UseAfterMoveCheck.cpp 18 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
//===--- UseAfterMoveCheck.cpp - clang-tidy -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "UseAfterMoveCheck.h"

#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/Analysis/CFG.h"
#include "clang/Lex/Lexer.h"

#include "../utils/ExprSequence.h"

using namespace clang::ast_matchers;
using namespace clang::tidy::utils;


namespace clang {
namespace tidy {
namespace bugprone {

namespace {

AST_MATCHER(Expr, hasUnevaluatedContext) {
  if (isa<CXXNoexceptExpr>(Node) || isa<RequiresExpr>(Node))
    return true;
  if (const auto *UnaryExpr = dyn_cast<UnaryExprOrTypeTraitExpr>(&Node)) {
    switch (UnaryExpr->getKind()) {
    case UETT_SizeOf:
    case UETT_AlignOf:
      return true;
    default:
      return false;
    }
  }
  if (const auto *TypeIDExpr = dyn_cast<CXXTypeidExpr>(&Node))
    return !TypeIDExpr->isPotentiallyEvaluated();
  return false;
}

/// Contains information about a use-after-move.
struct UseAfterMove {
  // The DeclRefExpr that constituted the use of the object.
  const DeclRefExpr *DeclRef;

  // Is the order in which the move and the use are evaluated undefined?
  bool EvaluationOrderUndefined;
};

/// Finds uses of a variable after a move (and maintains state required by the
/// various internal helper functions).
class UseAfterMoveFinder {
public:
  UseAfterMoveFinder(ASTContext *TheContext);

  // Within the given function body, finds the first use of 'MovedVariable' that
  // occurs after 'MovingCall' (the expression that performs the move). If a
  // use-after-move is found, writes information about it to 'TheUseAfterMove'.
  // Returns whether a use-after-move was found.
  bool find(Stmt *FunctionBody, const Expr *MovingCall,
            const ValueDecl *MovedVariable, UseAfterMove *TheUseAfterMove);

private:
  bool findInternal(const CFGBlock *Block, const Expr *MovingCall,
                    const ValueDecl *MovedVariable,
                    UseAfterMove *TheUseAfterMove);
  void getUsesAndReinits(const CFGBlock *Block, const ValueDecl *MovedVariable,
                         llvm::SmallVectorImpl<const DeclRefExpr *> *Uses,
                         llvm::SmallPtrSetImpl<const Stmt *> *Reinits);
  void getDeclRefs(const CFGBlock *Block, const Decl *MovedVariable,
                   llvm::SmallPtrSetImpl<const DeclRefExpr *> *DeclRefs);
  void getReinits(const CFGBlock *Block, const ValueDecl *MovedVariable,
                  llvm::SmallPtrSetImpl<const Stmt *> *Stmts,
                  llvm::SmallPtrSetImpl<const DeclRefExpr *> *DeclRefs);

  ASTContext *Context;
  std::unique_ptr<ExprSequence> Sequence;
  std::unique_ptr<StmtToBlockMap> BlockMap;
  llvm::SmallPtrSet<const CFGBlock *, 8> Visited;
};

} // namespace


// Matches nodes that are
// - Part of a decltype argument or class template argument (we check this by
//   seeing if they are children of a TypeLoc), or
// - Part of a function template argument (we check this by seeing if they are
//   children of a DeclRefExpr that references a function template).
// DeclRefExprs that fulfill these conditions should not be counted as a use or
// move.
static StatementMatcher inDecltypeOrTemplateArg() {
  return anyOf(hasAncestor(typeLoc()),
               hasAncestor(declRefExpr(
                   to(functionDecl(ast_matchers::isTemplateInstantiation())))),
               hasAncestor(expr(hasUnevaluatedContext())));
}

UseAfterMoveFinder::UseAfterMoveFinder(ASTContext *TheContext)
    : Context(TheContext) {}

bool UseAfterMoveFinder::find(Stmt *FunctionBody, const Expr *MovingCall,
                              const ValueDecl *MovedVariable,
                              UseAfterMove *TheUseAfterMove) {
  // Generate the CFG manually instead of through an AnalysisDeclContext because
  // it seems the latter can't be used to generate a CFG for the body of a
  // lambda.
  //
  // We include implicit and temporary destructors in the CFG so that
  // destructors marked [[noreturn]] are handled correctly in the control flow
  // analysis. (These are used in some styles of assertion macros.)
  CFG::BuildOptions Options;
  Options.AddImplicitDtors = true;
  Options.AddTemporaryDtors = true;
  std::unique_ptr<CFG> TheCFG =
      CFG::buildCFG(nullptr, FunctionBody, Context, Options);
  if (!TheCFG)
    return false;

  Sequence =
      std::make_unique<ExprSequence>(TheCFG.get(), FunctionBody, Context);
  BlockMap = std::make_unique<StmtToBlockMap>(TheCFG.get(), Context);
  Visited.clear();

  const CFGBlock *Block = BlockMap->blockContainingStmt(MovingCall);
  if (!Block)
    return false;

  return findInternal(Block, MovingCall, MovedVariable, TheUseAfterMove);
}

bool UseAfterMoveFinder::findInternal(const CFGBlock *Block,
                                      const Expr *MovingCall,
                                      const ValueDecl *MovedVariable,
                                      UseAfterMove *TheUseAfterMove) {
  if (Visited.count(Block))
    return false;

  // Mark the block as visited (except if this is the block containing the
  // std::move() and it's being visited the first time).
  if (!MovingCall)
    Visited.insert(Block);

  // Get all uses and reinits in the block.
  llvm::SmallVector<const DeclRefExpr *, 1> Uses;
  llvm::SmallPtrSet<const Stmt *, 1> Reinits;
  getUsesAndReinits(Block, MovedVariable, &Uses, &Reinits);

  // Ignore all reinitializations where the move potentially comes after the
  // reinit.
  llvm::SmallVector<const Stmt *, 1> ReinitsToDelete;
  for (const Stmt *Reinit : Reinits) {
    if (MovingCall && Sequence->potentiallyAfter(MovingCall, Reinit))
      ReinitsToDelete.push_back(Reinit);
  }
  for (const Stmt *Reinit : ReinitsToDelete) {
    Reinits.erase(Reinit);
  }

  // Find all uses that potentially come after the move.
  for (const DeclRefExpr *Use : Uses) {
    if (!MovingCall || Sequence->potentiallyAfter(Use, MovingCall)) {
      // Does the use have a saving reinit? A reinit is saving if it definitely
      // comes before the use, i.e. if there's no potential that the reinit is
      // after the use.
      bool HaveSavingReinit = false;
      for (const Stmt *Reinit : Reinits) {
        if (!Sequence->potentiallyAfter(Reinit, Use))
          HaveSavingReinit = true;
      }

      if (!HaveSavingReinit) {
        TheUseAfterMove->DeclRef = Use;

        // Is this a use-after-move that depends on order of evaluation?
        // This is the case if the move potentially comes after the use (and we
        // already know that use potentially comes after the move, which taken
        // together tells us that the ordering is unclear).
        TheUseAfterMove->EvaluationOrderUndefined =
            MovingCall != nullptr &&
            Sequence->potentiallyAfter(MovingCall, Use);

        return true;
      }
    }
  }

  // If the object wasn't reinitialized, call ourselves recursively on all
  // successors.
  if (Reinits.empty()) {
    for (const auto &Succ : Block->succs()) {
      if (Succ && findInternal(Succ, nullptr, MovedVariable, TheUseAfterMove))
        return true;
    }
  }

  return false;
}

void UseAfterMoveFinder::getUsesAndReinits(
    const CFGBlock *Block, const ValueDecl *MovedVariable,
    llvm::SmallVectorImpl<const DeclRefExpr *> *Uses,
    llvm::SmallPtrSetImpl<const Stmt *> *Reinits) {
  llvm::SmallPtrSet<const DeclRefExpr *, 1> DeclRefs;
  llvm::SmallPtrSet<const DeclRefExpr *, 1> ReinitDeclRefs;

  getDeclRefs(Block, MovedVariable, &DeclRefs);
  getReinits(Block, MovedVariable, Reinits, &ReinitDeclRefs);

  // All references to the variable that aren't reinitializations are uses.
  Uses->clear();
  for (const DeclRefExpr *DeclRef : DeclRefs) {
    if (!ReinitDeclRefs.count(DeclRef))
      Uses->push_back(DeclRef);
  }

  // Sort the uses by their occurrence in the source code.
  std::sort(Uses->begin(), Uses->end(),
            [](const DeclRefExpr *D1, const DeclRefExpr *D2) {
              return D1->getExprLoc() < D2->getExprLoc();
            });
}

bool isStandardSmartPointer(const ValueDecl *VD) {
  const Type *TheType = VD->getType().getNonReferenceType().getTypePtrOrNull();
  if (!TheType)
    return false;

  const CXXRecordDecl *RecordDecl = TheType->getAsCXXRecordDecl();
  if (!RecordDecl)
    return false;

  const IdentifierInfo *ID = RecordDecl->getIdentifier();
  if (!ID)
    return false;

  StringRef Name = ID->getName();
  if (Name != "unique_ptr" && Name != "shared_ptr" && Name != "weak_ptr")
    return false;

  return RecordDecl->getDeclContext()->isStdNamespace();
}

void UseAfterMoveFinder::getDeclRefs(
    const CFGBlock *Block, const Decl *MovedVariable,
    llvm::SmallPtrSetImpl<const DeclRefExpr *> *DeclRefs) {
  DeclRefs->clear();
  for (const auto &Elem : *Block) {
    Optional<CFGStmt> S = Elem.getAs<CFGStmt>();
    if (!S)
      continue;

    auto addDeclRefs = [this, Block,
                        DeclRefs](const ArrayRef<BoundNodes> Matches) {
      for (const auto &Match : Matches) {
        const auto *DeclRef = Match.getNodeAs<DeclRefExpr>("declref");
        const auto *Operator = Match.getNodeAs<CXXOperatorCallExpr>("operator");
        if (DeclRef && BlockMap->blockContainingStmt(DeclRef) == Block) {
          // Ignore uses of a standard smart pointer that don't dereference the
          // pointer.
          if (Operator || !isStandardSmartPointer(DeclRef->getDecl())) {
            DeclRefs->insert(DeclRef);
          }
        }
      }
    };

    auto DeclRefMatcher = declRefExpr(hasDeclaration(equalsNode(MovedVariable)),
                                      unless(inDecltypeOrTemplateArg()))
                              .bind("declref");

    addDeclRefs(
        match(traverse(ast_type_traits::TK_AsIs, findAll(DeclRefMatcher)),
              *S->getStmt(), *Context));
    addDeclRefs(match(findAll(cxxOperatorCallExpr(
                                  hasAnyOverloadedOperatorName("*", "->", "[]"),
                                  hasArgument(0, DeclRefMatcher))
                                  .bind("operator")),
                      *S->getStmt(), *Context));
  }
}

void UseAfterMoveFinder::getReinits(
    const CFGBlock *Block, const ValueDecl *MovedVariable,
    llvm::SmallPtrSetImpl<const Stmt *> *Stmts,
    llvm::SmallPtrSetImpl<const DeclRefExpr *> *DeclRefs) {
  auto DeclRefMatcher =
      declRefExpr(hasDeclaration(equalsNode(MovedVariable))).bind("declref");

  auto StandardContainerTypeMatcher = hasType(hasUnqualifiedDesugaredType(
      recordType(hasDeclaration(cxxRecordDecl(hasAnyName(
          "::std::basic_string", "::std::vector", "::std::deque",
          "::std::forward_list", "::std::list", "::std::set", "::std::map",
          "::std::multiset", "::std::multimap", "::std::unordered_set",
          "::std::unordered_map", "::std::unordered_multiset",
          "::std::unordered_multimap"))))));

  auto StandardSmartPointerTypeMatcher = hasType(hasUnqualifiedDesugaredType(
      recordType(hasDeclaration(cxxRecordDecl(hasAnyName(
          "::std::unique_ptr", "::std::shared_ptr", "::std::weak_ptr"))))));

  // Matches different types of reinitialization.
  auto ReinitMatcher =
      stmt(anyOf(
               // Assignment. In addition to the overloaded assignment operator,
               // test for built-in assignment as well, since template functions
               // may be instantiated to use std::move() on built-in types.
               binaryOperator(hasOperatorName("="), hasLHS(DeclRefMatcher)),
               cxxOperatorCallExpr(hasOverloadedOperatorName("="),
                                   hasArgument(0, DeclRefMatcher)),
               // Declaration. We treat this as a type of reinitialization too,
               // so we don't need to treat it separately.
               declStmt(hasDescendant(equalsNode(MovedVariable))),
               // clear() and assign() on standard containers.
               cxxMemberCallExpr(
                   on(expr(DeclRefMatcher, StandardContainerTypeMatcher)),
                   // To keep the matcher simple, we check for assign() calls
                   // on all standard containers, even though only vector,
                   // deque, forward_list and list have assign(). If assign()
                   // is called on any of the other containers, this will be
                   // flagged by a compile error anyway.
                   callee(cxxMethodDecl(hasAnyName("clear", "assign")))),
               // reset() on standard smart pointers.
               cxxMemberCallExpr(
                   on(expr(DeclRefMatcher, StandardSmartPointerTypeMatcher)),
                   callee(cxxMethodDecl(hasName("reset")))),
               // Methods that have the [[clang::reinitializes]] attribute.
               cxxMemberCallExpr(
                   on(DeclRefMatcher),
                   callee(cxxMethodDecl(hasAttr(clang::attr::Reinitializes)))),
               // Passing variable to a function as a non-const pointer.
               callExpr(forEachArgumentWithParam(
                   unaryOperator(hasOperatorName("&"),
                                 hasUnaryOperand(DeclRefMatcher)),
                   unless(parmVarDecl(hasType(pointsTo(isConstQualified())))))),
               // Passing variable to a function as a non-const lvalue reference
               // (unless that function is std::move()).
               callExpr(forEachArgumentWithParam(
                            traverse(ast_type_traits::TK_AsIs, DeclRefMatcher),
                            unless(parmVarDecl(hasType(
                                references(qualType(isConstQualified())))))),
                        unless(callee(functionDecl(hasName("::std::move")))))))
          .bind("reinit");

  Stmts->clear();
  DeclRefs->clear();
  for (const auto &Elem : *Block) {
    Optional<CFGStmt> S = Elem.getAs<CFGStmt>();
    if (!S)
      continue;

    SmallVector<BoundNodes, 1> Matches =
        match(findAll(ReinitMatcher), *S->getStmt(), *Context);

    for (const auto &Match : Matches) {
      const auto *TheStmt = Match.getNodeAs<Stmt>("reinit");
      const auto *TheDeclRef = Match.getNodeAs<DeclRefExpr>("declref");
      if (TheStmt && BlockMap->blockContainingStmt(TheStmt) == Block) {
        Stmts->insert(TheStmt);

        // We count DeclStmts as reinitializations, but they don't have a
        // DeclRefExpr associated with them -- so we need to check 'TheDeclRef'
        // before adding it to the set.
        if (TheDeclRef)
          DeclRefs->insert(TheDeclRef);
      }
    }
  }
}

static void emitDiagnostic(const Expr *MovingCall, const DeclRefExpr *MoveArg,
                           const UseAfterMove &Use, ClangTidyCheck *Check,
                           ASTContext *Context) {
  SourceLocation UseLoc = Use.DeclRef->getExprLoc();
  SourceLocation MoveLoc = MovingCall->getExprLoc();

  Check->diag(UseLoc, "'%0' used after it was moved")
      << MoveArg->getDecl()->getName();
  Check->diag(MoveLoc, "move occurred here", DiagnosticIDs::Note);
  if (Use.EvaluationOrderUndefined) {
    Check->diag(UseLoc,
                "the use and move are unsequenced, i.e. there is no guarantee "
                "about the order in which they are evaluated",
                DiagnosticIDs::Note);
  } else if (UseLoc < MoveLoc || Use.DeclRef == MoveArg) {
    Check->diag(UseLoc,
                "the use happens in a later loop iteration than the move",
                DiagnosticIDs::Note);
  }
}

void UseAfterMoveCheck::registerMatchers(MatchFinder *Finder) {
  auto CallMoveMatcher =
      callExpr(callee(functionDecl(hasName("::std::move"))), argumentCountIs(1),
               hasArgument(0, declRefExpr().bind("arg")),
               anyOf(hasAncestor(lambdaExpr().bind("containing-lambda")),
                     hasAncestor(functionDecl().bind("containing-func"))),
               unless(inDecltypeOrTemplateArg()))
          .bind("call-move");

  Finder->addMatcher(
      traverse(
          ast_type_traits::TK_AsIs,
          // To find the Stmt that we assume performs the actual move, we look
          // for the direct ancestor of the std::move() that isn't one of the
          // node types ignored by ignoringParenImpCasts().
          stmt(
              forEach(expr(ignoringParenImpCasts(CallMoveMatcher))),
              // Don't allow an InitListExpr to be the moving call. An
              // InitListExpr has both a syntactic and a semantic form, and the
              // parent-child relationships are different between the two. This
              // could cause an InitListExpr to be analyzed as the moving call
              // in addition to the Expr that we actually want, resulting in two
              // diagnostics with different code locations for the same move.
              unless(initListExpr()),
              unless(expr(ignoringParenImpCasts(equalsBoundNode("call-move")))))
              .bind("moving-call")),
      this);
}

void UseAfterMoveCheck::check(const MatchFinder::MatchResult &Result) {
  const auto *ContainingLambda =
      Result.Nodes.getNodeAs<LambdaExpr>("containing-lambda");
  const auto *ContainingFunc =
      Result.Nodes.getNodeAs<FunctionDecl>("containing-func");
  const auto *CallMove = Result.Nodes.getNodeAs<CallExpr>("call-move");
  const auto *MovingCall = Result.Nodes.getNodeAs<Expr>("moving-call");
  const auto *Arg = Result.Nodes.getNodeAs<DeclRefExpr>("arg");

  if (!MovingCall || !MovingCall->getExprLoc().isValid())
    MovingCall = CallMove;

  Stmt *FunctionBody = nullptr;
  if (ContainingLambda)
    FunctionBody = ContainingLambda->getBody();
  else if (ContainingFunc)
    FunctionBody = ContainingFunc->getBody();
  else
    return;

  // Ignore the std::move if the variable that was passed to it isn't a local
  // variable.
  if (!Arg->getDecl()->getDeclContext()->isFunctionOrMethod())
    return;

  UseAfterMoveFinder finder(Result.Context);
  UseAfterMove Use;
  if (finder.find(FunctionBody, MovingCall, Arg->getDecl(), &Use))
    emitDiagnostic(MovingCall, Arg, Use, this, Result.Context);
}

} // namespace bugprone
} // namespace tidy
} // namespace clang