LoopConvertUtils.cpp 30.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
//===--- LoopConvertUtils.cpp - clang-tidy --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "LoopConvertUtils.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <string>
#include <utility>

using namespace clang::ast_matchers;

namespace clang {
namespace tidy {
namespace modernize {

/// Tracks a stack of parent statements during traversal.
///
/// All this really does is inject push_back() before running
/// RecursiveASTVisitor::TraverseStmt() and pop_back() afterwards. The Stmt atop
/// the stack is the parent of the current statement (NULL for the topmost
/// statement).
bool StmtAncestorASTVisitor::TraverseStmt(Stmt *Statement) {
  StmtAncestors.insert(std::make_pair(Statement, StmtStack.back()));
  StmtStack.push_back(Statement);
  RecursiveASTVisitor<StmtAncestorASTVisitor>::TraverseStmt(Statement);
  StmtStack.pop_back();
  return true;
}

/// Keep track of the DeclStmt associated with each VarDecl.
///
/// Combined with StmtAncestors, this provides roughly the same information as
/// Scope, as we can map a VarDecl to its DeclStmt, then walk up the parent tree
/// using StmtAncestors.
bool StmtAncestorASTVisitor::VisitDeclStmt(DeclStmt *Decls) {
  for (const auto *decl : Decls->decls()) {
    if (const auto *V = dyn_cast<VarDecl>(decl))
      DeclParents.insert(std::make_pair(V, Decls));
  }
  return true;
}

/// record the DeclRefExpr as part of the parent expression.
bool ComponentFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
  Components.push_back(E);
  return true;
}

/// record the MemberExpr as part of the parent expression.
bool ComponentFinderASTVisitor::VisitMemberExpr(MemberExpr *Member) {
  Components.push_back(Member);
  return true;
}

/// Forward any DeclRefExprs to a check on the referenced variable
/// declaration.
bool DependencyFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
  if (auto *V = dyn_cast_or_null<VarDecl>(DeclRef->getDecl()))
    return VisitVarDecl(V);
  return true;
}

/// Determine if any this variable is declared inside the ContainingStmt.
bool DependencyFinderASTVisitor::VisitVarDecl(VarDecl *V) {
  const Stmt *Curr = DeclParents->lookup(V);
  // First, see if the variable was declared within an inner scope of the loop.
  while (Curr != nullptr) {
    if (Curr == ContainingStmt) {
      DependsOnInsideVariable = true;
      return false;
    }
    Curr = StmtParents->lookup(Curr);
  }

  // Next, check if the variable was removed from existence by an earlier
  // iteration.
  for (const auto &I : *ReplacedVars) {
    if (I.second == V) {
      DependsOnInsideVariable = true;
      return false;
    }
  }
  return true;
}

/// If we already created a variable for TheLoop, check to make sure
/// that the name was not already taken.
bool DeclFinderASTVisitor::VisitForStmt(ForStmt *TheLoop) {
  StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(TheLoop);
  if (I != GeneratedDecls->end() && I->second == Name) {
    Found = true;
    return false;
  }
  return true;
}

/// If any named declaration within the AST subtree has the same name,
/// then consider Name already taken.
bool DeclFinderASTVisitor::VisitNamedDecl(NamedDecl *D) {
  const IdentifierInfo *Ident = D->getIdentifier();
  if (Ident && Ident->getName() == Name) {
    Found = true;
    return false;
  }
  return true;
}

/// Forward any declaration references to the actual check on the
/// referenced declaration.
bool DeclFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
  if (auto *D = dyn_cast<NamedDecl>(DeclRef->getDecl()))
    return VisitNamedDecl(D);
  return true;
}

/// If the new variable name conflicts with any type used in the loop,
/// then we mark that variable name as taken.
bool DeclFinderASTVisitor::VisitTypeLoc(TypeLoc TL) {
  QualType QType = TL.getType();

  // Check if our name conflicts with a type, to handle for typedefs.
  if (QType.getAsString() == Name) {
    Found = true;
    return false;
  }
  // Check for base type conflicts. For example, when a struct is being
  // referenced in the body of the loop, the above getAsString() will return the
  // whole type (ex. "struct s"), but will be caught here.
  if (const IdentifierInfo *Ident = QType.getBaseTypeIdentifier()) {
    if (Ident->getName() == Name) {
      Found = true;
      return false;
    }
  }
  return true;
}

/// Look through conversion/copy constructors to find the explicit
/// initialization expression, returning it is found.
///
/// The main idea is that given
///   vector<int> v;
/// we consider either of these initializations
///   vector<int>::iterator it = v.begin();
///   vector<int>::iterator it(v.begin());
/// and retrieve `v.begin()` as the expression used to initialize `it` but do
/// not include
///   vector<int>::iterator it;
///   vector<int>::iterator it(v.begin(), 0); // if this constructor existed
/// as being initialized from `v.begin()`
const Expr *digThroughConstructors(const Expr *E) {
  if (!E)
    return nullptr;
  E = E->IgnoreImplicit();
  if (const auto *ConstructExpr = dyn_cast<CXXConstructExpr>(E)) {
    // The initial constructor must take exactly one parameter, but base class
    // and deferred constructors can take more.
    if (ConstructExpr->getNumArgs() != 1 ||
        ConstructExpr->getConstructionKind() != CXXConstructExpr::CK_Complete)
      return nullptr;
    E = ConstructExpr->getArg(0);
    if (const auto *Temp = dyn_cast<MaterializeTemporaryExpr>(E))
      E = Temp->getSubExpr();
    return digThroughConstructors(E);
  }
  return E;
}

/// Returns true when two Exprs are equivalent.
bool areSameExpr(ASTContext *Context, const Expr *First, const Expr *Second) {
  if (!First || !Second)
    return false;

  llvm::FoldingSetNodeID FirstID, SecondID;
  First->Profile(FirstID, *Context, true);
  Second->Profile(SecondID, *Context, true);
  return FirstID == SecondID;
}

/// Returns the DeclRefExpr represented by E, or NULL if there isn't one.
const DeclRefExpr *getDeclRef(const Expr *E) {
  return dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
}

/// Returns true when two ValueDecls are the same variable.
bool areSameVariable(const ValueDecl *First, const ValueDecl *Second) {
  return First && Second &&
         First->getCanonicalDecl() == Second->getCanonicalDecl();
}

/// Determines if an expression is a declaration reference to a
/// particular variable.
static bool exprReferencesVariable(const ValueDecl *Target, const Expr *E) {
  if (!Target || !E)
    return false;
  const DeclRefExpr *Decl = getDeclRef(E);
  return Decl && areSameVariable(Target, Decl->getDecl());
}

/// If the expression is a dereference or call to operator*(), return the
/// operand. Otherwise, return NULL.
static const Expr *getDereferenceOperand(const Expr *E) {
  if (const auto *Uop = dyn_cast<UnaryOperator>(E))
    return Uop->getOpcode() == UO_Deref ? Uop->getSubExpr() : nullptr;

  if (const auto *OpCall = dyn_cast<CXXOperatorCallExpr>(E)) {
    return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1
               ? OpCall->getArg(0)
               : nullptr;
  }

  return nullptr;
}

/// Returns true when the Container contains an Expr equivalent to E.
template <typename ContainerT>
static bool containsExpr(ASTContext *Context, const ContainerT *Container,
                         const Expr *E) {
  llvm::FoldingSetNodeID ID;
  E->Profile(ID, *Context, true);
  for (const auto &I : *Container) {
    if (ID == I.second)
      return true;
  }
  return false;
}

/// Returns true when the index expression is a declaration reference to
/// IndexVar.
///
/// If the index variable is `index`, this function returns true on
///    arrayExpression[index];
///    containerExpression[index];
/// but not
///    containerExpression[notIndex];
static bool isIndexInSubscriptExpr(const Expr *IndexExpr,
                                   const VarDecl *IndexVar) {
  const DeclRefExpr *Idx = getDeclRef(IndexExpr);
  return Idx && Idx->getType()->isIntegerType() &&
         areSameVariable(IndexVar, Idx->getDecl());
}

/// Returns true when the index expression is a declaration reference to
/// IndexVar, Obj is the same expression as SourceExpr after all parens and
/// implicit casts are stripped off.
///
/// If PermitDeref is true, IndexExpression may
/// be a dereference (overloaded or builtin operator*).
///
/// This function is intended for array-like containers, as it makes sure that
/// both the container and the index match.
/// If the loop has index variable `index` and iterates over `container`, then
/// isIndexInSubscriptExpr returns true for
/// \code
///   container[index]
///   container.at(index)
///   container->at(index)
/// \endcode
/// but not for
/// \code
///   container[notIndex]
///   notContainer[index]
/// \endcode
/// If PermitDeref is true, then isIndexInSubscriptExpr additionally returns
/// true on these expressions:
/// \code
///   (*container)[index]
///   (*container).at(index)
/// \endcode
static bool isIndexInSubscriptExpr(ASTContext *Context, const Expr *IndexExpr,
                                   const VarDecl *IndexVar, const Expr *Obj,
                                   const Expr *SourceExpr, bool PermitDeref) {
  if (!SourceExpr || !Obj || !isIndexInSubscriptExpr(IndexExpr, IndexVar))
    return false;

  if (areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
                  Obj->IgnoreParenImpCasts()))
    return true;

  if (const Expr *InnerObj = getDereferenceOperand(Obj->IgnoreParenImpCasts()))
    if (PermitDeref && areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
                                   InnerObj->IgnoreParenImpCasts()))
      return true;

  return false;
}

/// Returns true when Opcall is a call a one-parameter dereference of
/// IndexVar.
///
/// For example, if the index variable is `index`, returns true for
///   *index
/// but not
///   index
///   *notIndex
static bool isDereferenceOfOpCall(const CXXOperatorCallExpr *OpCall,
                                  const VarDecl *IndexVar) {
  return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1 &&
         exprReferencesVariable(IndexVar, OpCall->getArg(0));
}

/// Returns true when Uop is a dereference of IndexVar.
///
/// For example, if the index variable is `index`, returns true for
///   *index
/// but not
///   index
///   *notIndex
static bool isDereferenceOfUop(const UnaryOperator *Uop,
                               const VarDecl *IndexVar) {
  return Uop->getOpcode() == UO_Deref &&
         exprReferencesVariable(IndexVar, Uop->getSubExpr());
}

/// Determines whether the given Decl defines a variable initialized to
/// the loop object.
///
/// This is intended to find cases such as
/// \code
///   for (int i = 0; i < arraySize(arr); ++i) {
///     T t = arr[i];
///     // use t, do not use i
///   }
/// \endcode
/// and
/// \code
///   for (iterator i = container.begin(), e = container.end(); i != e; ++i) {
///     T t = *i;
///     // use t, do not use i
///   }
/// \endcode
static bool isAliasDecl(ASTContext *Context, const Decl *TheDecl,
                        const VarDecl *IndexVar) {
  const auto *VDecl = dyn_cast<VarDecl>(TheDecl);
  if (!VDecl)
    return false;
  if (!VDecl->hasInit())
    return false;

  bool OnlyCasts = true;
  const Expr *Init = VDecl->getInit()->IgnoreParenImpCasts();
  if (Init && isa<CXXConstructExpr>(Init)) {
    Init = digThroughConstructors(Init);
    OnlyCasts = false;
  }
  if (!Init)
    return false;

  // Check that the declared type is the same as (or a reference to) the
  // container type.
  if (!OnlyCasts) {
    QualType InitType = Init->getType();
    QualType DeclarationType = VDecl->getType();
    if (!DeclarationType.isNull() && DeclarationType->isReferenceType())
      DeclarationType = DeclarationType.getNonReferenceType();

    if (InitType.isNull() || DeclarationType.isNull() ||
        !Context->hasSameUnqualifiedType(DeclarationType, InitType))
      return false;
  }

  switch (Init->getStmtClass()) {
  case Stmt::ArraySubscriptExprClass: {
    const auto *E = cast<ArraySubscriptExpr>(Init);
    // We don't really care which array is used here. We check to make sure
    // it was the correct one later, since the AST will traverse it next.
    return isIndexInSubscriptExpr(E->getIdx(), IndexVar);
  }

  case Stmt::UnaryOperatorClass:
    return isDereferenceOfUop(cast<UnaryOperator>(Init), IndexVar);

  case Stmt::CXXOperatorCallExprClass: {
    const auto *OpCall = cast<CXXOperatorCallExpr>(Init);
    if (OpCall->getOperator() == OO_Star)
      return isDereferenceOfOpCall(OpCall, IndexVar);
    if (OpCall->getOperator() == OO_Subscript) {
      assert(OpCall->getNumArgs() == 2);
      return isIndexInSubscriptExpr(OpCall->getArg(1), IndexVar);
    }
    break;
  }

  case Stmt::CXXMemberCallExprClass: {
    const auto *MemCall = cast<CXXMemberCallExpr>(Init);
    // This check is needed because getMethodDecl can return nullptr if the
    // callee is a member function pointer.
    const auto *MDecl = MemCall->getMethodDecl();
    if (MDecl && !isa<CXXConversionDecl>(MDecl) &&
        MDecl->getNameAsString() == "at" && MemCall->getNumArgs() == 1) {
      return isIndexInSubscriptExpr(MemCall->getArg(0), IndexVar);
    }
    return false;
  }

  default:
    break;
  }
  return false;
}

/// Determines whether the bound of a for loop condition expression is
/// the same as the statically computable size of ArrayType.
///
/// Given
/// \code
///   const int N = 5;
///   int arr[N];
/// \endcode
/// This is intended to permit
/// \code
///   for (int i = 0; i < N; ++i) {  /* use arr[i] */ }
///   for (int i = 0; i < arraysize(arr); ++i) { /* use arr[i] */ }
/// \endcode
static bool arrayMatchesBoundExpr(ASTContext *Context,
                                  const QualType &ArrayType,
                                  const Expr *ConditionExpr) {
  if (!ConditionExpr || ConditionExpr->isValueDependent())
    return false;
  const ConstantArrayType *ConstType =
      Context->getAsConstantArrayType(ArrayType);
  if (!ConstType)
    return false;
  Optional<llvm::APSInt> ConditionSize =
      ConditionExpr->getIntegerConstantExpr(*Context);
  if (!ConditionSize)
    return false;
  llvm::APSInt ArraySize(ConstType->getSize());
  return llvm::APSInt::isSameValue(*ConditionSize, ArraySize);
}

ForLoopIndexUseVisitor::ForLoopIndexUseVisitor(ASTContext *Context,
                                               const VarDecl *IndexVar,
                                               const VarDecl *EndVar,
                                               const Expr *ContainerExpr,
                                               const Expr *ArrayBoundExpr,
                                               bool ContainerNeedsDereference)
    : Context(Context), IndexVar(IndexVar), EndVar(EndVar),
      ContainerExpr(ContainerExpr), ArrayBoundExpr(ArrayBoundExpr),
      ContainerNeedsDereference(ContainerNeedsDereference),
      OnlyUsedAsIndex(true), AliasDecl(nullptr),
      ConfidenceLevel(Confidence::CL_Safe), NextStmtParent(nullptr),
      CurrStmtParent(nullptr), ReplaceWithAliasUse(false),
      AliasFromForInit(false) {
  if (ContainerExpr)
    addComponent(ContainerExpr);
}

bool ForLoopIndexUseVisitor::findAndVerifyUsages(const Stmt *Body) {
  TraverseStmt(const_cast<Stmt *>(Body));
  return OnlyUsedAsIndex && ContainerExpr;
}

void ForLoopIndexUseVisitor::addComponents(const ComponentVector &Components) {
  // FIXME: add sort(on ID)+unique to avoid extra work.
  for (const auto &I : Components)
    addComponent(I);
}

void ForLoopIndexUseVisitor::addComponent(const Expr *E) {
  llvm::FoldingSetNodeID ID;
  const Expr *Node = E->IgnoreParenImpCasts();
  Node->Profile(ID, *Context, true);
  DependentExprs.push_back(std::make_pair(Node, ID));
}

void ForLoopIndexUseVisitor::addUsage(const Usage &U) {
  SourceLocation Begin = U.Range.getBegin();
  if (Begin.isMacroID())
    Begin = Context->getSourceManager().getSpellingLoc(Begin);

  if (UsageLocations.insert(Begin).second)
    Usages.push_back(U);
}

/// If the unary operator is a dereference of IndexVar, include it
/// as a valid usage and prune the traversal.
///
/// For example, if container.begin() and container.end() both return pointers
/// to int, this makes sure that the initialization for `k` is not counted as an
/// unconvertible use of the iterator `i`.
/// \code
///   for (int *i = container.begin(), *e = container.end(); i != e; ++i) {
///     int k = *i + 2;
///   }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseUnaryOperator(UnaryOperator *Uop) {
  // If we dereference an iterator that's actually a pointer, count the
  // occurrence.
  if (isDereferenceOfUop(Uop, IndexVar)) {
    addUsage(Usage(Uop));
    return true;
  }

  return VisitorBase::TraverseUnaryOperator(Uop);
}

/// If the member expression is operator-> (overloaded or not) on
/// IndexVar, include it as a valid usage and prune the traversal.
///
/// For example, given
/// \code
///   struct Foo { int bar(); int x; };
///   vector<Foo> v;
/// \endcode
/// the following uses will be considered convertible:
/// \code
///   for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
///     int b = i->bar();
///     int k = i->x + 1;
///   }
/// \endcode
/// though
/// \code
///   for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
///     int k = i.insert(1);
///   }
///   for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
///     int b = e->bar();
///   }
/// \endcode
/// will not.
bool ForLoopIndexUseVisitor::TraverseMemberExpr(MemberExpr *Member) {
  const Expr *Base = Member->getBase();
  const DeclRefExpr *Obj = getDeclRef(Base);
  const Expr *ResultExpr = Member;
  QualType ExprType;
  if (const auto *Call =
          dyn_cast<CXXOperatorCallExpr>(Base->IgnoreParenImpCasts())) {
    // If operator->() is a MemberExpr containing a CXXOperatorCallExpr, then
    // the MemberExpr does not have the expression we want. We therefore catch
    // that instance here.
    // For example, if vector<Foo>::iterator defines operator->(), then the
    // example `i->bar()` at the top of this function is a CXXMemberCallExpr
    // referring to `i->` as the member function called. We want just `i`, so
    // we take the argument to operator->() as the base object.
    if (Call->getOperator() == OO_Arrow) {
      assert(Call->getNumArgs() == 1 &&
             "Operator-> takes more than one argument");
      Obj = getDeclRef(Call->getArg(0));
      ResultExpr = Obj;
      ExprType = Call->getCallReturnType(*Context);
    }
  }

  if (Obj && exprReferencesVariable(IndexVar, Obj)) {
    // Member calls on the iterator with '.' are not allowed.
    if (!Member->isArrow()) {
      OnlyUsedAsIndex = false;
      return true;
    }

    if (ExprType.isNull())
      ExprType = Obj->getType();

    if (!ExprType->isPointerType())
      return false;

    // FIXME: This works around not having the location of the arrow operator.
    // Consider adding OperatorLoc to MemberExpr?
    SourceLocation ArrowLoc = Lexer::getLocForEndOfToken(
        Base->getExprLoc(), 0, Context->getSourceManager(),
        Context->getLangOpts());
    // If something complicated is happening (i.e. the next token isn't an
    // arrow), give up on making this work.
    if (ArrowLoc.isValid()) {
      addUsage(Usage(ResultExpr, Usage::UK_MemberThroughArrow,
                     SourceRange(Base->getExprLoc(), ArrowLoc)));
      return true;
    }
  }
  return VisitorBase::TraverseMemberExpr(Member);
}

/// If a member function call is the at() accessor on the container with
/// IndexVar as the single argument, include it as a valid usage and prune
/// the traversal.
///
/// Member calls on other objects will not be permitted.
/// Calls on the iterator object are not permitted, unless done through
/// operator->(). The one exception is allowing vector::at() for pseudoarrays.
bool ForLoopIndexUseVisitor::TraverseCXXMemberCallExpr(
    CXXMemberCallExpr *MemberCall) {
  auto *Member =
      dyn_cast<MemberExpr>(MemberCall->getCallee()->IgnoreParenImpCasts());
  if (!Member)
    return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);

  // We specifically allow an accessor named "at" to let STL in, though
  // this is restricted to pseudo-arrays by requiring a single, integer
  // argument.
  const IdentifierInfo *Ident = Member->getMemberDecl()->getIdentifier();
  if (Ident && Ident->isStr("at") && MemberCall->getNumArgs() == 1) {
    if (isIndexInSubscriptExpr(Context, MemberCall->getArg(0), IndexVar,
                               Member->getBase(), ContainerExpr,
                               ContainerNeedsDereference)) {
      addUsage(Usage(MemberCall));
      return true;
    }
  }

  if (containsExpr(Context, &DependentExprs, Member->getBase()))
    ConfidenceLevel.lowerTo(Confidence::CL_Risky);

  return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
}

/// If an overloaded operator call is a dereference of IndexVar or
/// a subscript of the container with IndexVar as the single argument,
/// include it as a valid usage and prune the traversal.
///
/// For example, given
/// \code
///   struct Foo { int bar(); int x; };
///   vector<Foo> v;
///   void f(Foo);
/// \endcode
/// the following uses will be considered convertible:
/// \code
///   for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
///     f(*i);
///   }
///   for (int i = 0; i < v.size(); ++i) {
///      int i = v[i] + 1;
///   }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseCXXOperatorCallExpr(
    CXXOperatorCallExpr *OpCall) {
  switch (OpCall->getOperator()) {
  case OO_Star:
    if (isDereferenceOfOpCall(OpCall, IndexVar)) {
      addUsage(Usage(OpCall));
      return true;
    }
    break;

  case OO_Subscript:
    if (OpCall->getNumArgs() != 2)
      break;
    if (isIndexInSubscriptExpr(Context, OpCall->getArg(1), IndexVar,
                               OpCall->getArg(0), ContainerExpr,
                               ContainerNeedsDereference)) {
      addUsage(Usage(OpCall));
      return true;
    }
    break;

  default:
    break;
  }
  return VisitorBase::TraverseCXXOperatorCallExpr(OpCall);
}

/// If we encounter an array with IndexVar as the index of an
/// ArraySubscriptExpression, note it as a consistent usage and prune the
/// AST traversal.
///
/// For example, given
/// \code
///   const int N = 5;
///   int arr[N];
/// \endcode
/// This is intended to permit
/// \code
///   for (int i = 0; i < N; ++i) {  /* use arr[i] */ }
/// \endcode
/// but not
/// \code
///   for (int i = 0; i < N; ++i) {  /* use notArr[i] */ }
/// \endcode
/// and further checking needs to be done later to ensure that exactly one array
/// is referenced.
bool ForLoopIndexUseVisitor::TraverseArraySubscriptExpr(ArraySubscriptExpr *E) {
  Expr *Arr = E->getBase();
  if (!isIndexInSubscriptExpr(E->getIdx(), IndexVar))
    return VisitorBase::TraverseArraySubscriptExpr(E);

  if ((ContainerExpr &&
       !areSameExpr(Context, Arr->IgnoreParenImpCasts(),
                    ContainerExpr->IgnoreParenImpCasts())) ||
      !arrayMatchesBoundExpr(Context, Arr->IgnoreImpCasts()->getType(),
                             ArrayBoundExpr)) {
    // If we have already discovered the array being indexed and this isn't it
    // or this array doesn't match, mark this loop as unconvertible.
    OnlyUsedAsIndex = false;
    return VisitorBase::TraverseArraySubscriptExpr(E);
  }

  if (!ContainerExpr)
    ContainerExpr = Arr;

  addUsage(Usage(E));
  return true;
}

/// If we encounter a reference to IndexVar in an unpruned branch of the
/// traversal, mark this loop as unconvertible.
///
/// This determines the set of convertible loops: any usages of IndexVar
/// not explicitly considered convertible by this traversal will be caught by
/// this function.
///
/// Additionally, if the container expression is more complex than just a
/// DeclRefExpr, and some part of it is appears elsewhere in the loop, lower
/// our confidence in the transformation.
///
/// For example, these are not permitted:
/// \code
///   for (int i = 0; i < N; ++i) {  printf("arr[%d] = %d", i, arr[i]); }
///   for (vector<int>::iterator i = container.begin(), e = container.end();
///        i != e; ++i)
///     i.insert(0);
///   for (vector<int>::iterator i = container.begin(), e = container.end();
///        i != e; ++i)
///     if (i + 1 != e)
///       printf("%d", *i);
/// \endcode
///
/// And these will raise the risk level:
/// \code
///    int arr[10][20];
///    int l = 5;
///    for (int j = 0; j < 20; ++j)
///      int k = arr[l][j] + l; // using l outside arr[l] is considered risky
///    for (int i = 0; i < obj.getVector().size(); ++i)
///      obj.foo(10); // using `obj` is considered risky
/// \endcode
bool ForLoopIndexUseVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
  const ValueDecl *TheDecl = E->getDecl();
  if (areSameVariable(IndexVar, TheDecl) ||
      exprReferencesVariable(IndexVar, E) || areSameVariable(EndVar, TheDecl) ||
      exprReferencesVariable(EndVar, E))
    OnlyUsedAsIndex = false;
  if (containsExpr(Context, &DependentExprs, E))
    ConfidenceLevel.lowerTo(Confidence::CL_Risky);
  return true;
}

/// If the loop index is captured by a lambda, replace this capture
/// by the range-for loop variable.
///
/// For example:
/// \code
///   for (int i = 0; i < N; ++i) {
///     auto f = [v, i](int k) {
///       printf("%d\n", v[i] + k);
///     };
///     f(v[i]);
///   }
/// \endcode
///
/// Will be replaced by:
/// \code
///   for (auto & elem : v) {
///     auto f = [v, elem](int k) {
///       printf("%d\n", elem + k);
///     };
///     f(elem);
///   }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseLambdaCapture(LambdaExpr *LE,
                                                   const LambdaCapture *C,
                                                   Expr *Init) {
  if (C->capturesVariable()) {
    const VarDecl *VDecl = C->getCapturedVar();
    if (areSameVariable(IndexVar, cast<ValueDecl>(VDecl))) {
      // FIXME: if the index is captured, it will count as an usage and the
      // alias (if any) won't work, because it is only used in case of having
      // exactly one usage.
      addUsage(Usage(nullptr,
                     C->getCaptureKind() == LCK_ByCopy ? Usage::UK_CaptureByCopy
                                                       : Usage::UK_CaptureByRef,
                     C->getLocation()));
    }
  }
  return VisitorBase::TraverseLambdaCapture(LE, C, Init);
}

/// If we find that another variable is created just to refer to the loop
/// element, note it for reuse as the loop variable.
///
/// See the comments for isAliasDecl.
bool ForLoopIndexUseVisitor::VisitDeclStmt(DeclStmt *S) {
  if (!AliasDecl && S->isSingleDecl() &&
      isAliasDecl(Context, S->getSingleDecl(), IndexVar)) {
    AliasDecl = S;
    if (CurrStmtParent) {
      if (isa<IfStmt>(CurrStmtParent) || isa<WhileStmt>(CurrStmtParent) ||
          isa<SwitchStmt>(CurrStmtParent))
        ReplaceWithAliasUse = true;
      else if (isa<ForStmt>(CurrStmtParent)) {
        if (cast<ForStmt>(CurrStmtParent)->getConditionVariableDeclStmt() == S)
          ReplaceWithAliasUse = true;
        else
          // It's assumed S came the for loop's init clause.
          AliasFromForInit = true;
      }
    }
  }

  return true;
}

bool ForLoopIndexUseVisitor::TraverseStmt(Stmt *S) {
  // If this is an initialization expression for a lambda capture, prune the
  // traversal so that we don't end up diagnosing the contained DeclRefExpr as
  // inconsistent usage. No need to record the usage here -- this is done in
  // TraverseLambdaCapture().
  if (const auto *LE = dyn_cast_or_null<LambdaExpr>(NextStmtParent)) {
    // Any child of a LambdaExpr that isn't the body is an initialization
    // expression.
    if (S != LE->getBody()) {
      return true;
    }
  }

  // All this pointer swapping is a mechanism for tracking immediate parentage
  // of Stmts.
  const Stmt *OldNextParent = NextStmtParent;
  CurrStmtParent = NextStmtParent;
  NextStmtParent = S;
  bool Result = VisitorBase::TraverseStmt(S);
  NextStmtParent = OldNextParent;
  return Result;
}

std::string VariableNamer::createIndexName() {
  // FIXME: Add in naming conventions to handle:
  //  - How to handle conflicts.
  //  - An interactive process for naming.
  std::string IteratorName;
  StringRef ContainerName;
  if (TheContainer)
    ContainerName = TheContainer->getName();

  size_t Len = ContainerName.size();
  if (Len > 1 && ContainerName.endswith(Style == NS_UpperCase ? "S" : "s")) {
    IteratorName = std::string(ContainerName.substr(0, Len - 1));
    // E.g.: (auto thing : things)
    if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName())
      return IteratorName;
  }

  if (Len > 2 && ContainerName.endswith(Style == NS_UpperCase ? "S_" : "s_")) {
    IteratorName = std::string(ContainerName.substr(0, Len - 2));
    // E.g.: (auto thing : things_)
    if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName())
      return IteratorName;
  }

  return std::string(OldIndex->getName());
}

/// Determines whether or not the name \a Symbol conflicts with
/// language keywords or defined macros. Also checks if the name exists in
/// LoopContext, any of its parent contexts, or any of its child statements.
///
/// We also check to see if the same identifier was generated by this loop
/// converter in a loop nested within SourceStmt.
bool VariableNamer::declarationExists(StringRef Symbol) {
  assert(Context != nullptr && "Expected an ASTContext");
  IdentifierInfo &Ident = Context->Idents.get(Symbol);

  // Check if the symbol is not an identifier (ie. is a keyword or alias).
  if (!isAnyIdentifier(Ident.getTokenID()))
    return true;

  // Check for conflicting macro definitions.
  if (Ident.hasMacroDefinition())
    return true;

  // Determine if the symbol was generated in a parent context.
  for (const Stmt *S = SourceStmt; S != nullptr; S = ReverseAST->lookup(S)) {
    StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(S);
    if (I != GeneratedDecls->end() && I->second == Symbol)
      return true;
  }

  // FIXME: Rather than detecting conflicts at their usages, we should check the
  // parent context.
  // For some reason, lookup() always returns the pair (NULL, NULL) because its
  // StoredDeclsMap is not initialized (i.e. LookupPtr.getInt() is false inside
  // of DeclContext::lookup()). Why is this?

  // Finally, determine if the symbol was used in the loop or a child context.
  DeclFinderASTVisitor DeclFinder(std::string(Symbol), GeneratedDecls);
  return DeclFinder.findUsages(SourceStmt);
}

} // namespace modernize
} // namespace tidy
} // namespace clang