CGCleanup.cpp 47 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
//===--- CGCleanup.cpp - Bookkeeping and code emission for cleanups -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains code dealing with the IR generation for cleanups
// and related information.
//
// A "cleanup" is a piece of code which needs to be executed whenever
// control transfers out of a particular scope.  This can be
// conditionalized to occur only on exceptional control flow, only on
// normal control flow, or both.
//
//===----------------------------------------------------------------------===//

#include "CGCleanup.h"
#include "CodeGenFunction.h"
#include "llvm/Support/SaveAndRestore.h"

using namespace clang;
using namespace CodeGen;

bool DominatingValue<RValue>::saved_type::needsSaving(RValue rv) {
  if (rv.isScalar())
    return DominatingLLVMValue::needsSaving(rv.getScalarVal());
  if (rv.isAggregate())
    return DominatingLLVMValue::needsSaving(rv.getAggregatePointer());
  return true;
}

DominatingValue<RValue>::saved_type
DominatingValue<RValue>::saved_type::save(CodeGenFunction &CGF, RValue rv) {
  if (rv.isScalar()) {
    llvm::Value *V = rv.getScalarVal();

    // These automatically dominate and don't need to be saved.
    if (!DominatingLLVMValue::needsSaving(V))
      return saved_type(V, ScalarLiteral);

    // Everything else needs an alloca.
    Address addr =
      CGF.CreateDefaultAlignTempAlloca(V->getType(), "saved-rvalue");
    CGF.Builder.CreateStore(V, addr);
    return saved_type(addr.getPointer(), ScalarAddress);
  }

  if (rv.isComplex()) {
    CodeGenFunction::ComplexPairTy V = rv.getComplexVal();
    llvm::Type *ComplexTy =
        llvm::StructType::get(V.first->getType(), V.second->getType());
    Address addr = CGF.CreateDefaultAlignTempAlloca(ComplexTy, "saved-complex");
    CGF.Builder.CreateStore(V.first, CGF.Builder.CreateStructGEP(addr, 0));
    CGF.Builder.CreateStore(V.second, CGF.Builder.CreateStructGEP(addr, 1));
    return saved_type(addr.getPointer(), ComplexAddress);
  }

  assert(rv.isAggregate());
  Address V = rv.getAggregateAddress(); // TODO: volatile?
  if (!DominatingLLVMValue::needsSaving(V.getPointer()))
    return saved_type(V.getPointer(), AggregateLiteral,
                      V.getAlignment().getQuantity());

  Address addr =
    CGF.CreateTempAlloca(V.getType(), CGF.getPointerAlign(), "saved-rvalue");
  CGF.Builder.CreateStore(V.getPointer(), addr);
  return saved_type(addr.getPointer(), AggregateAddress,
                    V.getAlignment().getQuantity());
}

/// Given a saved r-value produced by SaveRValue, perform the code
/// necessary to restore it to usability at the current insertion
/// point.
RValue DominatingValue<RValue>::saved_type::restore(CodeGenFunction &CGF) {
  auto getSavingAddress = [&](llvm::Value *value) {
    auto alignment = cast<llvm::AllocaInst>(value)->getAlignment();
    return Address(value, CharUnits::fromQuantity(alignment));
  };
  switch (K) {
  case ScalarLiteral:
    return RValue::get(Value);
  case ScalarAddress:
    return RValue::get(CGF.Builder.CreateLoad(getSavingAddress(Value)));
  case AggregateLiteral:
    return RValue::getAggregate(Address(Value, CharUnits::fromQuantity(Align)));
  case AggregateAddress: {
    auto addr = CGF.Builder.CreateLoad(getSavingAddress(Value));
    return RValue::getAggregate(Address(addr, CharUnits::fromQuantity(Align)));
  }
  case ComplexAddress: {
    Address address = getSavingAddress(Value);
    llvm::Value *real =
        CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(address, 0));
    llvm::Value *imag =
        CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(address, 1));
    return RValue::getComplex(real, imag);
  }
  }

  llvm_unreachable("bad saved r-value kind");
}

/// Push an entry of the given size onto this protected-scope stack.
char *EHScopeStack::allocate(size_t Size) {
  Size = llvm::alignTo(Size, ScopeStackAlignment);
  if (!StartOfBuffer) {
    unsigned Capacity = 1024;
    while (Capacity < Size) Capacity *= 2;
    StartOfBuffer = new char[Capacity];
    StartOfData = EndOfBuffer = StartOfBuffer + Capacity;
  } else if (static_cast<size_t>(StartOfData - StartOfBuffer) < Size) {
    unsigned CurrentCapacity = EndOfBuffer - StartOfBuffer;
    unsigned UsedCapacity = CurrentCapacity - (StartOfData - StartOfBuffer);

    unsigned NewCapacity = CurrentCapacity;
    do {
      NewCapacity *= 2;
    } while (NewCapacity < UsedCapacity + Size);

    char *NewStartOfBuffer = new char[NewCapacity];
    char *NewEndOfBuffer = NewStartOfBuffer + NewCapacity;
    char *NewStartOfData = NewEndOfBuffer - UsedCapacity;
    memcpy(NewStartOfData, StartOfData, UsedCapacity);
    delete [] StartOfBuffer;
    StartOfBuffer = NewStartOfBuffer;
    EndOfBuffer = NewEndOfBuffer;
    StartOfData = NewStartOfData;
  }

  assert(StartOfBuffer + Size <= StartOfData);
  StartOfData -= Size;
  return StartOfData;
}

void EHScopeStack::deallocate(size_t Size) {
  StartOfData += llvm::alignTo(Size, ScopeStackAlignment);
}

bool EHScopeStack::containsOnlyLifetimeMarkers(
    EHScopeStack::stable_iterator Old) const {
  for (EHScopeStack::iterator it = begin(); stabilize(it) != Old; it++) {
    EHCleanupScope *cleanup = dyn_cast<EHCleanupScope>(&*it);
    if (!cleanup || !cleanup->isLifetimeMarker())
      return false;
  }

  return true;
}

bool EHScopeStack::requiresLandingPad() const {
  for (stable_iterator si = getInnermostEHScope(); si != stable_end(); ) {
    // Skip lifetime markers.
    if (auto *cleanup = dyn_cast<EHCleanupScope>(&*find(si)))
      if (cleanup->isLifetimeMarker()) {
        si = cleanup->getEnclosingEHScope();
        continue;
      }
    return true;
  }

  return false;
}

EHScopeStack::stable_iterator
EHScopeStack::getInnermostActiveNormalCleanup() const {
  for (stable_iterator si = getInnermostNormalCleanup(), se = stable_end();
         si != se; ) {
    EHCleanupScope &cleanup = cast<EHCleanupScope>(*find(si));
    if (cleanup.isActive()) return si;
    si = cleanup.getEnclosingNormalCleanup();
  }
  return stable_end();
}


void *EHScopeStack::pushCleanup(CleanupKind Kind, size_t Size) {
  char *Buffer = allocate(EHCleanupScope::getSizeForCleanupSize(Size));
  bool IsNormalCleanup = Kind & NormalCleanup;
  bool IsEHCleanup = Kind & EHCleanup;
  bool IsLifetimeMarker = Kind & LifetimeMarker;
  EHCleanupScope *Scope =
    new (Buffer) EHCleanupScope(IsNormalCleanup,
                                IsEHCleanup,
                                Size,
                                BranchFixups.size(),
                                InnermostNormalCleanup,
                                InnermostEHScope);
  if (IsNormalCleanup)
    InnermostNormalCleanup = stable_begin();
  if (IsEHCleanup)
    InnermostEHScope = stable_begin();
  if (IsLifetimeMarker)
    Scope->setLifetimeMarker();

  return Scope->getCleanupBuffer();
}

void EHScopeStack::popCleanup() {
  assert(!empty() && "popping exception stack when not empty");

  assert(isa<EHCleanupScope>(*begin()));
  EHCleanupScope &Cleanup = cast<EHCleanupScope>(*begin());
  InnermostNormalCleanup = Cleanup.getEnclosingNormalCleanup();
  InnermostEHScope = Cleanup.getEnclosingEHScope();
  deallocate(Cleanup.getAllocatedSize());

  // Destroy the cleanup.
  Cleanup.Destroy();

  // Check whether we can shrink the branch-fixups stack.
  if (!BranchFixups.empty()) {
    // If we no longer have any normal cleanups, all the fixups are
    // complete.
    if (!hasNormalCleanups())
      BranchFixups.clear();

    // Otherwise we can still trim out unnecessary nulls.
    else
      popNullFixups();
  }
}

EHFilterScope *EHScopeStack::pushFilter(unsigned numFilters) {
  assert(getInnermostEHScope() == stable_end());
  char *buffer = allocate(EHFilterScope::getSizeForNumFilters(numFilters));
  EHFilterScope *filter = new (buffer) EHFilterScope(numFilters);
  InnermostEHScope = stable_begin();
  return filter;
}

void EHScopeStack::popFilter() {
  assert(!empty() && "popping exception stack when not empty");

  EHFilterScope &filter = cast<EHFilterScope>(*begin());
  deallocate(EHFilterScope::getSizeForNumFilters(filter.getNumFilters()));

  InnermostEHScope = filter.getEnclosingEHScope();
}

EHCatchScope *EHScopeStack::pushCatch(unsigned numHandlers) {
  char *buffer = allocate(EHCatchScope::getSizeForNumHandlers(numHandlers));
  EHCatchScope *scope =
    new (buffer) EHCatchScope(numHandlers, InnermostEHScope);
  InnermostEHScope = stable_begin();
  return scope;
}

void EHScopeStack::pushTerminate() {
  char *Buffer = allocate(EHTerminateScope::getSize());
  new (Buffer) EHTerminateScope(InnermostEHScope);
  InnermostEHScope = stable_begin();
}

/// Remove any 'null' fixups on the stack.  However, we can't pop more
/// fixups than the fixup depth on the innermost normal cleanup, or
/// else fixups that we try to add to that cleanup will end up in the
/// wrong place.  We *could* try to shrink fixup depths, but that's
/// actually a lot of work for little benefit.
void EHScopeStack::popNullFixups() {
  // We expect this to only be called when there's still an innermost
  // normal cleanup;  otherwise there really shouldn't be any fixups.
  assert(hasNormalCleanups());

  EHScopeStack::iterator it = find(InnermostNormalCleanup);
  unsigned MinSize = cast<EHCleanupScope>(*it).getFixupDepth();
  assert(BranchFixups.size() >= MinSize && "fixup stack out of order");

  while (BranchFixups.size() > MinSize &&
         BranchFixups.back().Destination == nullptr)
    BranchFixups.pop_back();
}

Address CodeGenFunction::createCleanupActiveFlag() {
  // Create a variable to decide whether the cleanup needs to be run.
  Address active = CreateTempAllocaWithoutCast(
      Builder.getInt1Ty(), CharUnits::One(), "cleanup.cond");

  // Initialize it to false at a site that's guaranteed to be run
  // before each evaluation.
  setBeforeOutermostConditional(Builder.getFalse(), active);

  // Initialize it to true at the current location.
  Builder.CreateStore(Builder.getTrue(), active);

  return active;
}

void CodeGenFunction::initFullExprCleanupWithFlag(Address ActiveFlag) {
  // Set that as the active flag in the cleanup.
  EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
  assert(!cleanup.hasActiveFlag() && "cleanup already has active flag?");
  cleanup.setActiveFlag(ActiveFlag);

  if (cleanup.isNormalCleanup()) cleanup.setTestFlagInNormalCleanup();
  if (cleanup.isEHCleanup()) cleanup.setTestFlagInEHCleanup();
}

void EHScopeStack::Cleanup::anchor() {}

static void createStoreInstBefore(llvm::Value *value, Address addr,
                                  llvm::Instruction *beforeInst) {
  auto store = new llvm::StoreInst(value, addr.getPointer(), beforeInst);
  store->setAlignment(addr.getAlignment().getAsAlign());
}

static llvm::LoadInst *createLoadInstBefore(Address addr, const Twine &name,
                                            llvm::Instruction *beforeInst) {
  return new llvm::LoadInst(addr.getElementType(), addr.getPointer(), name,
                            false, addr.getAlignment().getAsAlign(),
                            beforeInst);
}

/// All the branch fixups on the EH stack have propagated out past the
/// outermost normal cleanup; resolve them all by adding cases to the
/// given switch instruction.
static void ResolveAllBranchFixups(CodeGenFunction &CGF,
                                   llvm::SwitchInst *Switch,
                                   llvm::BasicBlock *CleanupEntry) {
  llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;

  for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) {
    // Skip this fixup if its destination isn't set.
    BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
    if (Fixup.Destination == nullptr) continue;

    // If there isn't an OptimisticBranchBlock, then InitialBranch is
    // still pointing directly to its destination; forward it to the
    // appropriate cleanup entry.  This is required in the specific
    // case of
    //   { std::string s; goto lbl; }
    //   lbl:
    // i.e. where there's an unresolved fixup inside a single cleanup
    // entry which we're currently popping.
    if (Fixup.OptimisticBranchBlock == nullptr) {
      createStoreInstBefore(CGF.Builder.getInt32(Fixup.DestinationIndex),
                            CGF.getNormalCleanupDestSlot(),
                            Fixup.InitialBranch);
      Fixup.InitialBranch->setSuccessor(0, CleanupEntry);
    }

    // Don't add this case to the switch statement twice.
    if (!CasesAdded.insert(Fixup.Destination).second)
      continue;

    Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex),
                    Fixup.Destination);
  }

  CGF.EHStack.clearFixups();
}

/// Transitions the terminator of the given exit-block of a cleanup to
/// be a cleanup switch.
static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
                                                   llvm::BasicBlock *Block) {
  // If it's a branch, turn it into a switch whose default
  // destination is its original target.
  llvm::Instruction *Term = Block->getTerminator();
  assert(Term && "can't transition block without terminator");

  if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
    assert(Br->isUnconditional());
    auto Load = createLoadInstBefore(CGF.getNormalCleanupDestSlot(),
                                     "cleanup.dest", Term);
    llvm::SwitchInst *Switch =
      llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
    Br->eraseFromParent();
    return Switch;
  } else {
    return cast<llvm::SwitchInst>(Term);
  }
}

void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
  assert(Block && "resolving a null target block");
  if (!EHStack.getNumBranchFixups()) return;

  assert(EHStack.hasNormalCleanups() &&
         "branch fixups exist with no normal cleanups on stack");

  llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
  bool ResolvedAny = false;

  for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
    // Skip this fixup if its destination doesn't match.
    BranchFixup &Fixup = EHStack.getBranchFixup(I);
    if (Fixup.Destination != Block) continue;

    Fixup.Destination = nullptr;
    ResolvedAny = true;

    // If it doesn't have an optimistic branch block, LatestBranch is
    // already pointing to the right place.
    llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
    if (!BranchBB)
      continue;

    // Don't process the same optimistic branch block twice.
    if (!ModifiedOptimisticBlocks.insert(BranchBB).second)
      continue;

    llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);

    // Add a case to the switch.
    Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
  }

  if (ResolvedAny)
    EHStack.popNullFixups();
}

/// Pops cleanup blocks until the given savepoint is reached.
void CodeGenFunction::PopCleanupBlocks(
    EHScopeStack::stable_iterator Old,
    std::initializer_list<llvm::Value **> ValuesToReload) {
  assert(Old.isValid());

  bool HadBranches = false;
  while (EHStack.stable_begin() != Old) {
    EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
    HadBranches |= Scope.hasBranches();

    // As long as Old strictly encloses the scope's enclosing normal
    // cleanup, we're going to emit another normal cleanup which
    // fallthrough can propagate through.
    bool FallThroughIsBranchThrough =
      Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());

    PopCleanupBlock(FallThroughIsBranchThrough);
  }

  // If we didn't have any branches, the insertion point before cleanups must
  // dominate the current insertion point and we don't need to reload any
  // values.
  if (!HadBranches)
    return;

  // Spill and reload all values that the caller wants to be live at the current
  // insertion point.
  for (llvm::Value **ReloadedValue : ValuesToReload) {
    auto *Inst = dyn_cast_or_null<llvm::Instruction>(*ReloadedValue);
    if (!Inst)
      continue;

    // Don't spill static allocas, they dominate all cleanups. These are created
    // by binding a reference to a local variable or temporary.
    auto *AI = dyn_cast<llvm::AllocaInst>(Inst);
    if (AI && AI->isStaticAlloca())
      continue;

    Address Tmp =
        CreateDefaultAlignTempAlloca(Inst->getType(), "tmp.exprcleanup");

    // Find an insertion point after Inst and spill it to the temporary.
    llvm::BasicBlock::iterator InsertBefore;
    if (auto *Invoke = dyn_cast<llvm::InvokeInst>(Inst))
      InsertBefore = Invoke->getNormalDest()->getFirstInsertionPt();
    else
      InsertBefore = std::next(Inst->getIterator());
    CGBuilderTy(CGM, &*InsertBefore).CreateStore(Inst, Tmp);

    // Reload the value at the current insertion point.
    *ReloadedValue = Builder.CreateLoad(Tmp);
  }
}

/// Pops cleanup blocks until the given savepoint is reached, then add the
/// cleanups from the given savepoint in the lifetime-extended cleanups stack.
void CodeGenFunction::PopCleanupBlocks(
    EHScopeStack::stable_iterator Old, size_t OldLifetimeExtendedSize,
    std::initializer_list<llvm::Value **> ValuesToReload) {
  PopCleanupBlocks(Old, ValuesToReload);

  // Move our deferred cleanups onto the EH stack.
  for (size_t I = OldLifetimeExtendedSize,
              E = LifetimeExtendedCleanupStack.size(); I != E; /**/) {
    // Alignment should be guaranteed by the vptrs in the individual cleanups.
    assert((I % alignof(LifetimeExtendedCleanupHeader) == 0) &&
           "misaligned cleanup stack entry");

    LifetimeExtendedCleanupHeader &Header =
        reinterpret_cast<LifetimeExtendedCleanupHeader&>(
            LifetimeExtendedCleanupStack[I]);
    I += sizeof(Header);

    EHStack.pushCopyOfCleanup(Header.getKind(),
                              &LifetimeExtendedCleanupStack[I],
                              Header.getSize());
    I += Header.getSize();

    if (Header.isConditional()) {
      Address ActiveFlag =
          reinterpret_cast<Address &>(LifetimeExtendedCleanupStack[I]);
      initFullExprCleanupWithFlag(ActiveFlag);
      I += sizeof(ActiveFlag);
    }
  }
  LifetimeExtendedCleanupStack.resize(OldLifetimeExtendedSize);
}

static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
                                           EHCleanupScope &Scope) {
  assert(Scope.isNormalCleanup());
  llvm::BasicBlock *Entry = Scope.getNormalBlock();
  if (!Entry) {
    Entry = CGF.createBasicBlock("cleanup");
    Scope.setNormalBlock(Entry);
  }
  return Entry;
}

/// Attempts to reduce a cleanup's entry block to a fallthrough.  This
/// is basically llvm::MergeBlockIntoPredecessor, except
/// simplified/optimized for the tighter constraints on cleanup blocks.
///
/// Returns the new block, whatever it is.
static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
                                              llvm::BasicBlock *Entry) {
  llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
  if (!Pred) return Entry;

  llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
  if (!Br || Br->isConditional()) return Entry;
  assert(Br->getSuccessor(0) == Entry);

  // If we were previously inserting at the end of the cleanup entry
  // block, we'll need to continue inserting at the end of the
  // predecessor.
  bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
  assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());

  // Kill the branch.
  Br->eraseFromParent();

  // Replace all uses of the entry with the predecessor, in case there
  // are phis in the cleanup.
  Entry->replaceAllUsesWith(Pred);

  // Merge the blocks.
  Pred->getInstList().splice(Pred->end(), Entry->getInstList());

  // Kill the entry block.
  Entry->eraseFromParent();

  if (WasInsertBlock)
    CGF.Builder.SetInsertPoint(Pred);

  return Pred;
}

static void EmitCleanup(CodeGenFunction &CGF,
                        EHScopeStack::Cleanup *Fn,
                        EHScopeStack::Cleanup::Flags flags,
                        Address ActiveFlag) {
  // If there's an active flag, load it and skip the cleanup if it's
  // false.
  llvm::BasicBlock *ContBB = nullptr;
  if (ActiveFlag.isValid()) {
    ContBB = CGF.createBasicBlock("cleanup.done");
    llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action");
    llvm::Value *IsActive
      = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active");
    CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB);
    CGF.EmitBlock(CleanupBB);
  }

  // Ask the cleanup to emit itself.
  Fn->Emit(CGF, flags);
  assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");

  // Emit the continuation block if there was an active flag.
  if (ActiveFlag.isValid())
    CGF.EmitBlock(ContBB);
}

static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit,
                                          llvm::BasicBlock *From,
                                          llvm::BasicBlock *To) {
  // Exit is the exit block of a cleanup, so it always terminates in
  // an unconditional branch or a switch.
  llvm::Instruction *Term = Exit->getTerminator();

  if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
    assert(Br->isUnconditional() && Br->getSuccessor(0) == From);
    Br->setSuccessor(0, To);
  } else {
    llvm::SwitchInst *Switch = cast<llvm::SwitchInst>(Term);
    for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I)
      if (Switch->getSuccessor(I) == From)
        Switch->setSuccessor(I, To);
  }
}

/// We don't need a normal entry block for the given cleanup.
/// Optimistic fixup branches can cause these blocks to come into
/// existence anyway;  if so, destroy it.
///
/// The validity of this transformation is very much specific to the
/// exact ways in which we form branches to cleanup entries.
static void destroyOptimisticNormalEntry(CodeGenFunction &CGF,
                                         EHCleanupScope &scope) {
  llvm::BasicBlock *entry = scope.getNormalBlock();
  if (!entry) return;

  // Replace all the uses with unreachable.
  llvm::BasicBlock *unreachableBB = CGF.getUnreachableBlock();
  for (llvm::BasicBlock::use_iterator
         i = entry->use_begin(), e = entry->use_end(); i != e; ) {
    llvm::Use &use = *i;
    ++i;

    use.set(unreachableBB);

    // The only uses should be fixup switches.
    llvm::SwitchInst *si = cast<llvm::SwitchInst>(use.getUser());
    if (si->getNumCases() == 1 && si->getDefaultDest() == unreachableBB) {
      // Replace the switch with a branch.
      llvm::BranchInst::Create(si->case_begin()->getCaseSuccessor(), si);

      // The switch operand is a load from the cleanup-dest alloca.
      llvm::LoadInst *condition = cast<llvm::LoadInst>(si->getCondition());

      // Destroy the switch.
      si->eraseFromParent();

      // Destroy the load.
      assert(condition->getOperand(0) == CGF.NormalCleanupDest.getPointer());
      assert(condition->use_empty());
      condition->eraseFromParent();
    }
  }

  assert(entry->use_empty());
  delete entry;
}

/// Pops a cleanup block.  If the block includes a normal cleanup, the
/// current insertion point is threaded through the cleanup, as are
/// any branch fixups on the cleanup.
void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
  assert(!EHStack.empty() && "cleanup stack is empty!");
  assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
  assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());

  // Remember activation information.
  bool IsActive = Scope.isActive();
  Address NormalActiveFlag =
    Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag()
                                          : Address::invalid();
  Address EHActiveFlag =
    Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag()
                                      : Address::invalid();

  // Check whether we need an EH cleanup.  This is only true if we've
  // generated a lazy EH cleanup block.
  llvm::BasicBlock *EHEntry = Scope.getCachedEHDispatchBlock();
  assert(Scope.hasEHBranches() == (EHEntry != nullptr));
  bool RequiresEHCleanup = (EHEntry != nullptr);
  EHScopeStack::stable_iterator EHParent = Scope.getEnclosingEHScope();

  // Check the three conditions which might require a normal cleanup:

  // - whether there are branch fix-ups through this cleanup
  unsigned FixupDepth = Scope.getFixupDepth();
  bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;

  // - whether there are branch-throughs or branch-afters
  bool HasExistingBranches = Scope.hasBranches();

  // - whether there's a fallthrough
  llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
  bool HasFallthrough = (FallthroughSource != nullptr && IsActive);

  // Branch-through fall-throughs leave the insertion point set to the
  // end of the last cleanup, which points to the current scope.  The
  // rest of IR gen doesn't need to worry about this; it only happens
  // during the execution of PopCleanupBlocks().
  bool HasPrebranchedFallthrough =
    (FallthroughSource && FallthroughSource->getTerminator());

  // If this is a normal cleanup, then having a prebranched
  // fallthrough implies that the fallthrough source unconditionally
  // jumps here.
  assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough ||
         (Scope.getNormalBlock() &&
          FallthroughSource->getTerminator()->getSuccessor(0)
            == Scope.getNormalBlock()));

  bool RequiresNormalCleanup = false;
  if (Scope.isNormalCleanup() &&
      (HasFixups || HasExistingBranches || HasFallthrough)) {
    RequiresNormalCleanup = true;
  }

  // If we have a prebranched fallthrough into an inactive normal
  // cleanup, rewrite it so that it leads to the appropriate place.
  if (Scope.isNormalCleanup() && HasPrebranchedFallthrough && !IsActive) {
    llvm::BasicBlock *prebranchDest;

    // If the prebranch is semantically branching through the next
    // cleanup, just forward it to the next block, leaving the
    // insertion point in the prebranched block.
    if (FallthroughIsBranchThrough) {
      EHScope &enclosing = *EHStack.find(Scope.getEnclosingNormalCleanup());
      prebranchDest = CreateNormalEntry(*this, cast<EHCleanupScope>(enclosing));

    // Otherwise, we need to make a new block.  If the normal cleanup
    // isn't being used at all, we could actually reuse the normal
    // entry block, but this is simpler, and it avoids conflicts with
    // dead optimistic fixup branches.
    } else {
      prebranchDest = createBasicBlock("forwarded-prebranch");
      EmitBlock(prebranchDest);
    }

    llvm::BasicBlock *normalEntry = Scope.getNormalBlock();
    assert(normalEntry && !normalEntry->use_empty());

    ForwardPrebranchedFallthrough(FallthroughSource,
                                  normalEntry, prebranchDest);
  }

  // If we don't need the cleanup at all, we're done.
  if (!RequiresNormalCleanup && !RequiresEHCleanup) {
    destroyOptimisticNormalEntry(*this, Scope);
    EHStack.popCleanup(); // safe because there are no fixups
    assert(EHStack.getNumBranchFixups() == 0 ||
           EHStack.hasNormalCleanups());
    return;
  }

  // Copy the cleanup emission data out.  This uses either a stack
  // array or malloc'd memory, depending on the size, which is
  // behavior that SmallVector would provide, if we could use it
  // here. Unfortunately, if you ask for a SmallVector<char>, the
  // alignment isn't sufficient.
  auto *CleanupSource = reinterpret_cast<char *>(Scope.getCleanupBuffer());
  alignas(EHScopeStack::ScopeStackAlignment) char
      CleanupBufferStack[8 * sizeof(void *)];
  std::unique_ptr<char[]> CleanupBufferHeap;
  size_t CleanupSize = Scope.getCleanupSize();
  EHScopeStack::Cleanup *Fn;

  if (CleanupSize <= sizeof(CleanupBufferStack)) {
    memcpy(CleanupBufferStack, CleanupSource, CleanupSize);
    Fn = reinterpret_cast<EHScopeStack::Cleanup *>(CleanupBufferStack);
  } else {
    CleanupBufferHeap.reset(new char[CleanupSize]);
    memcpy(CleanupBufferHeap.get(), CleanupSource, CleanupSize);
    Fn = reinterpret_cast<EHScopeStack::Cleanup *>(CleanupBufferHeap.get());
  }

  EHScopeStack::Cleanup::Flags cleanupFlags;
  if (Scope.isNormalCleanup())
    cleanupFlags.setIsNormalCleanupKind();
  if (Scope.isEHCleanup())
    cleanupFlags.setIsEHCleanupKind();

  if (!RequiresNormalCleanup) {
    destroyOptimisticNormalEntry(*this, Scope);
    EHStack.popCleanup();
  } else {
    // If we have a fallthrough and no other need for the cleanup,
    // emit it directly.
    if (HasFallthrough && !HasPrebranchedFallthrough &&
        !HasFixups && !HasExistingBranches) {

      destroyOptimisticNormalEntry(*this, Scope);
      EHStack.popCleanup();

      EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag);

    // Otherwise, the best approach is to thread everything through
    // the cleanup block and then try to clean up after ourselves.
    } else {
      // Force the entry block to exist.
      llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);

      // I.  Set up the fallthrough edge in.

      CGBuilderTy::InsertPoint savedInactiveFallthroughIP;

      // If there's a fallthrough, we need to store the cleanup
      // destination index.  For fall-throughs this is always zero.
      if (HasFallthrough) {
        if (!HasPrebranchedFallthrough)
          Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());

      // Otherwise, save and clear the IP if we don't have fallthrough
      // because the cleanup is inactive.
      } else if (FallthroughSource) {
        assert(!IsActive && "source without fallthrough for active cleanup");
        savedInactiveFallthroughIP = Builder.saveAndClearIP();
      }

      // II.  Emit the entry block.  This implicitly branches to it if
      // we have fallthrough.  All the fixups and existing branches
      // should already be branched to it.
      EmitBlock(NormalEntry);

      // III.  Figure out where we're going and build the cleanup
      // epilogue.

      bool HasEnclosingCleanups =
        (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());

      // Compute the branch-through dest if we need it:
      //   - if there are branch-throughs threaded through the scope
      //   - if fall-through is a branch-through
      //   - if there are fixups that will be optimistically forwarded
      //     to the enclosing cleanup
      llvm::BasicBlock *BranchThroughDest = nullptr;
      if (Scope.hasBranchThroughs() ||
          (FallthroughSource && FallthroughIsBranchThrough) ||
          (HasFixups && HasEnclosingCleanups)) {
        assert(HasEnclosingCleanups);
        EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
        BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
      }

      llvm::BasicBlock *FallthroughDest = nullptr;
      SmallVector<llvm::Instruction*, 2> InstsToAppend;

      // If there's exactly one branch-after and no other threads,
      // we can route it without a switch.
      if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
          Scope.getNumBranchAfters() == 1) {
        assert(!BranchThroughDest || !IsActive);

        // Clean up the possibly dead store to the cleanup dest slot.
        llvm::Instruction *NormalCleanupDestSlot =
            cast<llvm::Instruction>(getNormalCleanupDestSlot().getPointer());
        if (NormalCleanupDestSlot->hasOneUse()) {
          NormalCleanupDestSlot->user_back()->eraseFromParent();
          NormalCleanupDestSlot->eraseFromParent();
          NormalCleanupDest = Address::invalid();
        }

        llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
        InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));

      // Build a switch-out if we need it:
      //   - if there are branch-afters threaded through the scope
      //   - if fall-through is a branch-after
      //   - if there are fixups that have nowhere left to go and
      //     so must be immediately resolved
      } else if (Scope.getNumBranchAfters() ||
                 (HasFallthrough && !FallthroughIsBranchThrough) ||
                 (HasFixups && !HasEnclosingCleanups)) {

        llvm::BasicBlock *Default =
          (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());

        // TODO: base this on the number of branch-afters and fixups
        const unsigned SwitchCapacity = 10;

        // pass the abnormal exit flag to Fn (SEH cleanup)
        cleanupFlags.setHasExitSwitch();

        llvm::LoadInst *Load =
          createLoadInstBefore(getNormalCleanupDestSlot(), "cleanup.dest",
                               nullptr);
        llvm::SwitchInst *Switch =
          llvm::SwitchInst::Create(Load, Default, SwitchCapacity);

        InstsToAppend.push_back(Load);
        InstsToAppend.push_back(Switch);

        // Branch-after fallthrough.
        if (FallthroughSource && !FallthroughIsBranchThrough) {
          FallthroughDest = createBasicBlock("cleanup.cont");
          if (HasFallthrough)
            Switch->addCase(Builder.getInt32(0), FallthroughDest);
        }

        for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
          Switch->addCase(Scope.getBranchAfterIndex(I),
                          Scope.getBranchAfterBlock(I));
        }

        // If there aren't any enclosing cleanups, we can resolve all
        // the fixups now.
        if (HasFixups && !HasEnclosingCleanups)
          ResolveAllBranchFixups(*this, Switch, NormalEntry);
      } else {
        // We should always have a branch-through destination in this case.
        assert(BranchThroughDest);
        InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
      }

      // IV.  Pop the cleanup and emit it.
      EHStack.popCleanup();
      assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);

      EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag);

      // Append the prepared cleanup prologue from above.
      llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
      for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
        NormalExit->getInstList().push_back(InstsToAppend[I]);

      // Optimistically hope that any fixups will continue falling through.
      for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
           I < E; ++I) {
        BranchFixup &Fixup = EHStack.getBranchFixup(I);
        if (!Fixup.Destination) continue;
        if (!Fixup.OptimisticBranchBlock) {
          createStoreInstBefore(Builder.getInt32(Fixup.DestinationIndex),
                                getNormalCleanupDestSlot(),
                                Fixup.InitialBranch);
          Fixup.InitialBranch->setSuccessor(0, NormalEntry);
        }
        Fixup.OptimisticBranchBlock = NormalExit;
      }

      // V.  Set up the fallthrough edge out.

      // Case 1: a fallthrough source exists but doesn't branch to the
      // cleanup because the cleanup is inactive.
      if (!HasFallthrough && FallthroughSource) {
        // Prebranched fallthrough was forwarded earlier.
        // Non-prebranched fallthrough doesn't need to be forwarded.
        // Either way, all we need to do is restore the IP we cleared before.
        assert(!IsActive);
        Builder.restoreIP(savedInactiveFallthroughIP);

      // Case 2: a fallthrough source exists and should branch to the
      // cleanup, but we're not supposed to branch through to the next
      // cleanup.
      } else if (HasFallthrough && FallthroughDest) {
        assert(!FallthroughIsBranchThrough);
        EmitBlock(FallthroughDest);

      // Case 3: a fallthrough source exists and should branch to the
      // cleanup and then through to the next.
      } else if (HasFallthrough) {
        // Everything is already set up for this.

      // Case 4: no fallthrough source exists.
      } else {
        Builder.ClearInsertionPoint();
      }

      // VI.  Assorted cleaning.

      // Check whether we can merge NormalEntry into a single predecessor.
      // This might invalidate (non-IR) pointers to NormalEntry.
      llvm::BasicBlock *NewNormalEntry =
        SimplifyCleanupEntry(*this, NormalEntry);

      // If it did invalidate those pointers, and NormalEntry was the same
      // as NormalExit, go back and patch up the fixups.
      if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
        for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
               I < E; ++I)
          EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
    }
  }

  assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);

  // Emit the EH cleanup if required.
  if (RequiresEHCleanup) {
    CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();

    EmitBlock(EHEntry);

    llvm::BasicBlock *NextAction = getEHDispatchBlock(EHParent);

    // Push a terminate scope or cleanupendpad scope around the potentially
    // throwing cleanups. For funclet EH personalities, the cleanupendpad models
    // program termination when cleanups throw.
    bool PushedTerminate = false;
    SaveAndRestore<llvm::Instruction *> RestoreCurrentFuncletPad(
        CurrentFuncletPad);
    llvm::CleanupPadInst *CPI = nullptr;

    const EHPersonality &Personality = EHPersonality::get(*this);
    if (Personality.usesFuncletPads()) {
      llvm::Value *ParentPad = CurrentFuncletPad;
      if (!ParentPad)
        ParentPad = llvm::ConstantTokenNone::get(CGM.getLLVMContext());
      CurrentFuncletPad = CPI = Builder.CreateCleanupPad(ParentPad);
    }

    // Non-MSVC personalities need to terminate when an EH cleanup throws.
    if (!Personality.isMSVCPersonality()) {
      EHStack.pushTerminate();
      PushedTerminate = true;
    }

    // We only actually emit the cleanup code if the cleanup is either
    // active or was used before it was deactivated.
    if (EHActiveFlag.isValid() || IsActive) {
      cleanupFlags.setIsForEHCleanup();
      EmitCleanup(*this, Fn, cleanupFlags, EHActiveFlag);
    }

    if (CPI)
      Builder.CreateCleanupRet(CPI, NextAction);
    else
      Builder.CreateBr(NextAction);

    // Leave the terminate scope.
    if (PushedTerminate)
      EHStack.popTerminate();

    Builder.restoreIP(SavedIP);

    SimplifyCleanupEntry(*this, EHEntry);
  }
}

/// isObviouslyBranchWithoutCleanups - Return true if a branch to the
/// specified destination obviously has no cleanups to run.  'false' is always
/// a conservatively correct answer for this method.
bool CodeGenFunction::isObviouslyBranchWithoutCleanups(JumpDest Dest) const {
  assert(Dest.getScopeDepth().encloses(EHStack.stable_begin())
         && "stale jump destination");

  // Calculate the innermost active normal cleanup.
  EHScopeStack::stable_iterator TopCleanup =
    EHStack.getInnermostActiveNormalCleanup();

  // If we're not in an active normal cleanup scope, or if the
  // destination scope is within the innermost active normal cleanup
  // scope, we don't need to worry about fixups.
  if (TopCleanup == EHStack.stable_end() ||
      TopCleanup.encloses(Dest.getScopeDepth())) // works for invalid
    return true;

  // Otherwise, we might need some cleanups.
  return false;
}


/// Terminate the current block by emitting a branch which might leave
/// the current cleanup-protected scope.  The target scope may not yet
/// be known, in which case this will require a fixup.
///
/// As a side-effect, this method clears the insertion point.
void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
  assert(Dest.getScopeDepth().encloses(EHStack.stable_begin())
         && "stale jump destination");

  if (!HaveInsertPoint())
    return;

  // Create the branch.
  llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());

  // Calculate the innermost active normal cleanup.
  EHScopeStack::stable_iterator
    TopCleanup = EHStack.getInnermostActiveNormalCleanup();

  // If we're not in an active normal cleanup scope, or if the
  // destination scope is within the innermost active normal cleanup
  // scope, we don't need to worry about fixups.
  if (TopCleanup == EHStack.stable_end() ||
      TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
    Builder.ClearInsertionPoint();
    return;
  }

  // If we can't resolve the destination cleanup scope, just add this
  // to the current cleanup scope as a branch fixup.
  if (!Dest.getScopeDepth().isValid()) {
    BranchFixup &Fixup = EHStack.addBranchFixup();
    Fixup.Destination = Dest.getBlock();
    Fixup.DestinationIndex = Dest.getDestIndex();
    Fixup.InitialBranch = BI;
    Fixup.OptimisticBranchBlock = nullptr;

    Builder.ClearInsertionPoint();
    return;
  }

  // Otherwise, thread through all the normal cleanups in scope.

  // Store the index at the start.
  llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
  createStoreInstBefore(Index, getNormalCleanupDestSlot(), BI);

  // Adjust BI to point to the first cleanup block.
  {
    EHCleanupScope &Scope =
      cast<EHCleanupScope>(*EHStack.find(TopCleanup));
    BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
  }

  // Add this destination to all the scopes involved.
  EHScopeStack::stable_iterator I = TopCleanup;
  EHScopeStack::stable_iterator E = Dest.getScopeDepth();
  if (E.strictlyEncloses(I)) {
    while (true) {
      EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
      assert(Scope.isNormalCleanup());
      I = Scope.getEnclosingNormalCleanup();

      // If this is the last cleanup we're propagating through, tell it
      // that there's a resolved jump moving through it.
      if (!E.strictlyEncloses(I)) {
        Scope.addBranchAfter(Index, Dest.getBlock());
        break;
      }

      // Otherwise, tell the scope that there's a jump propagating
      // through it.  If this isn't new information, all the rest of
      // the work has been done before.
      if (!Scope.addBranchThrough(Dest.getBlock()))
        break;
    }
  }

  Builder.ClearInsertionPoint();
}

static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack,
                                  EHScopeStack::stable_iterator C) {
  // If we needed a normal block for any reason, that counts.
  if (cast<EHCleanupScope>(*EHStack.find(C)).getNormalBlock())
    return true;

  // Check whether any enclosed cleanups were needed.
  for (EHScopeStack::stable_iterator
         I = EHStack.getInnermostNormalCleanup();
         I != C; ) {
    assert(C.strictlyEncloses(I));
    EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
    if (S.getNormalBlock()) return true;
    I = S.getEnclosingNormalCleanup();
  }

  return false;
}

static bool IsUsedAsEHCleanup(EHScopeStack &EHStack,
                              EHScopeStack::stable_iterator cleanup) {
  // If we needed an EH block for any reason, that counts.
  if (EHStack.find(cleanup)->hasEHBranches())
    return true;

  // Check whether any enclosed cleanups were needed.
  for (EHScopeStack::stable_iterator
         i = EHStack.getInnermostEHScope(); i != cleanup; ) {
    assert(cleanup.strictlyEncloses(i));

    EHScope &scope = *EHStack.find(i);
    if (scope.hasEHBranches())
      return true;

    i = scope.getEnclosingEHScope();
  }

  return false;
}

enum ForActivation_t {
  ForActivation,
  ForDeactivation
};

/// The given cleanup block is changing activation state.  Configure a
/// cleanup variable if necessary.
///
/// It would be good if we had some way of determining if there were
/// extra uses *after* the change-over point.
static void SetupCleanupBlockActivation(CodeGenFunction &CGF,
                                        EHScopeStack::stable_iterator C,
                                        ForActivation_t kind,
                                        llvm::Instruction *dominatingIP) {
  EHCleanupScope &Scope = cast<EHCleanupScope>(*CGF.EHStack.find(C));

  // We always need the flag if we're activating the cleanup in a
  // conditional context, because we have to assume that the current
  // location doesn't necessarily dominate the cleanup's code.
  bool isActivatedInConditional =
    (kind == ForActivation && CGF.isInConditionalBranch());

  bool needFlag = false;

  // Calculate whether the cleanup was used:

  //   - as a normal cleanup
  if (Scope.isNormalCleanup() &&
      (isActivatedInConditional || IsUsedAsNormalCleanup(CGF.EHStack, C))) {
    Scope.setTestFlagInNormalCleanup();
    needFlag = true;
  }

  //  - as an EH cleanup
  if (Scope.isEHCleanup() &&
      (isActivatedInConditional || IsUsedAsEHCleanup(CGF.EHStack, C))) {
    Scope.setTestFlagInEHCleanup();
    needFlag = true;
  }

  // If it hasn't yet been used as either, we're done.
  if (!needFlag) return;

  Address var = Scope.getActiveFlag();
  if (!var.isValid()) {
    var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), CharUnits::One(),
                               "cleanup.isactive");
    Scope.setActiveFlag(var);

    assert(dominatingIP && "no existing variable and no dominating IP!");

    // Initialize to true or false depending on whether it was
    // active up to this point.
    llvm::Constant *value = CGF.Builder.getInt1(kind == ForDeactivation);

    // If we're in a conditional block, ignore the dominating IP and
    // use the outermost conditional branch.
    if (CGF.isInConditionalBranch()) {
      CGF.setBeforeOutermostConditional(value, var);
    } else {
      createStoreInstBefore(value, var, dominatingIP);
    }
  }

  CGF.Builder.CreateStore(CGF.Builder.getInt1(kind == ForActivation), var);
}

/// Activate a cleanup that was created in an inactivated state.
void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C,
                                           llvm::Instruction *dominatingIP) {
  assert(C != EHStack.stable_end() && "activating bottom of stack?");
  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
  assert(!Scope.isActive() && "double activation");

  SetupCleanupBlockActivation(*this, C, ForActivation, dominatingIP);

  Scope.setActive(true);
}

/// Deactive a cleanup that was created in an active state.
void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C,
                                             llvm::Instruction *dominatingIP) {
  assert(C != EHStack.stable_end() && "deactivating bottom of stack?");
  EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
  assert(Scope.isActive() && "double deactivation");

  // If it's the top of the stack, just pop it, but do so only if it belongs
  // to the current RunCleanupsScope.
  if (C == EHStack.stable_begin() &&
      CurrentCleanupScopeDepth.strictlyEncloses(C)) {
    // If it's a normal cleanup, we need to pretend that the
    // fallthrough is unreachable.
    CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
    PopCleanupBlock();
    Builder.restoreIP(SavedIP);
    return;
  }

  // Otherwise, follow the general case.
  SetupCleanupBlockActivation(*this, C, ForDeactivation, dominatingIP);

  Scope.setActive(false);
}

Address CodeGenFunction::getNormalCleanupDestSlot() {
  if (!NormalCleanupDest.isValid())
    NormalCleanupDest =
      CreateDefaultAlignTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
  return NormalCleanupDest;
}

/// Emits all the code to cause the given temporary to be cleaned up.
void CodeGenFunction::EmitCXXTemporary(const CXXTemporary *Temporary,
                                       QualType TempType,
                                       Address Ptr) {
  pushDestroy(NormalAndEHCleanup, Ptr, TempType, destroyCXXObject,
              /*useEHCleanup*/ true);
}