SemanticHighlighting.cpp 25.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
//===--- SemanticHighlighting.cpp - ------------------------- ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "SemanticHighlighting.h"
#include "FindTarget.h"
#include "ParsedAST.h"
#include "Protocol.h"
#include "SourceCode.h"
#include "support/Logger.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Base64.h"
#include "llvm/Support/Casting.h"
#include <algorithm>

namespace clang {
namespace clangd {
namespace {

/// Some names are not written in the source code and cannot be highlighted,
/// e.g. anonymous classes. This function detects those cases.
bool canHighlightName(DeclarationName Name) {
  if (Name.getNameKind() == DeclarationName::CXXConstructorName ||
      Name.getNameKind() == DeclarationName::CXXUsingDirective)
    return true;
  auto *II = Name.getAsIdentifierInfo();
  return II && !II->getName().empty();
}

llvm::Optional<HighlightingKind> kindForType(const Type *TP);
llvm::Optional<HighlightingKind> kindForDecl(const NamedDecl *D) {
  if (auto *USD = dyn_cast<UsingShadowDecl>(D)) {
    if (auto *Target = USD->getTargetDecl())
      D = Target;
  }
  if (auto *TD = dyn_cast<TemplateDecl>(D)) {
    if (auto *Templated = TD->getTemplatedDecl())
      D = Templated;
  }
  if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
    // We try to highlight typedefs as their underlying type.
    if (auto K = kindForType(TD->getUnderlyingType().getTypePtrOrNull()))
      return K;
    // And fallback to a generic kind if this fails.
    return HighlightingKind::Typedef;
  }
  // We highlight class decls, constructor decls and destructor decls as
  // `Class` type. The destructor decls are handled in `VisitTagTypeLoc` (we
  // will visit a TypeLoc where the underlying Type is a CXXRecordDecl).
  if (auto *RD = llvm::dyn_cast<RecordDecl>(D)) {
    // We don't want to highlight lambdas like classes.
    if (RD->isLambda())
      return llvm::None;
    return HighlightingKind::Class;
  }
  if (isa<ClassTemplateDecl>(D) || isa<RecordDecl>(D) ||
      isa<CXXConstructorDecl>(D))
    return HighlightingKind::Class;
  if (auto *MD = dyn_cast<CXXMethodDecl>(D))
    return MD->isStatic() ? HighlightingKind::StaticMethod
                          : HighlightingKind::Method;
  if (isa<FieldDecl>(D))
    return HighlightingKind::Field;
  if (isa<EnumDecl>(D))
    return HighlightingKind::Enum;
  if (isa<EnumConstantDecl>(D))
    return HighlightingKind::EnumConstant;
  if (isa<ParmVarDecl>(D))
    return HighlightingKind::Parameter;
  if (auto *VD = dyn_cast<VarDecl>(D))
    return VD->isStaticDataMember()
               ? HighlightingKind::StaticField
               : VD->isLocalVarDecl() ? HighlightingKind::LocalVariable
                                      : HighlightingKind::Variable;
  if (const auto *BD = dyn_cast<BindingDecl>(D))
    return BD->getDeclContext()->isFunctionOrMethod()
               ? HighlightingKind::LocalVariable
               : HighlightingKind::Variable;
  if (isa<FunctionDecl>(D))
    return HighlightingKind::Function;
  if (isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D) ||
      isa<UsingDirectiveDecl>(D))
    return HighlightingKind::Namespace;
  if (isa<TemplateTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
      isa<NonTypeTemplateParmDecl>(D))
    return HighlightingKind::TemplateParameter;
  if (isa<ConceptDecl>(D))
    return HighlightingKind::Concept;
  return llvm::None;
}
llvm::Optional<HighlightingKind> kindForType(const Type *TP) {
  if (!TP)
    return llvm::None;
  if (TP->isBuiltinType()) // Builtins are special, they do not have decls.
    return HighlightingKind::Primitive;
  if (auto *TD = dyn_cast<TemplateTypeParmType>(TP))
    return kindForDecl(TD->getDecl());
  if (auto *TD = TP->getAsTagDecl())
    return kindForDecl(TD);
  return llvm::None;
}

llvm::Optional<HighlightingKind> kindForReference(const ReferenceLoc &R) {
  llvm::Optional<HighlightingKind> Result;
  for (const NamedDecl *Decl : R.Targets) {
    if (!canHighlightName(Decl->getDeclName()))
      return llvm::None;
    auto Kind = kindForDecl(Decl);
    if (!Kind || (Result && Kind != Result))
      return llvm::None;
    Result = Kind;
  }
  return Result;
}

// For a macro usage `DUMP(foo)`, we want:
//  - DUMP --> "macro"
//  - foo --> "variable".
SourceLocation getHighlightableSpellingToken(SourceLocation L,
                                             const SourceManager &SM) {
  if (L.isFileID())
    return SM.isWrittenInMainFile(L) ? L : SourceLocation{};
  // Tokens expanded from the macro body contribute no highlightings.
  if (!SM.isMacroArgExpansion(L))
    return {};
  // Tokens expanded from macro args are potentially highlightable.
  return getHighlightableSpellingToken(SM.getImmediateSpellingLoc(L), SM);
}

unsigned evaluateHighlightPriority(HighlightingKind Kind) {
  enum HighlightPriority { Dependent = 0, Resolved = 1 };
  return Kind == HighlightingKind::DependentType ||
                 Kind == HighlightingKind::DependentName
             ? Dependent
             : Resolved;
}

// Sometimes we get conflicts between findExplicitReferences() returning
// a heuristic result for a dependent name (e.g. Method) and
// CollectExtraHighlighting returning a fallback dependent highlighting (e.g.
// DependentName). In such cases, resolve the conflict in favour of the
// resolved (non-dependent) highlighting.
// With macros we can get other conflicts (if a spelled token has multiple
// expansions with different token types) which we can't usefully resolve.
llvm::Optional<HighlightingToken>
resolveConflict(ArrayRef<HighlightingToken> Tokens) {
  if (Tokens.size() == 1)
    return Tokens[0];

  if (Tokens.size() != 2)
    return llvm::None;

  unsigned Priority1 = evaluateHighlightPriority(Tokens[0].Kind);
  unsigned Priority2 = evaluateHighlightPriority(Tokens[1].Kind);
  if (Priority1 == Priority2)
    return llvm::None;
  return Priority1 > Priority2 ? Tokens[0] : Tokens[1];
}

/// Consumes source locations and maps them to text ranges for highlightings.
class HighlightingsBuilder {
public:
  HighlightingsBuilder(const ParsedAST &AST)
      : TB(AST.getTokens()), SourceMgr(AST.getSourceManager()),
        LangOpts(AST.getLangOpts()) {}

  void addToken(HighlightingToken T) { Tokens.push_back(T); }

  void addToken(SourceLocation Loc, HighlightingKind Kind) {
    Loc = getHighlightableSpellingToken(Loc, SourceMgr);
    if (Loc.isInvalid())
      return;
    const auto *Tok = TB.spelledTokenAt(Loc);
    assert(Tok);

    auto Range = halfOpenToRange(SourceMgr,
                                 Tok->range(SourceMgr).toCharRange(SourceMgr));
    Tokens.push_back(HighlightingToken{Kind, std::move(Range)});
  }

  std::vector<HighlightingToken> collect(ParsedAST &AST) && {
    // Initializer lists can give duplicates of tokens, therefore all tokens
    // must be deduplicated.
    llvm::sort(Tokens);
    auto Last = std::unique(Tokens.begin(), Tokens.end());
    Tokens.erase(Last, Tokens.end());

    // Macros can give tokens that have the same source range but conflicting
    // kinds. In this case all tokens sharing this source range should be
    // removed.
    std::vector<HighlightingToken> NonConflicting;
    NonConflicting.reserve(Tokens.size());
    for (ArrayRef<HighlightingToken> TokRef = Tokens; !TokRef.empty();) {
      ArrayRef<HighlightingToken> Conflicting =
          TokRef.take_while([&](const HighlightingToken &T) {
            // TokRef is guaranteed at least one element here because otherwise
            // this predicate would never fire.
            return T.R == TokRef.front().R;
          });
      if (auto Resolved = resolveConflict(Conflicting))
        NonConflicting.push_back(*Resolved);
      // TokRef[Conflicting.size()] is the next token with a different range (or
      // the end of the Tokens).
      TokRef = TokRef.drop_front(Conflicting.size());
    }
    const auto &SM = AST.getSourceManager();
    StringRef MainCode = SM.getBuffer(SM.getMainFileID())->getBuffer();

    // Merge token stream with "inactive line" markers.
    std::vector<HighlightingToken> WithInactiveLines;
    auto SortedSkippedRanges = AST.getMacros().SkippedRanges;
    llvm::sort(SortedSkippedRanges);
    auto It = NonConflicting.begin();
    for (const Range &R : SortedSkippedRanges) {
      // Create one token for each line in the skipped range, so it works
      // with line-based diffing.
      assert(R.start.line <= R.end.line);
      for (int Line = R.start.line; Line <= R.end.line; ++Line) {
        // Copy tokens before the inactive line
        for (; It != NonConflicting.end() && It->R.start.line < Line; ++It)
          WithInactiveLines.push_back(std::move(*It));
        // Add a token for the inactive line itself.
        auto StartOfLine = positionToOffset(MainCode, Position{Line, 0});
        if (StartOfLine) {
          StringRef LineText =
              MainCode.drop_front(*StartOfLine).take_until([](char C) {
                return C == '\n';
              });
          WithInactiveLines.push_back(
              {HighlightingKind::InactiveCode,
               {Position{Line, 0},
                Position{Line, static_cast<int>(lspLength(LineText))}}});
        } else {
          elog("Failed to convert position to offset: {0}",
               StartOfLine.takeError());
        }

        // Skip any other tokens on the inactive line. e.g.
        // `#ifndef Foo` is considered as part of an inactive region when Foo is
        // defined, and there is a Foo macro token.
        // FIXME: we should reduce the scope of the inactive region to not
        // include the directive itself.
        while (It != NonConflicting.end() && It->R.start.line == Line)
          ++It;
      }
    }
    // Copy tokens after the last inactive line
    for (; It != NonConflicting.end(); ++It)
      WithInactiveLines.push_back(std::move(*It));
    return WithInactiveLines;
  }

private:
  const syntax::TokenBuffer &TB;
  const SourceManager &SourceMgr;
  const LangOptions &LangOpts;
  std::vector<HighlightingToken> Tokens;
};

/// Produces highlightings, which are not captured by findExplicitReferences,
/// e.g. highlights dependent names and 'auto' as the underlying type.
class CollectExtraHighlightings
    : public RecursiveASTVisitor<CollectExtraHighlightings> {
public:
  CollectExtraHighlightings(HighlightingsBuilder &H) : H(H) {}

  bool VisitDecltypeTypeLoc(DecltypeTypeLoc L) {
    if (auto K = kindForType(L.getTypePtr()))
      H.addToken(L.getBeginLoc(), *K);
    return true;
  }

  bool VisitDeclaratorDecl(DeclaratorDecl *D) {
    auto *AT = D->getType()->getContainedAutoType();
    if (!AT)
      return true;
    if (auto K = kindForType(AT->getDeducedType().getTypePtrOrNull()))
      H.addToken(D->getTypeSpecStartLoc(), *K);
    return true;
  }

  bool VisitOverloadExpr(OverloadExpr *E) {
    if (!E->decls().empty())
      return true; // handled by findExplicitReferences.
    H.addToken(E->getNameLoc(), HighlightingKind::DependentName);
    return true;
  }

  bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) {
    H.addToken(E->getMemberNameInfo().getLoc(),
               HighlightingKind::DependentName);
    return true;
  }

  bool VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) {
    H.addToken(E->getNameInfo().getLoc(), HighlightingKind::DependentName);
    return true;
  }

  bool VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
    H.addToken(L.getNameLoc(), HighlightingKind::DependentType);
    return true;
  }

  bool VisitDependentTemplateSpecializationTypeLoc(
      DependentTemplateSpecializationTypeLoc L) {
    H.addToken(L.getTemplateNameLoc(), HighlightingKind::DependentType);
    return true;
  }

  bool TraverseTemplateArgumentLoc(TemplateArgumentLoc L) {
    switch (L.getArgument().getKind()) {
    case TemplateArgument::Template:
    case TemplateArgument::TemplateExpansion:
      H.addToken(L.getTemplateNameLoc(), HighlightingKind::DependentType);
      break;
    default:
      break;
    }
    return RecursiveASTVisitor::TraverseTemplateArgumentLoc(L);
  }

  // findExplicitReferences will walk nested-name-specifiers and
  // find anything that can be resolved to a Decl. However, non-leaf
  // components of nested-name-specifiers which are dependent names
  // (kind "Identifier") cannot be resolved to a decl, so we visit
  // them here.
  bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc Q) {
    if (NestedNameSpecifier *NNS = Q.getNestedNameSpecifier()) {
      if (NNS->getKind() == NestedNameSpecifier::Identifier)
        H.addToken(Q.getLocalBeginLoc(), HighlightingKind::DependentType);
    }
    return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(Q);
  }

private:
  HighlightingsBuilder &H;
};

void write32be(uint32_t I, llvm::raw_ostream &OS) {
  std::array<char, 4> Buf;
  llvm::support::endian::write32be(Buf.data(), I);
  OS.write(Buf.data(), Buf.size());
}

void write16be(uint16_t I, llvm::raw_ostream &OS) {
  std::array<char, 2> Buf;
  llvm::support::endian::write16be(Buf.data(), I);
  OS.write(Buf.data(), Buf.size());
}

// Get the highlightings on \c Line where the first entry of line is at \c
// StartLineIt. If it is not at \c StartLineIt an empty vector is returned.
ArrayRef<HighlightingToken>
takeLine(ArrayRef<HighlightingToken> AllTokens,
         ArrayRef<HighlightingToken>::iterator StartLineIt, int Line) {
  return ArrayRef<HighlightingToken>(StartLineIt, AllTokens.end())
      .take_while([Line](const HighlightingToken &Token) {
        return Token.R.start.line == Line;
      });
}
} // namespace

std::vector<HighlightingToken> getSemanticHighlightings(ParsedAST &AST) {
  auto &C = AST.getASTContext();
  // Add highlightings for AST nodes.
  HighlightingsBuilder Builder(AST);
  // Highlight 'decltype' and 'auto' as their underlying types.
  CollectExtraHighlightings(Builder).TraverseAST(C);
  // Highlight all decls and references coming from the AST.
  findExplicitReferences(C, [&](ReferenceLoc R) {
    if (auto Kind = kindForReference(R))
      Builder.addToken(R.NameLoc, *Kind);
  });
  // Add highlightings for macro references.
  for (const auto &SIDToRefs : AST.getMacros().MacroRefs) {
    for (const auto &M : SIDToRefs.second)
      Builder.addToken({HighlightingKind::Macro, M});
  }
  for (const auto &M : AST.getMacros().UnknownMacros)
    Builder.addToken({HighlightingKind::Macro, M});

  return std::move(Builder).collect(AST);
}

llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, HighlightingKind K) {
  switch (K) {
  case HighlightingKind::Variable:
    return OS << "Variable";
  case HighlightingKind::LocalVariable:
    return OS << "LocalVariable";
  case HighlightingKind::Parameter:
    return OS << "Parameter";
  case HighlightingKind::Function:
    return OS << "Function";
  case HighlightingKind::Method:
    return OS << "Method";
  case HighlightingKind::StaticMethod:
    return OS << "StaticMethod";
  case HighlightingKind::Field:
    return OS << "Field";
  case HighlightingKind::StaticField:
    return OS << "StaticField";
  case HighlightingKind::Class:
    return OS << "Class";
  case HighlightingKind::Enum:
    return OS << "Enum";
  case HighlightingKind::EnumConstant:
    return OS << "EnumConstant";
  case HighlightingKind::Typedef:
    return OS << "Typedef";
  case HighlightingKind::DependentType:
    return OS << "DependentType";
  case HighlightingKind::DependentName:
    return OS << "DependentName";
  case HighlightingKind::Namespace:
    return OS << "Namespace";
  case HighlightingKind::TemplateParameter:
    return OS << "TemplateParameter";
  case HighlightingKind::Concept:
    return OS << "Concept";
  case HighlightingKind::Primitive:
    return OS << "Primitive";
  case HighlightingKind::Macro:
    return OS << "Macro";
  case HighlightingKind::InactiveCode:
    return OS << "InactiveCode";
  }
  llvm_unreachable("invalid HighlightingKind");
}

std::vector<LineHighlightings>
diffHighlightings(ArrayRef<HighlightingToken> New,
                  ArrayRef<HighlightingToken> Old) {
  assert(std::is_sorted(New.begin(), New.end()) &&
         "New must be a sorted vector");
  assert(std::is_sorted(Old.begin(), Old.end()) &&
         "Old must be a sorted vector");

  // FIXME: There's an edge case when tokens span multiple lines. If the first
  // token on the line started on a line above the current one and the rest of
  // the line is the equal to the previous one than we will remove all
  // highlights but the ones for the token spanning multiple lines. This means
  // that when we get into the LSP layer the only highlights that will be
  // visible are the ones for the token spanning multiple lines.
  // Example:
  // EndOfMultilineToken  Token Token Token
  // If "Token Token Token" don't differ from previously the line is
  // incorrectly removed. Suggestion to fix is to separate any multiline tokens
  // into one token for every line it covers. This requires reading from the
  // file buffer to figure out the length of each line though.
  std::vector<LineHighlightings> DiffedLines;
  // ArrayRefs to the current line in the highlightings.
  ArrayRef<HighlightingToken> NewLine(New.begin(),
                                      /*length*/ static_cast<size_t>(0));
  ArrayRef<HighlightingToken> OldLine(Old.begin(),
                                      /*length*/ static_cast<size_t>(0));
  auto NewEnd = New.end();
  auto OldEnd = Old.end();
  auto NextLineNumber = [&]() {
    int NextNew = NewLine.end() != NewEnd ? NewLine.end()->R.start.line
                                          : std::numeric_limits<int>::max();
    int NextOld = OldLine.end() != OldEnd ? OldLine.end()->R.start.line
                                          : std::numeric_limits<int>::max();
    return std::min(NextNew, NextOld);
  };

  for (int LineNumber = 0; NewLine.end() < NewEnd || OldLine.end() < OldEnd;
       LineNumber = NextLineNumber()) {
    NewLine = takeLine(New, NewLine.end(), LineNumber);
    OldLine = takeLine(Old, OldLine.end(), LineNumber);
    if (NewLine != OldLine) {
      DiffedLines.push_back({LineNumber, NewLine, /*IsInactive=*/false});

      // Turn a HighlightingKind::InactiveCode token into the IsInactive flag.
      auto &AddedLine = DiffedLines.back();
      llvm::erase_if(AddedLine.Tokens, [&](const HighlightingToken &T) {
        if (T.Kind == HighlightingKind::InactiveCode) {
          AddedLine.IsInactive = true;
          return true;
        }
        return false;
      });
    }
  }

  return DiffedLines;
}

bool operator==(const HighlightingToken &L, const HighlightingToken &R) {
  return std::tie(L.R, L.Kind) == std::tie(R.R, R.Kind);
}
bool operator<(const HighlightingToken &L, const HighlightingToken &R) {
  return std::tie(L.R, L.Kind) < std::tie(R.R, R.Kind);
}
bool operator==(const LineHighlightings &L, const LineHighlightings &R) {
  return std::tie(L.Line, L.Tokens) == std::tie(R.Line, R.Tokens);
}

std::vector<SemanticToken>
toSemanticTokens(llvm::ArrayRef<HighlightingToken> Tokens) {
  assert(std::is_sorted(Tokens.begin(), Tokens.end()));
  std::vector<SemanticToken> Result;
  const HighlightingToken *Last = nullptr;
  for (const HighlightingToken &Tok : Tokens) {
    Result.emplace_back();
    SemanticToken &Out = Result.back();
    // deltaStart/deltaLine are relative if possible.
    if (Last) {
      assert(Tok.R.start.line >= Last->R.start.line);
      Out.deltaLine = Tok.R.start.line - Last->R.start.line;
      if (Out.deltaLine == 0) {
        assert(Tok.R.start.character >= Last->R.start.character);
        Out.deltaStart = Tok.R.start.character - Last->R.start.character;
      } else {
        Out.deltaStart = Tok.R.start.character;
      }
    } else {
      Out.deltaLine = Tok.R.start.line;
      Out.deltaStart = Tok.R.start.character;
    }
    assert(Tok.R.end.line == Tok.R.start.line);
    Out.length = Tok.R.end.character - Tok.R.start.character;
    Out.tokenType = static_cast<unsigned>(Tok.Kind);

    Last = &Tok;
  }
  return Result;
}
llvm::StringRef toSemanticTokenType(HighlightingKind Kind) {
  switch (Kind) {
  case HighlightingKind::Variable:
  case HighlightingKind::LocalVariable:
  case HighlightingKind::StaticField:
    return "variable";
  case HighlightingKind::Parameter:
    return "parameter";
  case HighlightingKind::Function:
    return "function";
  case HighlightingKind::Method:
    return "member";
  case HighlightingKind::StaticMethod:
    // FIXME: better function/member with static modifier?
    return "function";
  case HighlightingKind::Field:
    return "member";
  case HighlightingKind::Class:
    return "class";
  case HighlightingKind::Enum:
    return "enum";
  case HighlightingKind::EnumConstant:
    return "enumConstant"; // nonstandard
  case HighlightingKind::Typedef:
    return "type";
  case HighlightingKind::DependentType:
    return "dependent"; // nonstandard
  case HighlightingKind::DependentName:
    return "dependent"; // nonstandard
  case HighlightingKind::Namespace:
    return "namespace";
  case HighlightingKind::TemplateParameter:
    return "typeParameter";
  case HighlightingKind::Concept:
    return "concept"; // nonstandard
  case HighlightingKind::Primitive:
    return "type";
  case HighlightingKind::Macro:
    return "macro";
  case HighlightingKind::InactiveCode:
    return "comment";
  }
  llvm_unreachable("unhandled HighlightingKind");
}

std::vector<TheiaSemanticHighlightingInformation>
toTheiaSemanticHighlightingInformation(
    llvm::ArrayRef<LineHighlightings> Tokens) {
  if (Tokens.size() == 0)
    return {};

  // FIXME: Tokens might be multiple lines long (block comments) in this case
  // this needs to add multiple lines for those tokens.
  std::vector<TheiaSemanticHighlightingInformation> Lines;
  Lines.reserve(Tokens.size());
  for (const auto &Line : Tokens) {
    llvm::SmallVector<char, 128> LineByteTokens;
    llvm::raw_svector_ostream OS(LineByteTokens);
    for (const auto &Token : Line.Tokens) {
      // Writes the token to LineByteTokens in the byte format specified by the
      // LSP proposal. Described below.
      // |<---- 4 bytes ---->|<-- 2 bytes -->|<--- 2 bytes -->|
      // |    character      |  length       |    index       |

      write32be(Token.R.start.character, OS);
      write16be(Token.R.end.character - Token.R.start.character, OS);
      write16be(static_cast<int>(Token.Kind), OS);
    }

    Lines.push_back({Line.Line, encodeBase64(LineByteTokens), Line.IsInactive});
  }

  return Lines;
}

llvm::StringRef toTextMateScope(HighlightingKind Kind) {
  // FIXME: Add scopes for C and Objective C.
  switch (Kind) {
  case HighlightingKind::Function:
    return "entity.name.function.cpp";
  case HighlightingKind::Method:
    return "entity.name.function.method.cpp";
  case HighlightingKind::StaticMethod:
    return "entity.name.function.method.static.cpp";
  case HighlightingKind::Variable:
    return "variable.other.cpp";
  case HighlightingKind::LocalVariable:
    return "variable.other.local.cpp";
  case HighlightingKind::Parameter:
    return "variable.parameter.cpp";
  case HighlightingKind::Field:
    return "variable.other.field.cpp";
  case HighlightingKind::StaticField:
    return "variable.other.field.static.cpp";
  case HighlightingKind::Class:
    return "entity.name.type.class.cpp";
  case HighlightingKind::Enum:
    return "entity.name.type.enum.cpp";
  case HighlightingKind::EnumConstant:
    return "variable.other.enummember.cpp";
  case HighlightingKind::Typedef:
    return "entity.name.type.typedef.cpp";
  case HighlightingKind::DependentType:
    return "entity.name.type.dependent.cpp";
  case HighlightingKind::DependentName:
    return "entity.name.other.dependent.cpp";
  case HighlightingKind::Namespace:
    return "entity.name.namespace.cpp";
  case HighlightingKind::TemplateParameter:
    return "entity.name.type.template.cpp";
  case HighlightingKind::Concept:
    return "entity.name.type.concept.cpp";
  case HighlightingKind::Primitive:
    return "storage.type.primitive.cpp";
  case HighlightingKind::Macro:
    return "entity.name.function.preprocessor.cpp";
  case HighlightingKind::InactiveCode:
    return "meta.disabled";
  }
  llvm_unreachable("unhandled HighlightingKind");
}

std::vector<SemanticTokensEdit>
diffTokens(llvm::ArrayRef<SemanticToken> Old,
           llvm::ArrayRef<SemanticToken> New) {
  // For now, just replace everything from the first-last modification.
  // FIXME: use a real diff instead, this is bad with include-insertion.

  unsigned Offset = 0;
  while (!Old.empty() && !New.empty() && Old.front() == New.front()) {
    ++Offset;
    Old = Old.drop_front();
    New = New.drop_front();
  }
  while (!Old.empty() && !New.empty() && Old.back() == New.back()) {
    Old = Old.drop_back();
    New = New.drop_back();
  }

  if (Old.empty() && New.empty())
    return {};
  SemanticTokensEdit Edit;
  Edit.startToken = Offset;
  Edit.deleteTokens = Old.size();
  Edit.tokens = New;
  return {std::move(Edit)};
}

} // namespace clangd
} // namespace clang