pattern-matching-based-opts_6.ll
10.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
; RUN: opt %loadPolly -polly-opt-isl -polly-pattern-matching-based-opts=true \
; RUN: -polly-target-throughput-vector-fma=1 \
; RUN: -polly-target-latency-vector-fma=8 \
; RUN: -analyze -polly-ast -polly-target-1st-cache-level-associativity=8 \
; RUN: -polly-target-2nd-cache-level-associativity=8 \
; RUN: -polly-target-1st-cache-level-size=32768 \
; RUN: -polly-target-vector-register-bitwidth=256 \
; RUN: -polly-target-2nd-cache-level-size=262144 < %s \
; RUN: | FileCheck %s
;
; opt %loadPolly -polly-opt-isl -polly-pattern-matching-based-opts=true \
; -polly-target-throughput-vector-fma=1 \
; -polly-target-latency-vector-fma=8 \
; -polly-codegen -polly-target-1st-cache-level-associativity=8 \
; -polly-target-2nd-cache-level-associativity=8 \
; -polly-target-1st-cache-level-size=32768 \
; -polly-target-vector-register-bitwidth=256 \
; -polly-target-2nd-cache-level-size=262144 -gvn -licm -slp-vectorizer \
; -mcpu=corei7 -stats -S < %s 2>&1 | FileCheck %s \
; --check-prefix=AUTO-VECTORIZATION
;
;
; /* We isolate a set of partial tile prefixes, which contains only partial
; tile prefixes that have exactly Mr x Nr iterations of the two innermost
; loops produced by the optimization of the matrix multiplication. Mr and
; Nr are parameters of the micro-kernel (see getMicroKernelParams and
; getMacroKernelParams from lib/Transform/ScheduleOptimizer.cpp for
; details). This test check that in case it cannot be proved that
; the number of loop iterations can be evenly divided by tile sizes
; and we tile and unroll the point loops, it helps to get rid of
; the conditional expressions of the unrolled innermost loops, which
; prevents stores and loads of the unrolled loops from being sunk
; and hoisted. Otherwise, it causes a run-time regression in comparison
; to the vectorized code with sunk and hoisted memory accesses. */
; /* C := A * B + C */
; for (i = 0; i < 1020; i++)
; for (j = 0; j < 1020; j++)
; for (k = 0; k < 1020; ++k)
; C[i][j] += A[i][k] * B[k][j];
;
; CHECK: // 1st level tiling - Tiles
; CHECK-NEXT: for (int c1 = 0; c1 <= 3; c1 += 1) {
; CHECK-NEXT: for (int c3 = 0; c3 <= 1019; c3 += 1)
; CHECK-NEXT: for (int c4 = 256 * c1; c4 <= min(1019, 256 * c1 + 255); c4 += 1)
; CHECK-NEXT: CopyStmt_0(0, c3, c4);
; CHECK-NEXT: for (int c2 = 0; c2 <= 10; c2 += 1) {
; CHECK-NEXT: for (int c3 = 96 * c2; c3 <= min(1019, 96 * c2 + 95); c3 += 1)
; CHECK-NEXT: for (int c5 = 256 * c1; c5 <= min(1019, 256 * c1 + 255); c5 += 1)
; CHECK-NEXT: CopyStmt_1(c3, 0, c5);
; CHECK-NEXT: // 1st level tiling - Points
; CHECK-NEXT: // Register tiling - Tiles
; CHECK-NEXT: {
; CHECK-NEXT: for (int c3 = 0; c3 <= 126; c3 += 1)
; CHECK-NEXT: for (int c4 = 0; c4 <= min(23, -24 * c2 + 254); c4 += 1)
; CHECK-NEXT: for (int c5 = 0; c5 <= min(255, -256 * c1 + 1019); c5 += 1) {
; CHECK-NEXT: // Loop Vectorizer Disabled
; CHECK-NEXT: // Register tiling - Points
; CHECK-NEXT: {
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 1, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 2, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 4, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 5, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 6, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 8 * c3 + 7, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 1, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 2, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 4, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 5, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 6, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 8 * c3 + 7, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 1, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 2, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 4, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 5, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 6, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 8 * c3 + 7, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 1, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 2, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 3, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 4, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 5, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 6, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 8 * c3 + 7, 256 * c1 + c5);
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: for (int c4 = 0; c4 <= min(23, -24 * c2 + 254); c4 += 1)
; CHECK-NEXT: for (int c5 = 0; c5 <= min(255, -256 * c1 + 1019); c5 += 1) {
; CHECK-NEXT: // Loop Vectorizer Disabled
; CHECK-NEXT: // Register tiling - Points
; CHECK-NEXT: {
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 1016, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 1017, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 1018, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4, 1019, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 1016, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 1017, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 1018, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 1, 1019, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 1016, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 1017, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 1018, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 2, 1019, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 1016, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 1017, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 1018, 256 * c1 + c5);
; CHECK-NEXT: Stmt_for_body6(96 * c2 + 4 * c4 + 3, 1019, 256 * c1 + c5);
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: }
; CHECK-NEXT: }
;
; AUTO-VECTORIZATION: fmul <4 x double>
; AUTO-VECTORIZATION: fadd <4 x double>
; AUTO-VECTORIZATION: 36 SLP - Number of vector instructions generated
; AUTO-VECTORIZATION: 146 licm - Number of instructions hoisted out of loop
; AUTO-VECTORIZATION: 1 licm - Number of load insts hoisted or sunk
; AUTO-VECTORIZATION: 32 licm - Number of memory locations promoted to registers
;
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-unknown"
define internal void @kernel_gemm(i32 %ni, i32 %nj, i32 %nk, double %alpha, double %beta, [1020 x double]* %C, [1020 x double]* %A, [1020 x double]* %B) #0 {
entry:
br label %entry.split
entry.split: ; preds = %entry
br label %for.cond1.preheader
for.cond1.preheader: ; preds = %for.inc20, %entry.split
%indvars.iv41 = phi i64 [ 0, %entry.split ], [ %indvars.iv.next42, %for.inc20 ]
br label %for.cond4.preheader
for.cond4.preheader: ; preds = %for.inc17, %for.cond1.preheader
%indvars.iv38 = phi i64 [ 0, %for.cond1.preheader ], [ %indvars.iv.next39, %for.inc17 ]
br label %for.body6
for.body6: ; preds = %for.body6, %for.cond4.preheader
%indvars.iv = phi i64 [ 0, %for.cond4.preheader ], [ %indvars.iv.next, %for.body6 ]
%arrayidx8 = getelementptr inbounds [1020 x double], [1020 x double]* %A, i64 %indvars.iv41, i64 %indvars.iv
%tmp = load double, double* %arrayidx8, align 8
%arrayidx12 = getelementptr inbounds [1020 x double], [1020 x double]* %B, i64 %indvars.iv, i64 %indvars.iv38
%tmp1 = load double, double* %arrayidx12, align 8
%mul = fmul double %tmp, %tmp1
%arrayidx16 = getelementptr inbounds [1020 x double], [1020 x double]* %C, i64 %indvars.iv41, i64 %indvars.iv38
%tmp2 = load double, double* %arrayidx16, align 8
%add = fadd double %tmp2, %mul
store double %add, double* %arrayidx16, align 8
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp ne i64 %indvars.iv.next, 1020
br i1 %exitcond, label %for.body6, label %for.inc17
for.inc17: ; preds = %for.body6
%indvars.iv.next39 = add nuw nsw i64 %indvars.iv38, 1
%exitcond40 = icmp ne i64 %indvars.iv.next39, 1020
br i1 %exitcond40, label %for.cond4.preheader, label %for.inc20
for.inc20: ; preds = %for.inc17
%indvars.iv.next42 = add nuw nsw i64 %indvars.iv41, 1
%exitcond43 = icmp ne i64 %indvars.iv.next42, 1020
br i1 %exitcond43, label %for.cond1.preheader, label %for.end22
for.end22: ; preds = %for.inc20
ret void
}
attributes #0 = { nounwind uwtable "target-cpu"="x86-64" "target-features"="+aes,+avx,+cmov,+cx16,+fxsr,+mmx,+pclmul,+popcnt,+sse,+sse2,+sse3,+sse4.1,+sse4.2,+ssse3,+x87,+xsave,+xsaveopt" }