ignored = TestAndClearIgnoreResultAssign();

  // Since almost all cast kinds apply to scalars, this switch doesn't have
  // a default case, so the compiler will warn on a missing case.  The cases
  // are in the same order as in the CastKind enum.
  switch (Kind) {
  case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
  case CK_BuiltinFnToFnPtr:
    llvm_unreachable("builtin functions are handled elsewhere");

  case CK_LValueBitCast:
  case CK_ObjCObjectLValueCast: {
    Address Addr = EmitLValue(E).getAddress(CGF);
    Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
    LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
    return EmitLoadOfLValue(LV, CE->getExprLoc());
  }

  case CK_LValueToRValueBitCast: {
    LValue SourceLVal = CGF.EmitLValue(E);
    Address Addr = Builder.CreateElementBitCast(SourceLVal.getAddress(CGF),
                                                CGF.ConvertTypeForMem(DestTy));
    LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
    DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
    return EmitLoadOfLValue(DestLV, CE->getExprLoc());
  }

  case CK_CPointerToObjCPointerCast:
  case CK_BlockPointerToObjCPointerCast:
  case CK_AnyPointerToBlockPointerCast:
  case CK_BitCast: {
    Value *Src = Visit(const_cast<Expr*>(E));
    llvm::Type *SrcTy = Src->getType();
    llvm::Type *DstTy = ConvertType(DestTy);
    if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
        SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
      llvm_unreachable("wrong cast for pointers in different address spaces"
                       "(must be an address space cast)!");
    }

    if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
      if (auto PT = DestTy->getAs<PointerType>())
        CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
                                      /*MayBeNull=*/true,
                                      CodeGenFunction::CFITCK_UnrelatedCast,
                                      CE->getBeginLoc());
    }

    if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
      const QualType SrcType = E->getType();

      if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) {
        // Casting to pointer that could carry dynamic information (provided by
        // invariant.group) requires launder.
        Src = Builder.CreateLaunderInvariantGroup(Src);
      } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) {
        // Casting to pointer that does not carry dynamic information (provided
        // by invariant.group) requires stripping it.  Note that we don't do it
        // if the source could not be dynamic type and destination could be
        // dynamic because dynamic information is already laundered.  It is
        // because launder(strip(src)) == launder(src), so there is no need to
        // add extra strip before launder.
        Src = Builder.CreateStripInvariantGroup(Src);
      }
    }

    // Update heapallocsite metadata when there is an explicit pointer cast.
    if (auto *CI = dyn_cast<llvm::CallBase>(Src)) {
      if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE)) {
        QualType PointeeType = DestTy->getPointeeType();
        if (!PointeeType.isNull())
          CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType,
                                                       CE->getExprLoc());
      }
    }

    // Perform VLAT <-> VLST bitcast through memory.
    if ((isa<llvm::FixedVectorType>(SrcTy) &&
         isa<llvm::ScalableVectorType>(DstTy)) ||
        (isa<llvm::ScalableVectorType>(SrcTy) &&
         isa<llvm::FixedVectorType>(DstTy))) {
      if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
        // Call expressions can't have a scalar return unless the return type
        // is a reference type so an lvalue can't be emitted. Create a temp
        // alloca to store the call, bitcast the address then load.
        QualType RetTy = CE->getCallReturnType(CGF.getContext());
        Address Addr =
            CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-call-rvalue");
        LValue LV = CGF.MakeAddrLValue(Addr, RetTy);
        CGF.EmitStoreOfScalar(Src, LV);
        Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy),
                                            "castFixedSve");
        LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
        DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
        return EmitLoadOfLValue(DestLV, CE->getExprLoc());
      }

      Address Addr = EmitLValue(E).getAddress(CGF);
      Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
      LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy);
      DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo());
      return EmitLoadOfLValue(DestLV, CE->getExprLoc());
    }

    return Builder.CreateBitCast(Src, DstTy);
  }
  case CK_AddressSpaceConversion: {
    Expr::EvalResult Result;
    if (E->EvaluateAsRValue(Result, CGF.getContext()) &&
        Result.Val.isNullPointer()) {
      // If E has side effect, it is emitted even if its final result is a
      // null pointer. In that case, a DCE pass should be able to
      // eliminate the useless instructions emitted during translating E.
      if (Result.HasSideEffects)
        Visit(E);
      return CGF.CGM.getNullPointer(cast<llvm::PointerType>(
          ConvertType(DestTy)), DestTy);
    }
    // Since target may map different address spaces in AST to the same address
    // space, an address space conversion may end up as a bitcast.
    return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast(
        CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(),
        DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy));
  }
  case CK_AtomicToNonAtomic:
  case CK_NonAtomicToAtomic:
  case CK_NoOp:
  case CK_UserDefinedConversion:
    return Visit(const_cast<Expr*>(E));

  case CK_BaseToDerived: {
    const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
    assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");

    Address Base = CGF.EmitPointerWithAlignment(E);
    Address Derived =
      CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
                                   CE->path_begin(), CE->path_end(),
                                   CGF.ShouldNullCheckClassCastValue(CE));

    // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
    // performed and the object is not of the derived type.
    if (CGF.sanitizePerformTypeCheck())
      CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
                        Derived.getPointer(), DestTy->getPointeeType());

    if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
      CGF.EmitVTablePtrCheckForCast(
          DestTy->getPointeeType(), Derived.getPointer(),
          /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast,
          CE->getBeginLoc());

    return Derived.getPointer();
  }
  case CK_UncheckedDerivedToBase:
  case CK_DerivedToBase: {
    // The EmitPointerWithAlignment path does this fine; just discard
    // the alignment.
    return CGF.EmitPointerWithAlignment(CE).getPointer();
  }

  case CK_Dynamic: {
    Address V = CGF.EmitPointerWithAlignment(E);
    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
    return CGF.EmitDynamicCast(V, DCE);
  }

  case CK_ArrayToPointerDecay:
    return CGF.EmitArrayToPointerDecay(E).getPointer();
  case CK_FunctionToPointerDecay:
    return EmitLValue(E).getPointer(CGF);

  case CK_NullToPointer:
    if (MustVisitNullValue(E))
      CGF.EmitIgnoredExpr(E);

    return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)),
                              DestTy);

  case CK_NullToMemberPointer: {
    if (MustVisitNullValue(E))
      CGF.EmitIgnoredExpr(E);

    const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
    return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
  }

  case CK_ReinterpretMemberPointer:
  case CK_BaseToDerivedMemberPointer:
  case CK_DerivedToBaseMemberPointer: {
    Value *Src = Visit(E);

    // Note that the AST doesn't distinguish between checked and
    // unchecked member pointer conversions, so we always have to
    // implement checked conversions here.  This is inefficient when
    // actual control flow may be required in order to perform the
    // check, which it is for data member pointers (but not member
    // function pointers on Itanium and ARM).
    return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
  }

  case CK_ARCProduceObject:
    return CGF.EmitARCRetainScalarExpr(E);
  case CK_ARCConsumeObject:
    return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
  case CK_ARCReclaimReturnedObject:
    return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored);
  case CK_ARCExtendBlockObject:
    return CGF.EmitARCExtendBlockObject(E);

  case CK_CopyAndAutoreleaseBlockObject:
    return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());

  case CK_FloatingRealToComplex:
  case CK_FloatingComplexCast:
  case CK_IntegralRealToComplex:
  case CK_IntegralComplexCast:
  case CK_IntegralComplexToFloatingComplex:
  case CK_FloatingComplexToIntegralComplex:
  case CK_ConstructorConversion:
  case CK_ToUnion:
    llvm_unreachable("scalar cast to non-scalar value");

  case CK_LValueToRValue:
    assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
    assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
    return Visit(const_cast<Expr*>(E));

  case CK_IntegralToPointer: {
    Value *Src = Visit(const_cast<Expr*>(E));

    // First, convert to the correct width so that we control the kind of
    // extension.
    auto DestLLVMTy = ConvertType(DestTy);
    llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy);
    bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
    llvm::Value* IntResult =
      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");

    auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy);

    if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
      // Going from integer to pointer that could be dynamic requires reloading
      // dynamic information from invariant.group.
      if (DestTy.mayBeDynamicClass())
        IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr);
    }
    return IntToPtr;
  }
  case CK_PointerToIntegral: {
    assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
    auto *PtrExpr = Visit(E);

    if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) {
      const QualType SrcType = E->getType();

      // Casting to integer requires stripping dynamic information as it does
      // not carries it.
      if (SrcType.mayBeDynamicClass())
        PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr);
    }

    return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy));
  }
  case CK_ToVoid: {
    CGF.EmitIgnoredExpr(E);
    return nullptr;
  }
  case CK_VectorSplat: {
    llvm::Type *DstTy = ConvertType(DestTy);
    Value *Elt = Visit(const_cast<Expr*>(E));
    // Splat the element across to all elements
    unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
    return Builder.CreateVectorSplat(NumElements, Elt, "splat");
  }

  case CK_FixedPointCast:
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc());

  case CK_FixedPointToBoolean:
    assert(E->getType()->isFixedPointType() &&
           "Expected src type to be fixed point type");
    assert(DestTy->isBooleanType() && "Expected dest type to be boolean type");
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc());

  case CK_FixedPointToIntegral:
    assert(E->getType()->isFixedPointType() &&
           "Expected src type to be fixed point type");
    assert(DestTy->isIntegerType() && "Expected dest type to be an integer");
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc());

  case CK_IntegralToFixedPoint:
    assert(E->getType()->isIntegerType() &&
           "Expected src type to be an integer");
    assert(DestTy->isFixedPointType() &&
           "Expected dest type to be fixed point type");
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc());

  case CK_IntegralCast: {
    ScalarConversionOpts Opts;
    if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
      if (!ICE->isPartOfExplicitCast())
        Opts = ScalarConversionOpts(CGF.SanOpts);
    }
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc(), Opts);
  }
  case CK_IntegralToFloating:
  case CK_FloatingToIntegral:
  case CK_FloatingCast:
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc());
  case CK_BooleanToSignedIntegral: {
    ScalarConversionOpts Opts;
    Opts.TreatBooleanAsSigned = true;
    return EmitScalarConversion(Visit(E), E->getType(), DestTy,
                                CE->getExprLoc(), Opts);
  }
  case CK_IntegralToBoolean:
    return EmitIntToBoolConversion(Visit(E));
  case CK_PointerToBoolean:
    return EmitPointerToBoolConversion(Visit(E), E->getType());
  case CK_FloatingToBoolean:
    return EmitFloatToBoolConversion(Visit(E));
  case CK_MemberPointerToBoolean: {
    llvm::Value *MemPtr = Visit(E);
    const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
    return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
  }

  case CK_FloatingComplexToReal:
  case CK_IntegralComplexToReal:
    return CGF.EmitComplexExpr(E, false, true).first;

  case CK_FloatingComplexToBoolean:
  case CK_IntegralComplexToBoolean: {
    CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);

    // TODO: kill this function off, inline appropriate case here
    return EmitComplexToScalarConversion(V, E->getType(), DestTy,
                                         CE->getExprLoc());
  }

  case CK_ZeroToOCLOpaqueType: {
    assert((DestTy->isEventT() || DestTy->isQueueT() ||
            DestTy->isOCLIntelSubgroupAVCType()) &&
           "CK_ZeroToOCLEvent cast on non-event type");
    return llvm::Constant::getNullValue(ConvertType(DestTy));
  }

  case CK_IntToOCLSampler:
    return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF);

  } // end of switch

  llvm_unreachable("unknown scalar cast");
}

Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
  CodeGenFunction::StmtExprEvaluation eval(CGF);
  Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
                                           !E->getType()->isVoidType());
  if (!RetAlloca.isValid())
    return nullptr;
  return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
                              E->getExprLoc());
}

Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
  CodeGenFunction::RunCleanupsScope Scope(CGF);
  Value *V = Visit(E->getSubExpr());
  // Defend against dominance problems caused by jumps out of expression
  // evaluation through the shared cleanup block.
  Scope.ForceCleanup({&V});
  return V;
}

//===----------------------------------------------------------------------===//
//                             Unary Operators
//===----------------------------------------------------------------------===//

static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
                                           llvm::Value *InVal, bool IsInc,
                                           FPOptions FPFeatures) {
  BinOpInfo BinOp;
  BinOp.LHS = InVal;
  BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
  BinOp.Ty = E->getType();
  BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
  BinOp.FPFeatures = FPFeatures;
  BinOp.E = E;
  return BinOp;
}

llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
    const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
  llvm::Value *Amount =
      llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
  StringRef Name = IsInc ? "inc" : "dec";
  switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
  case LangOptions::SOB_Defined:
    return Builder.CreateAdd(InVal, Amount, Name);
  case LangOptions::SOB_Undefined:
    if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
      return Builder.CreateNSWAdd(InVal, Amount, Name);
    LLVM_FALLTHROUGH;
  case LangOptions::SOB_Trapping:
    if (!E->canOverflow())
      return Builder.CreateNSWAdd(InVal, Amount, Name);
    return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
        E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
  }
  llvm_unreachable("Unknown SignedOverflowBehaviorTy");
}

namespace {
/// Handles check and update for lastprivate conditional variables.
class OMPLastprivateConditionalUpdateRAII {
private:
  CodeGenFunction &CGF;
  const UnaryOperator *E;

public:
  OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF,
                                      const UnaryOperator *E)
      : CGF(CGF), E(E) {}
  ~OMPLastprivateConditionalUpdateRAII() {
    if (CGF.getLangOpts().OpenMP)
      CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(
          CGF, E->getSubExpr());
  }
};
} // namespace

llvm::Value *
ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
                                           bool isInc, bool isPre) {
  OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E);
  QualType type = E->getSubExpr()->getType();
  llvm::PHINode *atomicPHI = nullptr;
  llvm::Value *value;
  llvm::Value *input;

  int amount = (isInc ? 1 : -1);
  bool isSubtraction = !isInc;

  if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
    type = atomicTy->getValueType();
    if (isInc && type->isBooleanType()) {
      llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
      if (isPre) {
        Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified())
            ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent);
        return Builder.getTrue();
      }
      // For atomic bool increment, we just store true and return it for
      // preincrement, do an atomic swap with true for postincrement
      return Builder.CreateAtomicRMW(
          llvm::AtomicRMWInst::Xchg, LV.getPointer(CGF), True,
          llvm::AtomicOrdering::SequentiallyConsistent);
    }
    // Special case for atomic increment / decrement on integers, emit
    // atomicrmw instructions.  We skip this if we want to be doing overflow
    // checking, and fall into the slow path with the atomic cmpxchg loop.
    if (!type->isBooleanType() && type->isIntegerType() &&
        !(type->isUnsignedIntegerType() &&
          CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
        CGF.getLangOpts().getSignedOverflowBehavior() !=
            LangOptions::SOB_Trapping) {
      llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
        llvm::AtomicRMWInst::Sub;
      llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
        llvm::Instruction::Sub;
      llvm::Value *amt = CGF.EmitToMemory(
          llvm::ConstantInt::get(ConvertType(type), 1, true), type);
      llvm::Value *old =
          Builder.CreateAtomicRMW(aop, LV.getPointer(CGF), amt,
                                  llvm::AtomicOrdering::SequentiallyConsistent);
      return isPre ? Builder.CreateBinOp(op, old, amt) : old;
    }
    value = EmitLoadOfLValue(LV, E->getExprLoc());
    input = value;
    // For every other atomic operation, we need to emit a load-op-cmpxchg loop
    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
    value = CGF.EmitToMemory(value, type);
    Builder.CreateBr(opBB);
    Builder.SetInsertPoint(opBB);
    atomicPHI = Builder.CreatePHI(value->getType(), 2);
    atomicPHI->addIncoming(value, startBB);
    value = atomicPHI;
  } else {
    value = EmitLoadOfLValue(LV, E->getExprLoc());
    input = value;
  }

  // Special case of integer increment that we have to check first: bool++.
  // Due to promotion rules, we get:
  //   bool++ -> bool = bool + 1
  //          -> bool = (int)bool + 1
  //          -> bool = ((int)bool + 1 != 0)
  // An interesting aspect of this is that increment is always true.
  // Decrement does not have this property.
  if (isInc && type->isBooleanType()) {
    value = Builder.getTrue();

  // Most common case by far: integer increment.
  } else if (type->isIntegerType()) {
    QualType promotedType;
    bool canPerformLossyDemotionCheck = false;
    if (type->isPromotableIntegerType()) {
      promotedType = CGF.getContext().getPromotedIntegerType(type);
      assert(promotedType != type && "Shouldn't promote to the same type.");
      canPerformLossyDemotionCheck = true;
      canPerformLossyDemotionCheck &=
          CGF.getContext().getCanonicalType(type) !=
          CGF.getContext().getCanonicalType(promotedType);
      canPerformLossyDemotionCheck &=
          PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(
              type, promotedType);
      assert((!canPerformLossyDemotionCheck ||
              type->isSignedIntegerOrEnumerationType() ||
              promotedType->isSignedIntegerOrEnumerationType() ||
              ConvertType(type)->getScalarSizeInBits() ==
                  ConvertType(promotedType)->getScalarSizeInBits()) &&
             "The following check expects that if we do promotion to different "
             "underlying canonical type, at least one of the types (either "
             "base or promoted) will be signed, or the bitwidths will match.");
    }
    if (CGF.SanOpts.hasOneOf(
            SanitizerKind::ImplicitIntegerArithmeticValueChange) &&
        canPerformLossyDemotionCheck) {
      // While `x += 1` (for `x` with width less than int) is modeled as
      // promotion+arithmetics+demotion, and we can catch lossy demotion with
      // ease; inc/dec with width less than int can't overflow because of
      // promotion rules, so we omit promotion+demotion, which means that we can
      // not catch lossy "demotion". Because we still want to catch these cases
      // when the sanitizer is enabled, we perform the promotion, then perform
      // the increment/decrement in the wider type, and finally
      // perform the demotion. This will catch lossy demotions.

      value = EmitScalarConversion(value, type, promotedType, E->getExprLoc());
      Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
      // Do pass non-default ScalarConversionOpts so that sanitizer check is
      // emitted.
      value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(),
                                   ScalarConversionOpts(CGF.SanOpts));

      // Note that signed integer inc/dec with width less than int can't
      // overflow because of promotion rules; we're just eliding a few steps
      // here.
    } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) {
      value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
    } else if (E->canOverflow() && type->isUnsignedIntegerType() &&
               CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
      value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(
          E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts())));
    } else {
      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
    }

  // Next most common: pointer increment.
  } else if (const PointerType *ptr = type->getAs<PointerType>()) {
    QualType type = ptr->getPointeeType();

    // VLA types don't have constant size.
    if (const VariableArrayType *vla
          = CGF.getContext().getAsVariableArrayType(type)) {
      llvm::Value *numElts = CGF.getVLASize(vla).NumElts;
      if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
      if (CGF.getLangOpts().isSignedOverflowDefined())
        value = Builder.CreateGEP(value, numElts, "vla.inc");
      else
        value = CGF.EmitCheckedInBoundsGEP(
            value, numElts, /*SignedIndices=*/false, isSubtraction,
            E->getExprLoc(), "vla.inc");

    // Arithmetic on function pointers (!) is just +-1.
    } else if (type->isFunctionType()) {
      llvm::Value *amt = Builder.getInt32(amount);

      value = CGF.EmitCastToVoidPtr(value);
      if (CGF.getLangOpts().isSignedOverflowDefined())
        value = Builder.CreateGEP(value, amt, "incdec.funcptr");
      else
        value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
                                           isSubtraction, E->getExprLoc(),
                                           "incdec.funcptr");
      value = Builder.CreateBitCast(value, input->getType());

    // For everything else, we can just do a simple increment.
    } else {
      llvm::Value *amt = Builder.getInt32(amount);
      if (CGF.getLangOpts().isSignedOverflowDefined())
        value = Builder.CreateGEP(value, amt, "incdec.ptr");
      else
        value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false,
                                           isSubtraction, E->getExprLoc(),
                                           "incdec.ptr");
    }

  // Vector increment/decrement.
  } else if (type->isVectorType()) {
    if (type->hasIntegerRepresentation()) {
      llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);

      value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
    } else {
      value = Builder.CreateFAdd(
                  value,
                  llvm::ConstantFP::get(value->getType(), amount),
                  isInc ? "inc" : "dec");
    }

  // Floating point.
  } else if (type->isRealFloatingType()) {
    // Add the inc/dec to the real part.
    llvm::Value *amt;

    if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
      // Another special case: half FP increment should be done via float
      if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
        value = Builder.CreateCall(
            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
                                 CGF.CGM.FloatTy),
            input, "incdec.conv");
      } else {
        value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
      }
    }

    if (value->getType()->isFloatTy())
      amt = llvm::ConstantFP::get(VMContext,
                                  llvm::APFloat(static_cast<float>(amount)));
    else if (value->getType()->isDoubleTy())
      amt = llvm::ConstantFP::get(VMContext,
                                  llvm::APFloat(static_cast<double>(amount)));
    else {
      // Remaining types are Half, LongDouble or __float128. Convert from float.
      llvm::APFloat F(static_cast<float>(amount));
      bool ignored;
      const llvm::fltSemantics *FS;
      // Don't use getFloatTypeSemantics because Half isn't
      // necessarily represented using the "half" LLVM type.
      if (value->getType()->isFP128Ty())
        FS = &CGF.getTarget().getFloat128Format();
      else if (value->getType()->isHalfTy())
        FS = &CGF.getTarget().getHalfFormat();
      else
        FS = &CGF.getTarget().getLongDoubleFormat();
      F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored);
      amt = llvm::ConstantFP::get(VMContext, F);
    }
    value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");

    if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
      if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) {
        value = Builder.CreateCall(
            CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
                                 CGF.CGM.FloatTy),
            value, "incdec.conv");
      } else {
        value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
      }
    }

  // Fixed-point types.
  } else if (type->isFixedPointType()) {
    // Fixed-point types are tricky. In some cases, it isn't possible to
    // represent a 1 or a -1 in the type at all. Piggyback off of
    // EmitFixedPointBinOp to avoid having to reimplement saturation.
    BinOpInfo Info;
    Info.E = E;
    Info.Ty = E->getType();
    Info.Opcode = isInc ? BO_Add : BO_Sub;
    Info.LHS = value;
    Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
    // If the type is signed, it's better to represent this as +(-1) or -(-1),
    // since -1 is guaranteed to be representable.
    if (type->isSignedFixedPointType()) {
      Info.Opcode = isInc ? BO_Sub : BO_Add;
      Info.RHS = Builder.CreateNeg(Info.RHS);
    }
    // Now, convert from our invented integer literal to the type of the unary
    // op. This will upscale and saturate if necessary. This value can become
    // undef in some cases.
    llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
    auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty);
    Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema);
    value = EmitFixedPointBinOp(Info);

  // Objective-C pointer types.
  } else {
    const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
    value = CGF.EmitCastToVoidPtr(value);

    CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
    if (!isInc) size = -size;
    llvm::Value *sizeValue =
      llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());

    if (CGF.getLangOpts().isSignedOverflowDefined())
      value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
    else
      value = CGF.EmitCheckedInBoundsGEP(value, sizeValue,
                                         /*SignedIndices=*/false, isSubtraction,
                                         E->getExprLoc(), "incdec.objptr");
    value = Builder.CreateBitCast(value, input->getType());
  }

  if (atomicPHI) {
    llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
    auto Pair = CGF.EmitAtomicCompareExchange(
        LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
    llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
    llvm::Value *success = Pair.second;
    atomicPHI->addIncoming(old, curBlock);
    Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
    Builder.SetInsertPoint(contBB);
    return isPre ? value : input;
  }

  // Store the updated result through the lvalue.
  if (LV.isBitField())
    CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
  else
    CGF.EmitStoreThroughLValue(RValue::get(value), LV);

  // If this is a postinc, return the value read from memory, otherwise use the
  // updated value.
  return isPre ? value : input;
}



Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
  TestAndClearIgnoreResultAssign();
  Value *Op = Visit(E->getSubExpr());

  // Generate a unary FNeg for FP ops.
  if (Op->getType()->isFPOrFPVectorTy())
    return Builder.CreateFNeg(Op, "fneg");

  // Emit unary minus with EmitSub so we handle overflow cases etc.
  BinOpInfo BinOp;
  BinOp.RHS = Op;
  BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
  BinOp.Ty = E->getType();
  BinOp.Opcode = BO_Sub;
  BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
  BinOp.E = E;
  return EmitSub(BinOp);
}

Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
  TestAndClearIgnoreResultAssign();
  Value *Op = Visit(E->getSubExpr());
  return Builder.CreateNot(Op, "neg");
}

Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
  // Perform vector logical not on comparison with zero vector.
  if (E->getType()->isVectorType() &&
      E->getType()->castAs<VectorType>()->getVectorKind() ==
          VectorType::GenericVector) {
    Value *Oper = Visit(E->getSubExpr());
    Value *Zero = llvm::Constant::getNullValue(Oper->getType());
    Value *Result;
    if (Oper->getType()->isFPOrFPVectorTy()) {
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
          CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
      Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
    } else
      Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
    return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
  }

  // Compare operand to zero.
  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());

  // Invert value.
  // TODO: Could dynamically modify easy computations here.  For example, if
  // the operand is an icmp ne, turn into icmp eq.
  BoolVal = Builder.CreateNot(BoolVal, "lnot");

  // ZExt result to the expr type.
  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
}

Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
  // Try folding the offsetof to a constant.
  Expr::EvalResult EVResult;
  if (E->EvaluateAsInt(EVResult, CGF.getContext())) {
    llvm::APSInt Value = EVResult.Val.getInt();
    return Builder.getInt(Value);
  }

  // Loop over the components of the offsetof to compute the value.
  unsigned n = E->getNumComponents();
  llvm::Type* ResultType = ConvertType(E->getType());
  llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
  QualType CurrentType = E->getTypeSourceInfo()->getType();
  for (unsigned i = 0; i != n; ++i) {
    OffsetOfNode ON = E->getComponent(i);
    llvm::Value *Offset = nullptr;
    switch (ON.getKind()) {
    case OffsetOfNode::Array: {
      // Compute the index
      Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
      llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
      bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
      Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");

      // Save the element type
      CurrentType =
          CGF.getContext().getAsArrayType(CurrentType)->getElementType();

      // Compute the element size
      llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
          CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());

      // Multiply out to compute the result
      Offset = Builder.CreateMul(Idx, ElemSize);
      break;
    }

    case OffsetOfNode::Field: {
      FieldDecl *MemberDecl = ON.getField();
      RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);

      // Compute the index of the field in its parent.
      unsigned i = 0;
      // FIXME: It would be nice if we didn't have to loop here!
      for (RecordDecl::field_iterator Field = RD->field_begin(),
                                      FieldEnd = RD->field_end();
           Field != FieldEnd; ++Field, ++i) {
        if (*Field == MemberDecl)
          break;
      }
      assert(i < RL.getFieldCount() && "offsetof field in wrong type");

      // Compute the offset to the field
      int64_t OffsetInt = RL.getFieldOffset(i) /
                          CGF.getContext().getCharWidth();
      Offset = llvm::ConstantInt::get(ResultType, OffsetInt);

      // Save the element type.
      CurrentType = MemberDecl->getType();
      break;
    }

    case OffsetOfNode::Identifier:
      llvm_unreachable("dependent __builtin_offsetof");

    case OffsetOfNode::Base: {
      if (ON.getBase()->isVirtual()) {
        CGF.ErrorUnsupported(E, "virtual base in offsetof");
        continue;
      }

      RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl();
      const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);

      // Save the element type.
      CurrentType = ON.getBase()->getType();

      // Compute the offset to the base.
      const RecordType *BaseRT = CurrentType->getAs<RecordType>();
      CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
      CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
      Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
      break;
    }
    }
    Result = Builder.CreateAdd(Result, Offset);
  }
  return Result;
}

/// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
/// argument of the sizeof expression as an integer.
Value *
ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
                              const UnaryExprOrTypeTraitExpr *E) {
  QualType TypeToSize = E->getTypeOfArgument();
  if (E->getKind() == UETT_SizeOf) {
    if (const VariableArrayType *VAT =
          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
      if (E->isArgumentType()) {
        // sizeof(type) - make sure to emit the VLA size.
        CGF.EmitVariablyModifiedType(TypeToSize);
      } else {
        // C99 6.5.3.4p2: If the argument is an expression of type
        // VLA, it is evaluated.
        CGF.EmitIgnoredExpr(E->getArgumentExpr());
      }

      auto VlaSize = CGF.getVLASize(VAT);
      llvm::Value *size = VlaSize.NumElts;

      // Scale the number of non-VLA elements by the non-VLA element size.
      CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type);
      if (!eltSize.isOne())
        size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size);

      return size;
    }
  } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
    auto Alignment =
        CGF.getContext()
            .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
                E->getTypeOfArgument()->getPointeeType()))
            .getQuantity();
    return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
  }

  // If this isn't sizeof(vla), the result must be constant; use the constant
  // folding logic so we don't have to duplicate it here.
  return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
}

Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
  Expr *Op = E->getSubExpr();
  if (Op->getType()->isAnyComplexType()) {
    // If it's an l-value, load through the appropriate subobject l-value.
    // Note that we have to ask E because Op might be an l-value that
    // this won't work for, e.g. an Obj-C property.
    if (E->isGLValue())
      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
                                  E->getExprLoc()).getScalarVal();

    // Otherwise, calculate and project.
    return CGF.EmitComplexExpr(Op, false, true).first;
  }

  return Visit(Op);
}

Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
  Expr *Op = E->getSubExpr();
  if (Op->getType()->isAnyComplexType()) {
    // If it's an l-value, load through the appropriate subobject l-value.
    // Note that we have to ask E because Op might be an l-value that
    // this won't work for, e.g. an Obj-C property.
    if (Op->isGLValue())
      return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
                                  E->getExprLoc()).getScalarVal();

    // Otherwise, calculate and project.
    return CGF.EmitComplexExpr(Op, true, false).second;
  }

  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
  // effects are evaluated, but not the actual value.
  if (Op->isGLValue())
    CGF.EmitLValue(Op);
  else
    CGF.EmitScalarExpr(Op, true);
  return llvm::Constant::getNullValue(ConvertType(E->getType()));
}

//===----------------------------------------------------------------------===//
//                           Binary Operators
//===----------------------------------------------------------------------===//

BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
  TestAndClearIgnoreResultAssign();
  BinOpInfo Result;
  Result.LHS = Visit(E->getLHS());
  Result.RHS = Visit(E->getRHS());
  Result.Ty  = E->getType();
  Result.Opcode = E->getOpcode();
  Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
  Result.E = E;
  return Result;
}

LValue ScalarExprEmitter::EmitCompoundAssignLValue(
                                              const CompoundAssignOperator *E,
                        Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
                                                   Value *&Result) {
  QualType LHSTy = E->getLHS()->getType();
  BinOpInfo OpInfo;

  if (E->getComputationResultType()->isAnyComplexType())
    return CGF.EmitScalarCompoundAssignWithComplex(E, Result);

  // Emit the RHS first.  __block variables need to have the rhs evaluated
  // first, plus this should improve codegen a little.
  OpInfo.RHS = Visit(E->getRHS());
  OpInfo.Ty = E->getComputationResultType();
  OpInfo.Opcode = E->getOpcode();
  OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts());
  OpInfo.E = E;
  // Load/convert the LHS.
  LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);

  llvm::PHINode *atomicPHI = nullptr;
  if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
    QualType type = atomicTy->getValueType();
    if (!type->isBooleanType() && type->isIntegerType() &&
        !(type->isUnsignedIntegerType() &&
          CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
        CGF.getLangOpts().getSignedOverflowBehavior() !=
            LangOptions::SOB_Trapping) {
      llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP;
      llvm::Instruction::BinaryOps Op;
      switch (OpInfo.Opcode) {
        // We don't have atomicrmw operands for *, %, /, <<, >>
        case BO_MulAssign: case BO_DivAssign:
        case BO_RemAssign:
        case BO_ShlAssign:
        case BO_ShrAssign:
          break;
        case BO_AddAssign:
          AtomicOp = llvm::AtomicRMWInst::Add;
          Op = llvm::Instruction::Add;
          break;
        case BO_SubAssign:
          AtomicOp = llvm::AtomicRMWInst::Sub;
          Op = llvm::Instruction::Sub;
          break;
        case BO_AndAssign:
          AtomicOp = llvm::AtomicRMWInst::And;
          Op = llvm::Instruction::And;
          break;
        case BO_XorAssign:
          AtomicOp = llvm::AtomicRMWInst::Xor;
          Op = llvm::Instruction::Xor;
          break;
        case BO_OrAssign:
          AtomicOp = llvm::AtomicRMWInst::Or;
          Op = llvm::Instruction::Or;
          break;
        default:
          llvm_unreachable("Invalid compound assignment type");
      }
      if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) {
        llvm::Value *Amt = CGF.EmitToMemory(
            EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
                                 E->getExprLoc()),
            LHSTy);
        Value *OldVal = Builder.CreateAtomicRMW(
            AtomicOp, LHSLV.getPointer(CGF), Amt,
            llvm::AtomicOrdering::SequentiallyConsistent);

        // Since operation is atomic, the result type is guaranteed to be the
        // same as the input in LLVM terms.
        Result = Builder.CreateBinOp(Op, OldVal, Amt);
        return LHSLV;
      }
    }
    // FIXME: For floating point types, we should be saving and restoring the
    // floating point environment in the loop.
    llvm::BasicBlock *startBB = Builder.GetInsertBlock();
    llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
    OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
    OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
    Builder.CreateBr(opBB);
    Builder.SetInsertPoint(opBB);
    atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
    atomicPHI->addIncoming(OpInfo.LHS, startBB);
    OpInfo.LHS = atomicPHI;
  }
  else
    OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());

  SourceLocation Loc = E->getExprLoc();
  OpInfo.LHS =
      EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);

  // Expand the binary operator.
  Result = (this->*Func)(OpInfo);

  // Convert the result back to the LHS type,
  // potentially with Implicit Conversion sanitizer check.
  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy,
                                Loc, ScalarConversionOpts(CGF.SanOpts));

  if (atomicPHI) {
    llvm::BasicBlock *curBlock = Builder.GetInsertBlock();
    llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
    auto Pair = CGF.EmitAtomicCompareExchange(
        LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
    llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
    llvm::Value *success = Pair.second;
    atomicPHI->addIncoming(old, curBlock);
    Builder.CreateCondBr(success, contBB, atomicPHI->getParent());
    Builder.SetInsertPoint(contBB);
    return LHSLV;
  }

  // Store the result value into the LHS lvalue. Bit-fields are handled
  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
  // 'An assignment expression has the value of the left operand after the
  // assignment...'.
  if (LHSLV.isBitField())
    CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
  else
    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);

  if (CGF.getLangOpts().OpenMP)
    CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF,
                                                                  E->getLHS());
  return LHSLV;
}

Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
  bool Ignore = TestAndClearIgnoreResultAssign();
  Value *RHS = nullptr;
  LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);

  // If the result is clearly ignored, return now.
  if (Ignore)
    return nullptr;

  // The result of an assignment in C is the assigned r-value.
  if (!CGF.getLangOpts().CPlusPlus)
    return RHS;

  // If the lvalue is non-volatile, return the computed value of the assignment.
  if (!LHS.isVolatileQualified())
    return RHS;

  // Otherwise, reload the value.
  return EmitLoadOfLValue(LHS, E->getExprLoc());
}

void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
    const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;

  if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
    Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
                                    SanitizerKind::IntegerDivideByZero));
  }

  const auto *BO = cast<BinaryOperator>(Ops.E);
  if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
      Ops.Ty->hasSignedIntegerRepresentation() &&
      !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) &&
      Ops.mayHaveIntegerOverflow()) {
    llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());

    llvm::Value *IntMin =
      Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
    llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);

    llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
    llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
    llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
    Checks.push_back(
        std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
  }

  if (Checks.size() > 0)
    EmitBinOpCheck(Checks, Ops);
}

Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
  {
    CodeGenFunction::SanitizerScope SanScope(&CGF);
    if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
         CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
        Ops.Ty->isIntegerType() &&
        (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
      llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
      EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
    } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
               Ops.Ty->isRealFloatingType() &&
               Ops.mayHaveFloatDivisionByZero()) {
      llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
      llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
      EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
                     Ops);
    }
  }

  if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
    llvm::Value *Val;
    CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures);
    Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
    if (CGF.getLangOpts().OpenCL &&
        !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) {
      // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
      // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
      // build option allows an application to specify that single precision
      // floating-point divide (x/y and 1/x) and sqrt used in the program
      // source are correctly rounded.
      llvm::Type *ValTy = Val->getType();
      if (ValTy->isFloatTy() ||
          (isa<llvm::VectorType>(ValTy) &&
           cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
        CGF.SetFPAccuracy(Val, 2.5);
    }
    return Val;
  }
  else if (Ops.isFixedPointOp())
    return EmitFixedPointBinOp(Ops);
  else if (Ops.Ty->hasUnsignedIntegerRepresentation())
    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
  else
    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
}

Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
  // Rem in C can't be a floating point type: C99 6.5.5p2.
  if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
       CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
      Ops.Ty->isIntegerType() &&
      (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) {
    CodeGenFunction::SanitizerScope SanScope(&CGF);
    llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
    EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
  }

  if (Ops.Ty->hasUnsignedIntegerRepresentation())
    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
  else
    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
}

Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
  unsigned IID;
  unsigned OpID = 0;

  bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
  switch (Ops.Opcode) {
  case BO_Add:
  case BO_AddAssign:
    OpID = 1;
    IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
                     llvm::Intrinsic::uadd_with_overflow;
    break;
  case BO_Sub:
  case BO_SubAssign:
    OpID = 2;
    IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
                     llvm::Intrinsic::usub_with_overflow;
    break;
  case BO_Mul:
  case BO_MulAssign:
    OpID = 3;
    IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
                     llvm::Intrinsic::umul_with_overflow;
    break;
  default:
    llvm_unreachable("Unsupported operation for overflow detection");
  }
  OpID <<= 1;
  if (isSigned)
    OpID |= 1;

  CodeGenFunction::SanitizerScope SanScope(&CGF);
  llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);

  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);

  Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);

  // Handle overflow with llvm.trap if no custom handler has been specified.
  const std::string *handlerName =
    &CGF.getLangOpts().OverflowHandler;
  if (handlerName->empty()) {
    // If the signed-integer-overflow sanitizer is enabled, emit a call to its
    // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
    if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
      llvm::Value *NotOverflow = Builder.CreateNot(overflow);
      SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
                              : SanitizerKind::UnsignedIntegerOverflow;
      EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
    } else
      CGF.EmitTrapCheck(Builder.CreateNot(overflow));
    return result;
  }

  // Branch in case of overflow.
  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
  llvm::BasicBlock *continueBB =
      CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode());
  llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);

  Builder.CreateCondBr(overflow, overflowBB, continueBB);

  // If an overflow handler is set, then we want to call it and then use its
  // result, if it returns.
  Builder.SetInsertPoint(overflowBB);

  // Get the overflow handler.
  llvm::Type *Int8Ty = CGF.Int8Ty;
  llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
  llvm::FunctionType *handlerTy =
      llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
  llvm::FunctionCallee handler =
      CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);

  // Sign extend the args to 64-bit, so that we can use the same handler for
  // all types of overflow.
  llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
  llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);

  // Call the handler with the two arguments, the operation, and the size of
  // the result.
  llvm::Value *handlerArgs[] = {
    lhs,
    rhs,
    Builder.getInt8(OpID),
    Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
  };
  llvm::Value *handlerResult =
    CGF.EmitNounwindRuntimeCall(handler, handlerArgs);

  // Truncate the result back to the desired size.
  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
  Builder.CreateBr(continueBB);

  Builder.SetInsertPoint(continueBB);
  llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
  phi->addIncoming(result, initialBB);
  phi->addIncoming(handlerResult, overflowBB);

  return phi;
}

/// Emit pointer + index arithmetic.
static Value *emitPointerArithmetic(CodeGenFunction &CGF,
                                    const BinOpInfo &op,
                                    bool isSubtraction) {
  // Must have binary (not unary) expr here.  Unary pointer
  // increment/decrement doesn't use this path.
  const BinaryOperator *expr = cast<BinaryOperator>(op.E);

  Value *pointer = op.LHS;
  Expr *pointerOperand = expr->getLHS();
  Value *index = op.RHS;
  Expr *indexOperand = expr->getRHS();

  // In a subtraction, the LHS is always the pointer.
  if (!isSubtraction && !pointer->getType()->isPointerTy()) {
    std::swap(pointer, index);
    std::swap(pointerOperand, indexOperand);
  }

  bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();

  unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
  auto &DL = CGF.CGM.getDataLayout();
  auto PtrTy = cast<llvm::PointerType>(pointer->getType());

  // Some versions of glibc and gcc use idioms (particularly in their malloc
  // routines) that add a pointer-sized integer (known to be a pointer value)
  // to a null pointer in order to cast the value back to an integer or as
  // part of a pointer alignment algorithm.  This is undefined behavior, but
  // we'd like to be able to compile programs that use it.
  //
  // Normally, we'd generate a GEP with a null-pointer base here in response
  // to that code, but it's also UB to dereference a pointer created that
  // way.  Instead (as an acknowledged hack to tolerate the idiom) we will
  // generate a direct cast of the integer value to a pointer.
  //
  // The idiom (p = nullptr + N) is not met if any of the following are true:
  //
  //   The operation is subtraction.
  //   The index is not pointer-sized.
  //   The pointer type is not byte-sized.
  //
  if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(),
                                                       op.Opcode,
                                                       expr->getLHS(),
                                                       expr->getRHS()))
    return CGF.Builder.CreateIntToPtr(index, pointer->getType());

  if (width != DL.getIndexTypeSizeInBits(PtrTy)) {
    // Zero-extend or sign-extend the pointer value according to
    // whether the index is signed or not.
    index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned,
                                      "idx.ext");
  }

  // If this is subtraction, negate the index.
  if (isSubtraction)
    index = CGF.Builder.CreateNeg(index, "idx.neg");

  if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
    CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
                        /*Accessed*/ false);

  const PointerType *pointerType
    = pointerOperand->getType()->getAs<PointerType>();
  if (!pointerType) {
    QualType objectType = pointerOperand->getType()
                                        ->castAs<ObjCObjectPointerType>()
                                        ->getPointeeType();
    llvm::Value *objectSize
      = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));

    index = CGF.Builder.CreateMul(index, objectSize);

    Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
    return CGF.Builder.CreateBitCast(result, pointer->getType());
  }

  QualType elementType = pointerType->getPointeeType();
  if (const VariableArrayType *vla
        = CGF.getContext().getAsVariableArrayType(elementType)) {
    // The element count here is the total number of non-VLA elements.
    llvm::Value *numElements = CGF.getVLASize(vla).NumElts;

    // Effectively, the multiply by the VLA size is part of the GEP.
    // GEP indexes are signed, and scaling an index isn't permitted to
    // signed-overflow, so we use the same semantics for our explicit
    // multiply.  We suppress this if overflow is not undefined behavior.
    if (CGF.getLangOpts().isSignedOverflowDefined()) {
      index = CGF.Builder.CreateMul(index, numElements, "vla.index");
      pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
    } else {
      index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
      pointer =
          CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
                                     op.E->getExprLoc(), "add.ptr");
    }
    return pointer;
  }

  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
  // future proof.
  if (elementType->isVoidType() || elementType->isFunctionType()) {
    Value *result = CGF.EmitCastToVoidPtr(pointer);
    result = CGF.Builder.CreateGEP(result, index, "add.ptr");
    return CGF.Builder.CreateBitCast(result, pointer->getType());
  }

  if (CGF.getLangOpts().isSignedOverflowDefined())
    return CGF.Builder.CreateGEP(pointer, index, "add.ptr");

  return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction,
                                    op.E->getExprLoc(), "add.ptr");
}

// Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
// Addend. Use negMul and negAdd to negate the first operand of the Mul or
// the add operand respectively. This allows fmuladd to represent a*b-c, or
// c-a*b. Patterns in LLVM should catch the negated forms and translate them to
// efficient operations.
static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend,
                           const CodeGenFunction &CGF, CGBuilderTy &Builder,
                           bool negMul, bool negAdd) {
  assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");

  Value *MulOp0 = MulOp->getOperand(0);
  Value *MulOp1 = MulOp->getOperand(1);
  if (negMul)
    MulOp0 = Builder.CreateFNeg(MulOp0, "neg");
  if (negAdd)
    Addend = Builder.CreateFNeg(Addend, "neg");

  Value *FMulAdd = nullptr;
  if (Builder.getIsFPConstrained()) {
    assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) &&
           "Only constrained operation should be created when Builder is in FP "
           "constrained mode");
    FMulAdd = Builder.CreateConstrainedFPCall(
        CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd,
                             Addend->getType()),
        {MulOp0, MulOp1, Addend});
  } else {
    FMulAdd = Builder.CreateCall(
        CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
        {MulOp0, MulOp1, Addend});
  }
  MulOp->eraseFromParent();

  return FMulAdd;
}

// Check whether it would be legal to emit an fmuladd intrinsic call to
// represent op and if so, build the fmuladd.
//
// Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
// Does NOT check the type of the operation - it's assumed that this function
// will be called from contexts where it's known that the type is contractable.
static Value* tryEmitFMulAdd(const BinOpInfo &op,
                         const CodeGenFunction &CGF, CGBuilderTy &Builder,
                         bool isSub=false) {

  assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
          op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
         "Only fadd/fsub can be the root of an fmuladd.");

  // Check whether this op is marked as fusable.
  if (!op.FPFeatures.allowFPContractWithinStatement())
    return nullptr;

  // We have a potentially fusable op. Look for a mul on one of the operands.
  // Also, make sure that the mul result isn't used directly. In that case,
  // there's no point creating a muladd operation.
  if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
    if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
        LHSBinOp->use_empty())
      return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
  }
  if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
    if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
        RHSBinOp->use_empty())
      return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
  }

  if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(op.LHS)) {
    if (LHSBinOp->getIntrinsicID() ==
            llvm::Intrinsic::experimental_constrained_fmul &&
        LHSBinOp->use_empty())
      return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
  }
  if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(op.RHS)) {
    if (RHSBinOp->getIntrinsicID() ==
            llvm::Intrinsic::experimental_constrained_fmul &&
        RHSBinOp->use_empty())
      return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
  }

  return nullptr;
}

Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
  if (op.LHS->getType()->isPointerTy() ||
      op.RHS->getType()->isPointerTy())
    return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction);

  if (op.Ty->isSignedIntegerOrEnumerationType()) {
    switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
    case LangOptions::SOB_Defined:
      return Builder.CreateAdd(op.LHS, op.RHS, "add");
    case LangOptions::SOB_Undefined:
      if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
        return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
      LLVM_FALLTHROUGH;
    case LangOptions::SOB_Trapping:
      if (CanElideOverflowCheck(CGF.getContext(), op))
        return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
      return EmitOverflowCheckedBinOp(op);
    }
  }

  if (op.Ty->isConstantMatrixType()) {
    llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
    return MB.CreateAdd(op.LHS, op.RHS);
  }

  if (op.Ty->isUnsignedIntegerType() &&
      CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
      !CanElideOverflowCheck(CGF.getContext(), op))
    return EmitOverflowCheckedBinOp(op);

  if (op.LHS->getType()->isFPOrFPVectorTy()) {
    CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
    // Try to form an fmuladd.
    if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
      return FMulAdd;

    return Builder.CreateFAdd(op.LHS, op.RHS, "add");
  }

  if (op.isFixedPointOp())
    return EmitFixedPointBinOp(op);

  return Builder.CreateAdd(op.LHS, op.RHS, "add");
}

/// The resulting value must be calculated with exact precision, so the operands
/// may not be the same type.
Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
  using llvm::APSInt;
  using llvm::ConstantInt;

  // This is either a binary operation where at least one of the operands is
  // a fixed-point type, or a unary operation where the operand is a fixed-point
  // type. The result type of a binary operation is determined by
  // Sema::handleFixedPointConversions().
  QualType ResultTy = op.Ty;
  QualType LHSTy, RHSTy;
  if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) {
    RHSTy = BinOp->getRHS()->getType();
    if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) {
      // For compound assignment, the effective type of the LHS at this point
      // is the computation LHS type, not the actual LHS type, and the final
      // result type is not the type of the expression but rather the
      // computation result type.
      LHSTy = CAO->getComputationLHSType();
      ResultTy = CAO->getComputationResultType();
    } else
      LHSTy = BinOp->getLHS()->getType();
  } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) {
    LHSTy = UnOp->getSubExpr()->getType();
    RHSTy = UnOp->getSubExpr()->getType();
  }
  ASTContext &Ctx = CGF.getContext();
  Value *LHS = op.LHS;
  Value *RHS = op.RHS;

  auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy);
  auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy);
  auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy);
  auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema);

  // Perform the actual operation.
  Value *Result;
  llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder);
  switch (op.Opcode) {
  case BO_AddAssign:
  case BO_Add:
    Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema);
    break;
  case BO_SubAssign:
  case BO_Sub:
    Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema);
    break;
  case BO_MulAssign:
  case BO_Mul:
    Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema);
    break;
  case BO_DivAssign:
  case BO_Div:
    Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema);
    break;
  case BO_ShlAssign:
  case BO_Shl:
    Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS);
    break;
  case BO_ShrAssign:
  case BO_Shr:
    Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS);
    break;
  case BO_LT:
    return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema);
  case BO_GT:
    return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema);
  case BO_LE:
    return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema);
  case BO_GE:
    return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema);
  case BO_EQ:
    // For equality operations, we assume any padding bits on unsigned types are
    // zero'd out. They could be overwritten through non-saturating operations
    // that cause overflow, but this leads to undefined behavior.
    return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema);
  case BO_NE:
    return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema);
  case BO_Cmp:
  case BO_LAnd:
  case BO_LOr:
    llvm_unreachable("Found unimplemented fixed point binary operation");
  case BO_PtrMemD:
  case BO_PtrMemI:
  case BO_Rem:
  case BO_Xor:
  case BO_And:
  case BO_Or:
  case BO_Assign:
  case BO_RemAssign:
  case BO_AndAssign:
  case BO_XorAssign:
  case BO_OrAssign:
  case BO_Comma:
    llvm_unreachable("Found unsupported binary operation for fixed point types.");
  }

  bool IsShift = BinaryOperator::isShiftOp(op.Opcode) ||
                 BinaryOperator::isShiftAssignOp(op.Opcode);
  // Convert to the result type.
  return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema
                                                      : CommonFixedSema,
                                      ResultFixedSema);
}

Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
  // The LHS is always a pointer if either side is.
  if (!op.LHS->getType()->isPointerTy()) {
    if (op.Ty->isSignedIntegerOrEnumerationType()) {
      switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
      case LangOptions::SOB_Defined:
        return Builder.CreateSub(op.LHS, op.RHS, "sub");
      case LangOptions::SOB_Undefined:
        if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
          return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
        LLVM_FALLTHROUGH;
      case LangOptions::SOB_Trapping:
        if (CanElideOverflowCheck(CGF.getContext(), op))
          return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
        return EmitOverflowCheckedBinOp(op);
      }
    }

    if (op.Ty->isConstantMatrixType()) {
      llvm::MatrixBuilder<CGBuilderTy> MB(Builder);
      return MB.CreateSub(op.LHS, op.RHS);
    }

    if (op.Ty->isUnsignedIntegerType() &&
        CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) &&
        !CanElideOverflowCheck(CGF.getContext(), op))
      return EmitOverflowCheckedBinOp(op);

    if (op.LHS->getType()->isFPOrFPVectorTy()) {
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures);
      // Try to form an fmuladd.
      if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
        return FMulAdd;
      return Builder.CreateFSub(op.LHS, op.RHS, "sub");
    }

    if (op.isFixedPointOp())
      return EmitFixedPointBinOp(op);

    return Builder.CreateSub(op.LHS, op.RHS, "sub");
  }

  // If the RHS is not a pointer, then we have normal pointer
  // arithmetic.
  if (!op.RHS->getType()->isPointerTy())
    return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction);

  // Otherwise, this is a pointer subtraction.

  // Do the raw subtraction part.
  llvm::Value *LHS
    = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
  llvm::Value *RHS
    = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
  Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");

  // Okay, figure out the element size.
  const BinaryOperator *expr = cast<BinaryOperator>(op.E);
  QualType elementType = expr->getLHS()->getType()->getPointeeType();

  llvm::Value *divisor = nullptr;

  // For a variable-length array, this is going to be non-constant.
  if (const VariableArrayType *vla
        = CGF.getContext().getAsVariableArrayType(elementType)) {
    auto VlaSize = CGF.getVLASize(vla);
    elementType = VlaSize.Type;
    divisor = VlaSize.NumElts;

    // Scale the number of non-VLA elements by the non-VLA element size.
    CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
    if (!eltSize.isOne())
      divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);

  // For everything elese, we can just compute it, safe in the
  // assumption that Sema won't let anything through that we can't
  // safely compute the size of.
  } else {
    CharUnits elementSize;
    // Handle GCC extension for pointer arithmetic on void* and
    // function pointer types.
    if (elementType->isVoidType() || elementType->isFunctionType())
      elementSize = CharUnits::One();
    else
      elementSize = CGF.getContext().getTypeSizeInChars(elementType);

    // Don't even emit the divide for element size of 1.
    if (elementSize.isOne())
      return diffInChars;

    divisor = CGF.CGM.getSize(elementSize);
  }

  // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
  // pointer difference in C is only defined in the case where both operands
  // are pointing to elements of an array.
  return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
}

Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
  llvm::IntegerType *Ty;
  if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
    Ty = cast<llvm::IntegerType>(VT->getElementType());
  else
    Ty = cast<llvm::IntegerType>(LHS->getType());
  return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
}

Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS,
                                              const Twine &Name) {
  llvm::IntegerType *Ty;
  if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
    Ty = cast<llvm::IntegerType>(VT->getElementType());
  else
    Ty = cast<llvm::IntegerType>(LHS->getType());

  if (llvm::isPowerOf2_64(Ty->getBitWidth()))
        return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name);

  return Builder.CreateURem(
      RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name);
}

Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
  // TODO: This misses out on the sanitizer check below.
  if (Ops.isFixedPointOp())
    return EmitFixedPointBinOp(Ops);

  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
  // RHS to the same size as the LHS.
  Value *RHS = Ops.RHS;
  if (Ops.LHS->getType() != RHS->getType())
    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");

  bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
                            Ops.Ty->hasSignedIntegerRepresentation() &&
                            !CGF.getLangOpts().isSignedOverflowDefined() &&
                            !CGF.getLangOpts().CPlusPlus20;
  bool SanitizeUnsignedBase =
      CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) &&
      Ops.Ty->hasUnsignedIntegerRepresentation();
  bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase;
  bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
  // OpenCL 6.3j: shift values are effectively % word size of LHS.
  if (CGF.getLangOpts().OpenCL)
    RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask");
  else if ((SanitizeBase || SanitizeExponent) &&
           isa<llvm::IntegerType>(Ops.LHS->getType())) {
    CodeGenFunction::SanitizerScope SanScope(&CGF);
    SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
    llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS);
    llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne);

    if (SanitizeExponent) {
      Checks.push_back(
          std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
    }

    if (SanitizeBase) {
      // Check whether we are shifting any non-zero bits off the top of the
      // integer. We only emit this check if exponent is valid - otherwise
      // instructions below will have undefined behavior themselves.
      llvm::BasicBlock *Orig = Builder.GetInsertBlock();
      llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
      llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
      Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
      llvm::Value *PromotedWidthMinusOne =
          (RHS == Ops.RHS) ? WidthMinusOne
                           : GetWidthMinusOneValue(Ops.LHS, RHS);
      CGF.EmitBlock(CheckShiftBase);
      llvm::Value *BitsShiftedOff = Builder.CreateLShr(
          Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros",
                                     /*NUW*/ true, /*NSW*/ true),
          "shl.check");
      if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) {
        // In C99, we are not permitted to shift a 1 bit into the sign bit.
        // Under C++11's rules, shifting a 1 bit into the sign bit is
        // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
        // define signed left shifts, so we use the C99 and C++11 rules there).
        // Unsigned shifts can always shift into the top bit.
        llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
        BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
      }
      llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
      llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
      CGF.EmitBlock(Cont);
      llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
      BaseCheck->addIncoming(Builder.getTrue(), Orig);
      BaseCheck->addIncoming(ValidBase, CheckShiftBase);
      Checks.push_back(std::make_pair(
          BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase
                                        : SanitizerKind::UnsignedShiftBase));
    }

    assert(!Checks.empty());
    EmitBinOpCheck(Checks, Ops);
  }

  return Builder.CreateShl(Ops.LHS, RHS, "shl");
}

Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
  // TODO: This misses out on the sanitizer check below.
  if (Ops.isFixedPointOp())
    return EmitFixedPointBinOp(Ops);

  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
  // RHS to the same size as the LHS.
  Value *RHS = Ops.RHS;
  if (Ops.LHS->getType() != RHS->getType())
    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");

  // OpenCL 6.3j: shift values are effectively % word size of LHS.
  if (CGF.getLangOpts().OpenCL)
    RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask");
  else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
           isa<llvm::IntegerType>(Ops.LHS->getType())) {
    CodeGenFunction::SanitizerScope SanScope(&CGF);
    llvm::Value *Valid =
        Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
    EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
  }

  if (Ops.Ty->hasUnsignedIntegerRepresentation())
    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
}

enum IntrinsicType { VCMPEQ, VCMPGT };
// return corresponding comparison intrinsic for given vector type
static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
                                        BuiltinType::Kind ElemKind) {
  switch (ElemKind) {
  default: llvm_unreachable("unexpected element type");
  case BuiltinType::Char_U:
  case BuiltinType::UChar:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
  case BuiltinType::Char_S:
  case BuiltinType::SChar:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
  case BuiltinType::UShort:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
  case BuiltinType::Short:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
  case BuiltinType::UInt:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
  case BuiltinType::Int:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
  case BuiltinType::ULong:
  case BuiltinType::ULongLong:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtud_p;
  case BuiltinType::Long:
  case BuiltinType::LongLong:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtsd_p;
  case BuiltinType::Float:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
                            llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
  case BuiltinType::Double:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p :
                            llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p;
  case BuiltinType::UInt128:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
                          : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p;
  case BuiltinType::Int128:
    return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p
                          : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p;
  }
}

Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
                                      llvm::CmpInst::Predicate UICmpOpc,
                                      llvm::CmpInst::Predicate SICmpOpc,
                                      llvm::CmpInst::Predicate FCmpOpc,
                                      bool IsSignaling) {
  TestAndClearIgnoreResultAssign();
  Value *Result;
  QualType LHSTy = E->getLHS()->getType();
  QualType RHSTy = E->getRHS()->getType();
  if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
    assert(E->getOpcode() == BO_EQ ||
           E->getOpcode() == BO_NE);
    Value *LHS = CGF.EmitScalarExpr(E->getLHS());
    Value *RHS = CGF.EmitScalarExpr(E->getRHS());
    Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
                   CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
  } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
    BinOpInfo BOInfo = EmitBinOps(E);
    Value *LHS = BOInfo.LHS;
    Value *RHS = BOInfo.RHS;

    // If AltiVec, the comparison results in a numeric type, so we use
    // intrinsics comparing vectors and giving 0 or 1 as a result
    if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
      // constants for mapping CR6 register bits to predicate result
      enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;

      llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;

      // in several cases vector arguments order will be reversed
      Value *FirstVecArg = LHS,
            *SecondVecArg = RHS;

      QualType ElTy = LHSTy->castAs<VectorType>()->getElementType();
      BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind();

      switch(E->getOpcode()) {
      default: llvm_unreachable("is not a comparison operation");
      case BO_EQ:
        CR6 = CR6_LT;
        ID = GetIntrinsic(VCMPEQ, ElementKind);
        break;
      case BO_NE:
        CR6 = CR6_EQ;
        ID = GetIntrinsic(VCMPEQ, ElementKind);
        break;
      case BO_LT:
        CR6 = CR6_LT;
        ID = GetIntrinsic(VCMPGT, ElementKind);
        std::swap(FirstVecArg, SecondVecArg);
        break;
      case BO_GT:
        CR6 = CR6_LT;
        ID = GetIntrinsic(VCMPGT, ElementKind);
        break;
      case BO_LE:
        if (ElementKind == BuiltinType::Float) {
          CR6 = CR6_LT;
          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
          std::swap(FirstVecArg, SecondVecArg);
        }
        else {
          CR6 = CR6_EQ;
          ID = GetIntrinsic(VCMPGT, ElementKind);
        }
        break;
      case BO_GE:
        if (ElementKind == BuiltinType::Float) {
          CR6 = CR6_LT;
          ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
        }
        else {
          CR6 = CR6_EQ;
          ID = GetIntrinsic(VCMPGT, ElementKind);
          std::swap(FirstVecArg, SecondVecArg);
        }
        break;
      }

      Value *CR6Param = Builder.getInt32(CR6);
      llvm::Function *F = CGF.CGM.getIntrinsic(ID);
      Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});

      // The result type of intrinsic may not be same as E->getType().
      // If E->getType() is not BoolTy, EmitScalarConversion will do the
      // conversion work. If E->getType() is BoolTy, EmitScalarConversion will
      // do nothing, if ResultTy is not i1 at the same time, it will cause
      // crash later.
      llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType());
      if (ResultTy->getBitWidth() > 1 &&
          E->getType() == CGF.getContext().BoolTy)
        Result = Builder.CreateTrunc(Result, Builder.getInt1Ty());
      return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
                                  E->getExprLoc());
    }

    if (BOInfo.isFixedPointOp()) {
      Result = EmitFixedPointBinOp(BOInfo);
    } else if (LHS->getType()->isFPOrFPVectorTy()) {
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures);
      if (!IsSignaling)
        Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
      else
        Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp");
    } else if (LHSTy->hasSignedIntegerRepresentation()) {
      Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
    } else {
      // Unsigned integers and pointers.

      if (CGF.CGM.getCodeGenOpts().StrictVTablePointers &&
          !isa<llvm::ConstantPointerNull>(LHS) &&
          !isa<llvm::ConstantPointerNull>(RHS)) {

        // Dynamic information is required to be stripped for comparisons,
        // because it could leak the dynamic information.  Based on comparisons
        // of pointers to dynamic objects, the optimizer can replace one pointer
        // with another, which might be incorrect in presence of invariant
        // groups. Comparison with null is safe because null does not carry any
        // dynamic information.
        if (LHSTy.mayBeDynamicClass())
          LHS = Builder.CreateStripInvariantGroup(LHS);
        if (RHSTy.mayBeDynamicClass())
          RHS = Builder.CreateStripInvariantGroup(RHS);
      }

      Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
    }

    // If this is a vector comparison, sign extend the result to the appropriate
    // vector integer type and return it (don't convert to bool).
    if (LHSTy->isVectorType())
      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");

  } else {
    // Complex Comparison: can only be an equality comparison.
    CodeGenFunction::ComplexPairTy LHS, RHS;
    QualType CETy;
    if (auto *CTy = LHSTy->getAs<ComplexType>()) {
      LHS = CGF.EmitComplexExpr(E->getLHS());
      CETy = CTy->getElementType();
    } else {
      LHS.first = Visit(E->getLHS());
      LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
      CETy = LHSTy;
    }
    if (auto *CTy = RHSTy->getAs<ComplexType>()) {
      RHS = CGF.EmitComplexExpr(E->getRHS());
      assert(CGF.getContext().hasSameUnqualifiedType(CETy,
                                                     CTy->getElementType()) &&
             "The element types must always match.");
      (void)CTy;
    } else {
      RHS.first = Visit(E->getRHS());
      RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
      assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
             "The element types must always match.");
    }

    Value *ResultR, *ResultI;
    if (CETy->isRealFloatingType()) {
      // As complex comparisons can only be equality comparisons, they
      // are never signaling comparisons.
      ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
      ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
    } else {
      // Complex comparisons can only be equality comparisons.  As such, signed
      // and unsigned opcodes are the same.
      ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
      ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
    }

    if (E->getOpcode() == BO_EQ) {
      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
    } else {
      assert(E->getOpcode() == BO_NE &&
             "Complex comparison other than == or != ?");
      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
    }
  }

  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
                              E->getExprLoc());
}

Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
  bool Ignore = TestAndClearIgnoreResultAssign();

  Value *RHS;
  LValue LHS;

  switch (E->getLHS()->getType().getObjCLifetime()) {
  case Qualifiers::OCL_Strong:
    std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
    break;

  case Qualifiers::OCL_Autoreleasing:
    std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
    break;

  case Qualifiers::OCL_ExplicitNone:
    std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore);
    break;

  case Qualifiers::OCL_Weak:
    RHS = Visit(E->getRHS());
    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
    RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore);
    break;

  case Qualifiers::OCL_None:
    // __block variables need to have the rhs evaluated first, plus
    // this should improve codegen just a little.
    RHS = Visit(E->getRHS());
    LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);

    // Store the value into the LHS.  Bit-fields are handled specially
    // because the result is altered by the store, i.e., [C99 6.5.16p1]
    // 'An assignment expression has the value of the left operand after
    // the assignment...'.
    if (LHS.isBitField()) {
      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
    } else {
      CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc());
      CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
    }
  }

  // If the result is clearly ignored, return now.
  if (Ignore)
    return nullptr;

  // The result of an assignment in C is the assigned r-value.
  if (!CGF.getLangOpts().CPlusPlus)
    return RHS;

  // If the lvalue is non-volatile, return the computed value of the assignment.
  if (!LHS.isVolatileQualified())
    return RHS;

  // Otherwise, reload the value.
  return EmitLoadOfLValue(LHS, E->getExprLoc());
}

Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
  // Perform vector logical and on comparisons with zero vectors.
  if (E->getType()->isVectorType()) {
    CGF.incrementProfileCounter(E);

    Value *LHS = Visit(E->getLHS());
    Value *RHS = Visit(E->getRHS());
    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
    if (LHS->getType()->isFPOrFPVectorTy()) {
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
          CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
      LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
      RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
    } else {
      LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
      RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
    }
    Value *And = Builder.CreateAnd(LHS, RHS);
    return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
  }

  llvm::Type *ResTy = ConvertType(E->getType());

  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
  // If we have 1 && X, just emit X without inserting the control flow.
  bool LHSCondVal;
  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
    if (LHSCondVal) { // If we have 1 && X, just emit X.
      CGF.incrementProfileCounter(E);

      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
      // ZExt result to int or bool.
      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
    }

    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
    if (!CGF.ContainsLabel(E->getRHS()))
      return llvm::Constant::getNullValue(ResTy);
  }

  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");

  CodeGenFunction::ConditionalEvaluation eval(CGF);

  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
                           CGF.getProfileCount(E->getRHS()));

  // Any edges into the ContBlock are now from an (indeterminate number of)
  // edges from this first condition.  All of these values will be false.  Start
  // setting up the PHI node in the Cont Block for this.
  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
                                            "", ContBlock);
  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
       PI != PE; ++PI)
    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);

  eval.begin(CGF);
  CGF.EmitBlock(RHSBlock);
  CGF.incrementProfileCounter(E);
  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
  eval.end(CGF);

  // Reaquire the RHS block, as there may be subblocks inserted.
  RHSBlock = Builder.GetInsertBlock();

  // Emit an unconditional branch from this block to ContBlock.
  {
    // There is no need to emit line number for unconditional branch.
    auto NL = ApplyDebugLocation::CreateEmpty(CGF);
    CGF.EmitBlock(ContBlock);
  }
  // Insert an entry into the phi node for the edge with the value of RHSCond.
  PN->addIncoming(RHSCond, RHSBlock);

  // Artificial location to preserve the scope information
  {
    auto NL = ApplyDebugLocation::CreateArtificial(CGF);
    PN->setDebugLoc(Builder.getCurrentDebugLocation());
  }

  // ZExt result to int.
  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
}

Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
  // Perform vector logical or on comparisons with zero vectors.
  if (E->getType()->isVectorType()) {
    CGF.incrementProfileCounter(E);

    Value *LHS = Visit(E->getLHS());
    Value *RHS = Visit(E->getRHS());
    Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
    if (LHS->getType()->isFPOrFPVectorTy()) {
      CodeGenFunction::CGFPOptionsRAII FPOptsRAII(
          CGF, E->getFPFeaturesInEffect(CGF.getLangOpts()));
      LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
      RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
    } else {
      LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
      RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
    }
    Value *Or = Builder.CreateOr(LHS, RHS);
    return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
  }

  llvm::Type *ResTy = ConvertType(E->getType());

  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
  // If we have 0 || X, just emit X without inserting the control flow.
  bool LHSCondVal;
  if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
    if (!LHSCondVal) { // If we have 0 || X, just emit X.
      CGF.incrementProfileCounter(E);

      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
      // ZExt result to int or bool.
      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
    }

    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
    if (!CGF.ContainsLabel(E->getRHS()))
      return llvm::ConstantInt::get(ResTy, 1);
  }

  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");

  CodeGenFunction::ConditionalEvaluation eval(CGF);

  // Branch on the LHS first.  If it is true, go to the success (cont) block.
  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
                           CGF.getCurrentProfileCount() -
                               CGF.getProfileCount(E->getRHS()));

  // Any edges into the ContBlock are now from an (indeterminate number of)
  // edges from this first condition.  All of these values will be true.  Start
  // setting up the PHI node in the Cont Block for this.
  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
                                            "", ContBlock);
  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
       PI != PE; ++PI)
    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);

  eval.begin(CGF);

  // Emit the RHS condition as a bool value.
  CGF.EmitBlock(RHSBlock);
  CGF.incrementProfileCounter(E);
  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());

  eval.end(CGF);

  // Reaquire the RHS block, as there may be subblocks inserted.
  RHSBlock = Builder.GetInsertBlock();

  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
  // into the phi node for the edge with the value of RHSCond.
  CGF.EmitBlock(ContBlock);
  PN->addIncoming(RHSCond, RHSBlock);

  // ZExt result to int.
  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
}

Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
  CGF.EmitIgnoredExpr(E->getLHS());
  CGF.EnsureInsertPoint();
  return Visit(E->getRHS());
}

//===----------------------------------------------------------------------===//
//                             Other Operators
//===----------------------------------------------------------------------===//

/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
/// expression is cheap enough and side-effect-free enough to evaluate
/// unconditionally instead of conditionally.  This is used to convert control
/// flow into selects in some cases.
static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
                                                   CodeGenFunction &CGF) {
  // Anything that is an integer or floating point constant is fine.
  return E->IgnoreParens()->isEvaluatable(CGF.getContext());

  // Even non-volatile automatic variables can't be evaluated unconditionally.
  // Referencing a thread_local may cause non-trivial initialization work to
  // occur. If we're inside a lambda and one of the variables is from the scope
  // outside the lambda, that function may have returned already. Reading its
  // locals is a bad idea. Also, these reads may introduce races there didn't
  // exist in the source-level program.
}


Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
  TestAndClearIgnoreResultAssign();

  // Bind the common expression if necessary.
  CodeGenFunction::OpaqueValueMapping binding(CGF, E);

  Expr *condExpr = E->getCond();
  Expr *lhsExpr = E->getTrueExpr();
  Expr *rhsExpr = E->getFalseExpr();

  // If the condition constant folds and can be elided, try to avoid emitting
  // the condition and the dead arm.
  bool CondExprBool;
  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
    Expr *live = lhsExpr, *dead = rhsExpr;
    if (!CondExprBool) std::swap(live, dead);

    // If the dead side doesn't have labels we need, just emit the Live part.
    if (!CGF.ContainsLabel(dead)) {
      if (CondExprBool)
        CGF.incrementProfileCounter(E);
      Value *Result = Visit(live);

      // If the live part is a throw expression, it acts like it has a void
      // type, so evaluating it returns a null Value*.  However, a conditional
      // with non-void type must return a non-null Value*.
      if (!Result && !E->getType()->isVoidType())
        Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));

      return Result;
    }
  }

  // OpenCL: If the condition is a vector, we can treat this condition like
  // the select function.
  if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) ||
      condExpr->getType()->isExtVectorType()) {
    CGF.incrementProfileCounter(E);

    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
    llvm::Value *LHS = Visit(lhsExpr);
    llvm::Value *RHS = Visit(rhsExpr);

    llvm::Type *condType = ConvertType(condExpr->getType());
    auto *vecTy = cast<llvm::FixedVectorType>(condType);

    unsigned numElem = vecTy->getNumElements();
    llvm::Type *elemType = vecTy->getElementType();

    llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
    llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
    llvm::Value *tmp = Builder.CreateSExt(
        TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext");
    llvm::Value *tmp2 = Builder.CreateNot(tmp);

    // Cast float to int to perform ANDs if necessary.
    llvm::Value *RHSTmp = RHS;
    llvm::Value *LHSTmp = LHS;
    bool wasCast = false;
    llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
    if (rhsVTy->getElementType()->isFloatingPointTy()) {
      RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
      LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
      wasCast = true;
    }

    llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
    llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
    llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
    if (wasCast)
      tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());

    return tmp5;
  }

  if (condExpr->getType()->isVectorType()) {
    CGF.incrementProfileCounter(E);

    llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
    llvm::Value *LHS = Visit(lhsExpr);
    llvm::Value *RHS = Visit(rhsExpr);

    llvm::Type *CondType = ConvertType(condExpr->getType());
    auto *VecTy = cast<llvm::VectorType>(CondType);
    llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy);

    CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond");
    return Builder.CreateSelect(CondV, LHS, RHS, "vector_select");
  }

  // If this is a really simple expression (like x ? 4 : 5), emit this as a
  // select instead of as control flow.  We can only do this if it is cheap and
  // safe to evaluate the LHS and RHS unconditionally.
  if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
      isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
    llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
    llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty);

    CGF.incrementProfileCounter(E, StepV);

    llvm::Value *LHS = Visit(lhsExpr);
    llvm::Value *RHS = Visit(rhsExpr);
    if (!LHS) {
      // If the conditional has void type, make sure we return a null Value*.
      assert(!RHS && "LHS and RHS types must match");
      return nullptr;
    }
    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
  }

  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");

  CodeGenFunction::ConditionalEvaluation eval(CGF);
  CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
                           CGF.getProfileCount(lhsExpr));

  CGF.EmitBlock(LHSBlock);
  CGF.incrementProfileCounter(E);
  eval.begin(CGF);
  Value *LHS = Visit(lhsExpr);
  eval.end(CGF);

  LHSBlock = Builder.GetInsertBlock();
  Builder.CreateBr(ContBlock);

  CGF.EmitBlock(RHSBlock);
  eval.begin(CGF);
  Value *RHS = Visit(rhsExpr);
  eval.end(CGF);

  RHSBlock = Builder.GetInsertBlock();
  CGF.EmitBlock(ContBlock);

  // If the LHS or RHS is a throw expression, it will be legitimately null.
  if (!LHS)
    return RHS;
  if (!RHS)
    return LHS;

  // Create a PHI node for the real part.
  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
  PN->addIncoming(LHS, LHSBlock);
  PN->addIncoming(RHS, RHSBlock);
  return PN;
}

Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
  return Visit(E->getChosenSubExpr());
}

Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
  QualType Ty = VE->getType();

  if (Ty->isVariablyModifiedType())
    CGF.EmitVariablyModifiedType(Ty);

  Address ArgValue = Address::invalid();
  Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);

  llvm::Type *ArgTy = ConvertType(VE->getType());

  // If EmitVAArg fails, emit an error.
  if (!ArgPtr.isValid()) {
    CGF.ErrorUnsupported(VE, "va_arg expression");
    return llvm::UndefValue::get(ArgTy);
  }

  // FIXME Volatility.
  llvm::Value *Val = Builder.CreateLoad(ArgPtr);

  // If EmitVAArg promoted the type, we must truncate it.
  if (ArgTy != Val->getType()) {
    if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
      Val = Builder.CreateIntToPtr(Val, ArgTy);
    else
      Val = Builder.CreateTrunc(Val, ArgTy);
  }

  return Val;
}

Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
  return CGF.EmitBlockLiteral(block);
}

// Convert a vec3 to vec4, or vice versa.
static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF,
                                 Value *Src, unsigned NumElementsDst) {
  llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
  static constexpr int Mask[] = {0, 1, 2, -1};
  return Builder.CreateShuffleVector(Src, UnV,
                                     llvm::makeArrayRef(Mask, NumElementsDst));
}

// Create cast instructions for converting LLVM value \p Src to LLVM type \p
// DstTy. \p Src has the same size as \p DstTy. Both are single value types
// but could be scalar or vectors of different lengths, and either can be
// pointer.
// There are 4 cases:
// 1. non-pointer -> non-pointer  : needs 1 bitcast
// 2. pointer -> pointer          : needs 1 bitcast or addrspacecast
// 3. pointer -> non-pointer
//   a) pointer -> intptr_t       : needs 1 ptrtoint
//   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast
// 4. non-pointer -> pointer
//   a) intptr_t -> pointer       : needs 1 inttoptr
//   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr
// Note: for cases 3b and 4b two casts are required since LLVM casts do not
// allow casting directly between pointer types and non-integer non-pointer
// types.
static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder,
                                           const llvm::DataLayout &DL,
                                           Value *Src, llvm::Type *DstTy,
                                           StringRef Name = "") {
  auto SrcTy = Src->getType();

  // Case 1.
  if (!SrcTy->isPointerTy() && !DstTy->isPointerTy())
    return Builder.CreateBitCast(Src, DstTy, Name);

  // Case 2.
  if (SrcTy->isPointerTy() && DstTy->isPointerTy())
    return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name);

  // Case 3.
  if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) {
    // Case 3b.
    if (!DstTy->isIntegerTy())
      Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy));
    // Cases 3a and 3b.
    return Builder.CreateBitOrPointerCast(Src, DstTy, Name);
  }

  // Case 4b.
  if (!SrcTy->isIntegerTy())
    Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy));
  // Cases 4a and 4b.
  return Builder.CreateIntToPtr(Src, DstTy, Name);
}

Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
  Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
  llvm::Type *DstTy = ConvertType(E->getType());

  llvm::Type *SrcTy = Src->getType();
  unsigned NumElementsSrc =
      isa<llvm::VectorType>(SrcTy)
          ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements()
          : 0;
  unsigned NumElementsDst =
      isa<llvm::VectorType>(DstTy)
          ? cast<llvm::FixedVectorType>(DstTy)->getNumElements()
          : 0;

  // Going from vec3 to non-vec3 is a special case and requires a shuffle
  // vector to get a vec4, then a bitcast if the target type is different.
  if (NumElementsSrc == 3 && NumElementsDst != 3) {
    Src = ConvertVec3AndVec4(Builder, CGF, Src, 4);

    if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
      Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
                                         DstTy);
    }

    Src->setName("astype");
    return Src;
  }

  // Going from non-vec3 to vec3 is a special case and requires a bitcast
  // to vec4 if the original type is not vec4, then a shuffle vector to
  // get a vec3.
  if (NumElementsSrc != 3 && NumElementsDst == 3) {
    if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) {
      auto *Vec4Ty = llvm::FixedVectorType::get(
          cast<llvm::VectorType>(DstTy)->getElementType(), 4);
      Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src,
                                         Vec4Ty);
    }

    Src = ConvertVec3AndVec4(Builder, CGF, Src, 3);
    Src->setName("astype");
    return Src;
  }

  return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(),
                                      Src, DstTy, "astype");
}

Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
  return CGF.EmitAtomicExpr(E).getScalarVal();
}

//===----------------------------------------------------------------------===//
//                         Entry Point into this File
//===----------------------------------------------------------------------===//

/// Emit the computation of the specified expression of scalar type, ignoring
/// the result.
Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
  assert(E && hasScalarEvaluationKind(E->getType()) &&
         "Invalid scalar expression to emit");

  return ScalarExprEmitter(*this, IgnoreResultAssign)
      .Visit(const_cast<Expr *>(E));
}

/// Emit a conversion from the specified type to the specified destination type,
/// both of which are LLVM scalar types.
Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
                                             QualType DstTy,
                                             SourceLocation Loc) {
  assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
         "Invalid scalar expression to emit");
  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
}

/// Emit a conversion from the specified complex type to the specified
/// destination type, where the destination type is an LLVM scalar type.
Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
                                                      QualType SrcTy,
                                                      QualType DstTy,
                                                      SourceLocation Loc) {
  assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
         "Invalid complex -> scalar conversion");
  return ScalarExprEmitter(*this)
      .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
}


llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
                        bool isInc, bool isPre) {
  return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
}

LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
  // object->isa or (*object).isa
  // Generate code as for: *(Class*)object

  Expr *BaseExpr = E->getBase();
  Address Addr = Address::invalid();
  if (BaseExpr->isRValue()) {
    Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
  } else {
    Addr = EmitLValue(BaseExpr).getAddress(*this);
  }

  // Cast the address to Class*.
  Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
  return MakeAddrLValue(Addr, E->getType());
}


LValue CodeGenFunction::EmitCompoundAssignmentLValue(
                                            const CompoundAssignOperator *E) {
  ScalarExprEmitter Scalar(*this);
  Value *Result = nullptr;
  switch (E->getOpcode()) {
#define COMPOUND_OP(Op)                                                       \
    case BO_##Op##Assign:                                                     \
      return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
                                             Result)
  COMPOUND_OP(Mul);
  COMPOUND_OP(Div);
  COMPOUND_OP(Rem);
  COMPOUND_OP(Add);
  COMPOUND_OP(Sub);
  COMPOUND_OP(Shl);
  COMPOUND_OP(Shr);
  COMPOUND_OP(And);
  COMPOUND_OP(Xor);
  COMPOUND_OP(Or);
#undef COMPOUND_OP

  case BO_PtrMemD:
  case BO_PtrMemI:
  case BO_Mul:
  case BO_Div:
  case BO_Rem:
  case BO_Add:
  case BO_Sub:
  case BO_Shl:
  case BO_Shr:
  case BO_LT:
  case BO_GT:
  case BO_LE:
  case BO_GE:
  case BO_EQ:
  case BO_NE:
  case BO_Cmp:
  case BO_And:
  case BO_Xor:
  case BO_Or:
  case BO_LAnd:
  case BO_LOr:
  case BO_Assign:
  case BO_Comma:
    llvm_unreachable("Not valid compound assignment operators");
  }

  llvm_unreachable("Unhandled compound assignment operator");
}

struct GEPOffsetAndOverflow {
  // The total (signed) byte offset for the GEP.
  llvm::Value *TotalOffset;
  // The offset overflow flag - true if the total offset overflows.
  llvm::Value *OffsetOverflows;
};

/// Evaluate given GEPVal, which is either an inbounds GEP, or a constant,
/// and compute the total offset it applies from it's base pointer BasePtr.
/// Returns offset in bytes and a boolean flag whether an overflow happened
/// during evaluation.
static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal,
                                                 llvm::LLVMContext &VMContext,
                                                 CodeGenModule &CGM,
                                                 CGBuilderTy &Builder) {
  const auto &DL = CGM.getDataLayout();

  // The total (signed) byte offset for the GEP.
  llvm::Value *TotalOffset = nullptr;

  // Was the GEP already reduced to a constant?
  if (isa<llvm::Constant>(GEPVal)) {
    // Compute the offset by casting both pointers to integers and subtracting:
    // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr)
    Value *BasePtr_int =
        Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType()));
    Value *GEPVal_int =
        Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType()));
    TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int);
    return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()};
  }

  auto *GEP = cast<llvm::GEPOperator>(GEPVal);
  assert(GEP->getPointerOperand() == BasePtr &&
         "BasePtr must be the the base of the GEP.");
  assert(GEP->isInBounds() && "Expected inbounds GEP");

  auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType());

  // Grab references to the signed add/mul overflow intrinsics for intptr_t.
  auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
  auto *SAddIntrinsic =
      CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy);
  auto *SMulIntrinsic =
      CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy);

  // The offset overflow flag - true if the total offset overflows.
  llvm::Value *OffsetOverflows = Builder.getFalse();

  /// Return the result of the given binary operation.
  auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS,
                  llvm::Value *RHS) -> llvm::Value * {
    assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop");

    // If the operands are constants, return a constant result.
    if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) {
      if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) {
        llvm::APInt N;
        bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode,
                                                  /*Signed=*/true, N);
        if (HasOverflow)
          OffsetOverflows = Builder.getTrue();
        return llvm::ConstantInt::get(VMContext, N);
      }
    }

    // Otherwise, compute the result with checked arithmetic.
    auto *ResultAndOverflow = Builder.CreateCall(
        (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS});
    OffsetOverflows = Builder.CreateOr(
        Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows);
    return Builder.CreateExtractValue(ResultAndOverflow, 0);
  };

  // Determine the total byte offset by looking at each GEP operand.
  for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP);
       GTI != GTE; ++GTI) {
    llvm::Value *LocalOffset;
    auto *Index = GTI.getOperand();
    // Compute the local offset contributed by this indexing step:
    if (auto *STy = GTI.getStructTypeOrNull()) {
      // For struct indexing, the local offset is the byte position of the
      // specified field.
      unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue();
      LocalOffset = llvm::ConstantInt::get(
          IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo));
    } else {
      // Otherwise this is array-like indexing. The local offset is the index
      // multiplied by the element size.
      auto *ElementSize = llvm::ConstantInt::get(
          IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType()));
      auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true);
      LocalOffset = eval(BO_Mul, ElementSize, IndexS);
    }

    // If this is the first offset, set it as the total offset. Otherwise, add
    // the local offset into the running total.
    if (!TotalOffset || TotalOffset == Zero)
      TotalOffset = LocalOffset;
    else
      TotalOffset = eval(BO_Add, TotalOffset, LocalOffset);
  }

  return {TotalOffset, OffsetOverflows};
}

Value *
CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
                                        bool SignedIndices, bool IsSubtraction,
                                        SourceLocation Loc, const Twine &Name) {
  Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name);

  // If the pointer overflow sanitizer isn't enabled, do nothing.
  if (!SanOpts.has(SanitizerKind::PointerOverflow))
    return GEPVal;

  llvm::Type *PtrTy = Ptr->getType();

  // Perform nullptr-and-offset check unless the nullptr is defined.
  bool PerformNullCheck = !NullPointerIsDefined(
      Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace());
  // Check for overflows unless the GEP got constant-folded,
  // and only in the default address space
  bool PerformOverflowCheck =
      !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0;

  if (!(PerformNullCheck || PerformOverflowCheck))
    return GEPVal;

  const auto &DL = CGM.getDataLayout();

  SanitizerScope SanScope(this);
  llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy);

  GEPOffsetAndOverflow EvaluatedGEP =
      EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder);

  assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) ||
          EvaluatedGEP.OffsetOverflows == Builder.getFalse()) &&
         "If the offset got constant-folded, we don't expect that there was an "
         "overflow.");

  auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);

  // Common case: if the total offset is zero, and we are using C++ semantics,
  // where nullptr+0 is defined, don't emit a check.
  if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus)
    return GEPVal;

  // Now that we've computed the total offset, add it to the base pointer (with
  // wrapping semantics).
  auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy);
  auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset);

  llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;

  if (PerformNullCheck) {
    // In C++, if the base pointer evaluates to a null pointer value,
    // the only valid  pointer this inbounds GEP can produce is also
    // a null pointer, so the offset must also evaluate to zero.
    // Likewise, if we have non-zero base pointer, we can not get null pointer
    // as a result, so the offset can not be -intptr_t(BasePtr).
    // In other words, both pointers are either null, or both are non-null,
    // or the behaviour is undefined.
    //
    // C, however, is more strict in this regard, and gives more
    // optimization opportunities: in C, additionally, nullptr+0 is undefined.
    // So both the input to the 'gep inbounds' AND the output must not be null.
    auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr);
    auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP);
    auto *Valid =
        CGM.getLangOpts().CPlusPlus
            ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr)
            : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr);
    Checks.emplace_back(Valid, SanitizerKind::PointerOverflow);
  }

  if (PerformOverflowCheck) {
    // The GEP is valid if:
    // 1) The total offset doesn't overflow, and
    // 2) The sign of the difference between the computed address and the base
    // pointer matches the sign of the total offset.
    llvm::Value *ValidGEP;
    auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows);
    if (SignedIndices) {
      // GEP is computed as `unsigned base + signed offset`, therefore:
      // * If offset was positive, then the computed pointer can not be
      //   [unsigned] less than the base pointer, unless it overflowed.
      // * If offset was negative, then the computed pointer can not be
      //   [unsigned] greater than the bas pointere, unless it overflowed.
      auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
      auto *PosOrZeroOffset =
          Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero);
      llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr);
      ValidGEP =
          Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid);
    } else if (!IsSubtraction) {
      // GEP is computed as `unsigned base + unsigned offset`,  therefore the
      // computed pointer can not be [unsigned] less than base pointer,
      // unless there was an overflow.
      // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`.
      ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr);
    } else {
      // GEP is computed as `unsigned base - unsigned offset`, therefore the
      // computed pointer can not be [unsigned] greater than base pointer,
      // unless there was an overflow.
      // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`.
      ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr);
    }
    ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow);
    Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow);
  }

  assert(!Checks.empty() && "Should have produced some checks.");

  llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)};
  // Pass the computed GEP to the runtime to avoid emitting poisoned arguments.
  llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP};
  EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs);

  return GEPVal;
}