DeLICM.cpp 54 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
//===------ DeLICM.cpp -----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Undo the effect of Loop Invariant Code Motion (LICM) and
// GVN Partial Redundancy Elimination (PRE) on SCoP-level.
//
// Namely, remove register/scalar dependencies by mapping them back to array
// elements.
//
//===----------------------------------------------------------------------===//

#include "polly/DeLICM.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLOStream.h"
#include "polly/Support/ISLTools.h"
#include "polly/ZoneAlgo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/InitializePasses.h"

#define DEBUG_TYPE "polly-delicm"

using namespace polly;
using namespace llvm;

namespace {

cl::opt<int>
    DelicmMaxOps("polly-delicm-max-ops",
                 cl::desc("Maximum number of isl operations to invest for "
                          "lifetime analysis; 0=no limit"),
                 cl::init(1000000), cl::cat(PollyCategory));

cl::opt<bool> DelicmOverapproximateWrites(
    "polly-delicm-overapproximate-writes",
    cl::desc(
        "Do more PHI writes than necessary in order to avoid partial accesses"),
    cl::init(false), cl::Hidden, cl::cat(PollyCategory));

cl::opt<bool> DelicmPartialWrites("polly-delicm-partial-writes",
                                  cl::desc("Allow partial writes"),
                                  cl::init(true), cl::Hidden,
                                  cl::cat(PollyCategory));

cl::opt<bool>
    DelicmComputeKnown("polly-delicm-compute-known",
                       cl::desc("Compute known content of array elements"),
                       cl::init(true), cl::Hidden, cl::cat(PollyCategory));

STATISTIC(DeLICMAnalyzed, "Number of successfully analyzed SCoPs");
STATISTIC(DeLICMOutOfQuota,
          "Analyses aborted because max_operations was reached");
STATISTIC(MappedValueScalars, "Number of mapped Value scalars");
STATISTIC(MappedPHIScalars, "Number of mapped PHI scalars");
STATISTIC(TargetsMapped, "Number of stores used for at least one mapping");
STATISTIC(DeLICMScopsModified, "Number of SCoPs optimized");

STATISTIC(NumValueWrites, "Number of scalar value writes after DeLICM");
STATISTIC(NumValueWritesInLoops,
          "Number of scalar value writes nested in affine loops after DeLICM");
STATISTIC(NumPHIWrites, "Number of scalar phi writes after DeLICM");
STATISTIC(NumPHIWritesInLoops,
          "Number of scalar phi writes nested in affine loops after DeLICM");
STATISTIC(NumSingletonWrites, "Number of singleton writes after DeLICM");
STATISTIC(NumSingletonWritesInLoops,
          "Number of singleton writes nested in affine loops after DeLICM");

isl::union_map computeReachingOverwrite(isl::union_map Schedule,
                                        isl::union_map Writes,
                                        bool InclPrevWrite,
                                        bool InclOverwrite) {
  return computeReachingWrite(Schedule, Writes, true, InclPrevWrite,
                              InclOverwrite);
}

/// Compute the next overwrite for a scalar.
///
/// @param Schedule      { DomainWrite[] -> Scatter[] }
///                      Schedule of (at least) all writes. Instances not in @p
///                      Writes are ignored.
/// @param Writes        { DomainWrite[] }
///                      The element instances that write to the scalar.
/// @param InclPrevWrite Whether to extend the timepoints to include
///                      the timepoint where the previous write happens.
/// @param InclOverwrite Whether the reaching overwrite includes the timepoint
///                      of the overwrite itself.
///
/// @return { Scatter[] -> DomainDef[] }
isl::union_map computeScalarReachingOverwrite(isl::union_map Schedule,
                                              isl::union_set Writes,
                                              bool InclPrevWrite,
                                              bool InclOverwrite) {

  // { DomainWrite[] }
  auto WritesMap = isl::union_map::from_domain(Writes);

  // { [Element[] -> Scatter[]] -> DomainWrite[] }
  auto Result = computeReachingOverwrite(
      std::move(Schedule), std::move(WritesMap), InclPrevWrite, InclOverwrite);

  return Result.domain_factor_range();
}

/// Overload of computeScalarReachingOverwrite, with only one writing statement.
/// Consequently, the result consists of only one map space.
///
/// @param Schedule      { DomainWrite[] -> Scatter[] }
/// @param Writes        { DomainWrite[] }
/// @param InclPrevWrite Include the previous write to result.
/// @param InclOverwrite Include the overwrite to the result.
///
/// @return { Scatter[] -> DomainWrite[] }
isl::map computeScalarReachingOverwrite(isl::union_map Schedule,
                                        isl::set Writes, bool InclPrevWrite,
                                        bool InclOverwrite) {
  isl::space ScatterSpace = getScatterSpace(Schedule);
  isl::space DomSpace = Writes.get_space();

  isl::union_map ReachOverwrite = computeScalarReachingOverwrite(
      Schedule, isl::union_set(Writes), InclPrevWrite, InclOverwrite);

  isl::space ResultSpace = ScatterSpace.map_from_domain_and_range(DomSpace);
  return singleton(std::move(ReachOverwrite), ResultSpace);
}

/// Try to find a 'natural' extension of a mapped to elements outside its
/// domain.
///
/// @param Relevant The map with mapping that may not be modified.
/// @param Universe The domain to which @p Relevant needs to be extended.
///
/// @return A map with that associates the domain elements of @p Relevant to the
///         same elements and in addition the elements of @p Universe to some
///         undefined elements. The function prefers to return simple maps.
isl::union_map expandMapping(isl::union_map Relevant, isl::union_set Universe) {
  Relevant = Relevant.coalesce();
  isl::union_set RelevantDomain = Relevant.domain();
  isl::union_map Simplified = Relevant.gist_domain(RelevantDomain);
  Simplified = Simplified.coalesce();
  return Simplified.intersect_domain(Universe);
}

/// Represent the knowledge of the contents of any array elements in any zone or
/// the knowledge we would add when mapping a scalar to an array element.
///
/// Every array element at every zone unit has one of two states:
///
/// - Unused: Not occupied by any value so a transformation can change it to
///   other values.
///
/// - Occupied: The element contains a value that is still needed.
///
/// The union of Unused and Unknown zones forms the universe, the set of all
/// elements at every timepoint. The universe can easily be derived from the
/// array elements that are accessed someway. Arrays that are never accessed
/// also never play a role in any computation and can hence be ignored. With a
/// given universe, only one of the sets needs to stored implicitly. Computing
/// the complement is also an expensive operation, hence this class has been
/// designed that only one of sets is needed while the other is assumed to be
/// implicit. It can still be given, but is mostly ignored.
///
/// There are two use cases for the Knowledge class:
///
/// 1) To represent the knowledge of the current state of ScopInfo. The unused
///    state means that an element is currently unused: there is no read of it
///    before the next overwrite. Also called 'Existing'.
///
/// 2) To represent the requirements for mapping a scalar to array elements. The
///    unused state means that there is no change/requirement. Also called
///    'Proposed'.
///
/// In addition to these states at unit zones, Knowledge needs to know when
/// values are written. This is because written values may have no lifetime (one
/// reason is that the value is never read). Such writes would therefore never
/// conflict, but overwrite values that might still be required. Another source
/// of problems are multiple writes to the same element at the same timepoint,
/// because their order is undefined.
class Knowledge {
private:
  /// { [Element[] -> Zone[]] }
  /// Set of array elements and when they are alive.
  /// Can contain a nullptr; in this case the set is implicitly defined as the
  /// complement of #Unused.
  ///
  /// The set of alive array elements is represented as zone, as the set of live
  /// values can differ depending on how the elements are interpreted.
  /// Assuming a value X is written at timestep [0] and read at timestep [1]
  /// without being used at any later point, then the value is alive in the
  /// interval ]0,1[. This interval cannot be represented by an integer set, as
  /// it does not contain any integer point. Zones allow us to represent this
  /// interval and can be converted to sets of timepoints when needed (e.g., in
  /// isConflicting when comparing to the write sets).
  /// @see convertZoneToTimepoints and this file's comment for more details.
  isl::union_set Occupied;

  /// { [Element[] -> Zone[]] }
  /// Set of array elements when they are not alive, i.e. their memory can be
  /// used for other purposed. Can contain a nullptr; in this case the set is
  /// implicitly defined as the complement of #Occupied.
  isl::union_set Unused;

  /// { [Element[] -> Zone[]] -> ValInst[] }
  /// Maps to the known content for each array element at any interval.
  ///
  /// Any element/interval can map to multiple known elements. This is due to
  /// multiple llvm::Value referring to the same content. Examples are
  ///
  /// - A value stored and loaded again. The LoadInst represents the same value
  /// as the StoreInst's value operand.
  ///
  /// - A PHINode is equal to any one of the incoming values. In case of
  /// LCSSA-form, it is always equal to its single incoming value.
  ///
  /// Two Knowledges are considered not conflicting if at least one of the known
  /// values match. Not known values are not stored as an unnamed tuple (as
  /// #Written does), but maps to nothing.
  ///
  ///  Known values are usually just defined for #Occupied elements. Knowing
  ///  #Unused contents has no advantage as it can be overwritten.
  isl::union_map Known;

  /// { [Element[] -> Scatter[]] -> ValInst[] }
  /// The write actions currently in the scop or that would be added when
  /// mapping a scalar. Maps to the value that is written.
  ///
  /// Written values that cannot be identified are represented by an unknown
  /// ValInst[] (an unnamed tuple of 0 dimension). It conflicts with itself.
  isl::union_map Written;

  /// Check whether this Knowledge object is well-formed.
  void checkConsistency() const {
#ifndef NDEBUG
    // Default-initialized object
    if (!Occupied && !Unused && !Known && !Written)
      return;

    assert(Occupied || Unused);
    assert(Known);
    assert(Written);

    // If not all fields are defined, we cannot derived the universe.
    if (!Occupied || !Unused)
      return;

    assert(Occupied.is_disjoint(Unused));
    auto Universe = Occupied.unite(Unused);

    assert(!Known.domain().is_subset(Universe).is_false());
    assert(!Written.domain().is_subset(Universe).is_false());
#endif
  }

public:
  /// Initialize a nullptr-Knowledge. This is only provided for convenience; do
  /// not use such an object.
  Knowledge() {}

  /// Create a new object with the given members.
  Knowledge(isl::union_set Occupied, isl::union_set Unused,
            isl::union_map Known, isl::union_map Written)
      : Occupied(std::move(Occupied)), Unused(std::move(Unused)),
        Known(std::move(Known)), Written(std::move(Written)) {
    checkConsistency();
  }

  /// Return whether this object was not default-constructed.
  bool isUsable() const { return (Occupied || Unused) && Known && Written; }

  /// Print the content of this object to @p OS.
  void print(llvm::raw_ostream &OS, unsigned Indent = 0) const {
    if (isUsable()) {
      if (Occupied)
        OS.indent(Indent) << "Occupied: " << Occupied << "\n";
      else
        OS.indent(Indent) << "Occupied: <Everything else not in Unused>\n";
      if (Unused)
        OS.indent(Indent) << "Unused:   " << Unused << "\n";
      else
        OS.indent(Indent) << "Unused:   <Everything else not in Occupied>\n";
      OS.indent(Indent) << "Known:    " << Known << "\n";
      OS.indent(Indent) << "Written : " << Written << '\n';
    } else {
      OS.indent(Indent) << "Invalid knowledge\n";
    }
  }

  /// Combine two knowledges, this and @p That.
  void learnFrom(Knowledge That) {
    assert(!isConflicting(*this, That));
    assert(Unused && That.Occupied);
    assert(
        !That.Unused &&
        "This function is only prepared to learn occupied elements from That");
    assert(!Occupied && "This function does not implement "
                        "`this->Occupied = "
                        "this->Occupied.unite(That.Occupied);`");

    Unused = Unused.subtract(That.Occupied);
    Known = Known.unite(That.Known);
    Written = Written.unite(That.Written);

    checkConsistency();
  }

  /// Determine whether two Knowledges conflict with each other.
  ///
  /// In theory @p Existing and @p Proposed are symmetric, but the
  /// implementation is constrained by the implicit interpretation. That is, @p
  /// Existing must have #Unused defined (use case 1) and @p Proposed must have
  /// #Occupied defined (use case 1).
  ///
  /// A conflict is defined as non-preserved semantics when they are merged. For
  /// instance, when for the same array and zone they assume different
  /// llvm::Values.
  ///
  /// @param Existing One of the knowledges with #Unused defined.
  /// @param Proposed One of the knowledges with #Occupied defined.
  /// @param OS       Dump the conflict reason to this output stream; use
  ///                 nullptr to not output anything.
  /// @param Indent   Indention for the conflict reason.
  ///
  /// @return True, iff the two knowledges are conflicting.
  static bool isConflicting(const Knowledge &Existing,
                            const Knowledge &Proposed,
                            llvm::raw_ostream *OS = nullptr,
                            unsigned Indent = 0) {
    assert(Existing.Unused);
    assert(Proposed.Occupied);

#ifndef NDEBUG
    if (Existing.Occupied && Proposed.Unused) {
      auto ExistingUniverse = Existing.Occupied.unite(Existing.Unused);
      auto ProposedUniverse = Proposed.Occupied.unite(Proposed.Unused);
      assert(ExistingUniverse.is_equal(ProposedUniverse) &&
             "Both inputs' Knowledges must be over the same universe");
    }
#endif

    // Do the Existing and Proposed lifetimes conflict?
    //
    // Lifetimes are described as the cross-product of array elements and zone
    // intervals in which they are alive (the space { [Element[] -> Zone[]] }).
    // In the following we call this "element/lifetime interval".
    //
    // In order to not conflict, one of the following conditions must apply for
    // each element/lifetime interval:
    //
    // 1. If occupied in one of the knowledges, it is unused in the other.
    //
    //   - or -
    //
    // 2. Both contain the same value.
    //
    // Instead of partitioning the element/lifetime intervals into a part that
    // both Knowledges occupy (which requires an expensive subtraction) and for
    // these to check whether they are known to be the same value, we check only
    // the second condition and ensure that it also applies when then first
    // condition is true. This is done by adding a wildcard value to
    // Proposed.Known and Existing.Unused such that they match as a common known
    // value. We use the "unknown ValInst" for this purpose. Every
    // Existing.Unused may match with an unknown Proposed.Occupied because these
    // never are in conflict with each other.
    auto ProposedOccupiedAnyVal = makeUnknownForDomain(Proposed.Occupied);
    auto ProposedValues = Proposed.Known.unite(ProposedOccupiedAnyVal);

    auto ExistingUnusedAnyVal = makeUnknownForDomain(Existing.Unused);
    auto ExistingValues = Existing.Known.unite(ExistingUnusedAnyVal);

    auto MatchingVals = ExistingValues.intersect(ProposedValues);
    auto Matches = MatchingVals.domain();

    // Any Proposed.Occupied must either have a match between the known values
    // of Existing and Occupied, or be in Existing.Unused. In the latter case,
    // the previously added "AnyVal" will match each other.
    if (!Proposed.Occupied.is_subset(Matches)) {
      if (OS) {
        auto Conflicting = Proposed.Occupied.subtract(Matches);
        auto ExistingConflictingKnown =
            Existing.Known.intersect_domain(Conflicting);
        auto ProposedConflictingKnown =
            Proposed.Known.intersect_domain(Conflicting);

        OS->indent(Indent) << "Proposed lifetime conflicting with Existing's\n";
        OS->indent(Indent) << "Conflicting occupied: " << Conflicting << "\n";
        if (!ExistingConflictingKnown.is_empty())
          OS->indent(Indent)
              << "Existing Known:       " << ExistingConflictingKnown << "\n";
        if (!ProposedConflictingKnown.is_empty())
          OS->indent(Indent)
              << "Proposed Known:       " << ProposedConflictingKnown << "\n";
      }
      return true;
    }

    // Do the writes in Existing conflict with occupied values in Proposed?
    //
    // In order to not conflict, it must either write to unused lifetime or
    // write the same value. To check, we remove the writes that write into
    // Proposed.Unused (they never conflict) and then see whether the written
    // value is already in Proposed.Known. If there are multiple known values
    // and a written value is known under different names, it is enough when one
    // of the written values (assuming that they are the same value under
    // different names, e.g. a PHINode and one of the incoming values) matches
    // one of the known names.
    //
    // We convert here the set of lifetimes to actual timepoints. A lifetime is
    // in conflict with a set of write timepoints, if either a live timepoint is
    // clearly within the lifetime or if a write happens at the beginning of the
    // lifetime (where it would conflict with the value that actually writes the
    // value alive). There is no conflict at the end of a lifetime, as the alive
    // value will always be read, before it is overwritten again. The last
    // property holds in Polly for all scalar values and we expect all users of
    // Knowledge to check this property also for accesses to MemoryKind::Array.
    auto ProposedFixedDefs =
        convertZoneToTimepoints(Proposed.Occupied, true, false);
    auto ProposedFixedKnown =
        convertZoneToTimepoints(Proposed.Known, isl::dim::in, true, false);

    auto ExistingConflictingWrites =
        Existing.Written.intersect_domain(ProposedFixedDefs);
    auto ExistingConflictingWritesDomain = ExistingConflictingWrites.domain();

    auto CommonWrittenVal =
        ProposedFixedKnown.intersect(ExistingConflictingWrites);
    auto CommonWrittenValDomain = CommonWrittenVal.domain();

    if (!ExistingConflictingWritesDomain.is_subset(CommonWrittenValDomain)) {
      if (OS) {
        auto ExistingConflictingWritten =
            ExistingConflictingWrites.subtract_domain(CommonWrittenValDomain);
        auto ProposedConflictingKnown = ProposedFixedKnown.subtract_domain(
            ExistingConflictingWritten.domain());

        OS->indent(Indent)
            << "Proposed a lifetime where there is an Existing write into it\n";
        OS->indent(Indent) << "Existing conflicting writes: "
                           << ExistingConflictingWritten << "\n";
        if (!ProposedConflictingKnown.is_empty())
          OS->indent(Indent)
              << "Proposed conflicting known:  " << ProposedConflictingKnown
              << "\n";
      }
      return true;
    }

    // Do the writes in Proposed conflict with occupied values in Existing?
    auto ExistingAvailableDefs =
        convertZoneToTimepoints(Existing.Unused, true, false);
    auto ExistingKnownDefs =
        convertZoneToTimepoints(Existing.Known, isl::dim::in, true, false);

    auto ProposedWrittenDomain = Proposed.Written.domain();
    auto KnownIdentical = ExistingKnownDefs.intersect(Proposed.Written);
    auto IdenticalOrUnused =
        ExistingAvailableDefs.unite(KnownIdentical.domain());
    if (!ProposedWrittenDomain.is_subset(IdenticalOrUnused)) {
      if (OS) {
        auto Conflicting = ProposedWrittenDomain.subtract(IdenticalOrUnused);
        auto ExistingConflictingKnown =
            ExistingKnownDefs.intersect_domain(Conflicting);
        auto ProposedConflictingWritten =
            Proposed.Written.intersect_domain(Conflicting);

        OS->indent(Indent) << "Proposed writes into range used by Existing\n";
        OS->indent(Indent) << "Proposed conflicting writes: "
                           << ProposedConflictingWritten << "\n";
        if (!ExistingConflictingKnown.is_empty())
          OS->indent(Indent)
              << "Existing conflicting known: " << ExistingConflictingKnown
              << "\n";
      }
      return true;
    }

    // Does Proposed write at the same time as Existing already does (order of
    // writes is undefined)? Writing the same value is permitted.
    auto ExistingWrittenDomain = Existing.Written.domain();
    auto BothWritten =
        Existing.Written.domain().intersect(Proposed.Written.domain());
    auto ExistingKnownWritten = filterKnownValInst(Existing.Written);
    auto ProposedKnownWritten = filterKnownValInst(Proposed.Written);
    auto CommonWritten =
        ExistingKnownWritten.intersect(ProposedKnownWritten).domain();

    if (!BothWritten.is_subset(CommonWritten)) {
      if (OS) {
        auto Conflicting = BothWritten.subtract(CommonWritten);
        auto ExistingConflictingWritten =
            Existing.Written.intersect_domain(Conflicting);
        auto ProposedConflictingWritten =
            Proposed.Written.intersect_domain(Conflicting);

        OS->indent(Indent) << "Proposed writes at the same time as an already "
                              "Existing write\n";
        OS->indent(Indent) << "Conflicting writes: " << Conflicting << "\n";
        if (!ExistingConflictingWritten.is_empty())
          OS->indent(Indent)
              << "Exiting write:      " << ExistingConflictingWritten << "\n";
        if (!ProposedConflictingWritten.is_empty())
          OS->indent(Indent)
              << "Proposed write:     " << ProposedConflictingWritten << "\n";
      }
      return true;
    }

    return false;
  }
};

/// Implementation of the DeLICM/DePRE transformation.
class DeLICMImpl : public ZoneAlgorithm {
private:
  /// Knowledge before any transformation took place.
  Knowledge OriginalZone;

  /// Current knowledge of the SCoP including all already applied
  /// transformations.
  Knowledge Zone;

  /// Number of StoreInsts something can be mapped to.
  int NumberOfCompatibleTargets = 0;

  /// The number of StoreInsts to which at least one value or PHI has been
  /// mapped to.
  int NumberOfTargetsMapped = 0;

  /// The number of llvm::Value mapped to some array element.
  int NumberOfMappedValueScalars = 0;

  /// The number of PHIs mapped to some array element.
  int NumberOfMappedPHIScalars = 0;

  /// Determine whether two knowledges are conflicting with each other.
  ///
  /// @see Knowledge::isConflicting
  bool isConflicting(const Knowledge &Proposed) {
    raw_ostream *OS = nullptr;
    LLVM_DEBUG(OS = &llvm::dbgs());
    return Knowledge::isConflicting(Zone, Proposed, OS, 4);
  }

  /// Determine whether @p SAI is a scalar that can be mapped to an array
  /// element.
  bool isMappable(const ScopArrayInfo *SAI) {
    assert(SAI);

    if (SAI->isValueKind()) {
      auto *MA = S->getValueDef(SAI);
      if (!MA) {
        LLVM_DEBUG(
            dbgs()
            << "    Reject because value is read-only within the scop\n");
        return false;
      }

      // Mapping if value is used after scop is not supported. The code
      // generator would need to reload the scalar after the scop, but it
      // does not have the information to where it is mapped to. Only the
      // MemoryAccesses have that information, not the ScopArrayInfo.
      auto Inst = MA->getAccessInstruction();
      for (auto User : Inst->users()) {
        if (!isa<Instruction>(User))
          return false;
        auto UserInst = cast<Instruction>(User);

        if (!S->contains(UserInst)) {
          LLVM_DEBUG(dbgs() << "    Reject because value is escaping\n");
          return false;
        }
      }

      return true;
    }

    if (SAI->isPHIKind()) {
      auto *MA = S->getPHIRead(SAI);
      assert(MA);

      // Mapping of an incoming block from before the SCoP is not supported by
      // the code generator.
      auto PHI = cast<PHINode>(MA->getAccessInstruction());
      for (auto Incoming : PHI->blocks()) {
        if (!S->contains(Incoming)) {
          LLVM_DEBUG(dbgs()
                     << "    Reject because at least one incoming block is "
                        "not in the scop region\n");
          return false;
        }
      }

      return true;
    }

    LLVM_DEBUG(dbgs() << "    Reject ExitPHI or other non-value\n");
    return false;
  }

  /// Compute the uses of a MemoryKind::Value and its lifetime (from its
  /// definition to the last use).
  ///
  /// @param SAI The ScopArrayInfo representing the value's storage.
  ///
  /// @return { DomainDef[] -> DomainUse[] }, { DomainDef[] -> Zone[] }
  ///         First element is the set of uses for each definition.
  ///         The second is the lifetime of each definition.
  std::tuple<isl::union_map, isl::map>
  computeValueUses(const ScopArrayInfo *SAI) {
    assert(SAI->isValueKind());

    // { DomainRead[] }
    auto Reads = makeEmptyUnionSet();

    // Find all uses.
    for (auto *MA : S->getValueUses(SAI))
      Reads = Reads.add_set(getDomainFor(MA));

    // { DomainRead[] -> Scatter[] }
    auto ReadSchedule = getScatterFor(Reads);

    auto *DefMA = S->getValueDef(SAI);
    assert(DefMA);

    // { DomainDef[] }
    auto Writes = getDomainFor(DefMA);

    // { DomainDef[] -> Scatter[] }
    auto WriteScatter = getScatterFor(Writes);

    // { Scatter[] -> DomainDef[] }
    auto ReachDef = getScalarReachingDefinition(DefMA->getStatement());

    // { [DomainDef[] -> Scatter[]] -> DomainUse[] }
    auto Uses = isl::union_map(ReachDef.reverse().range_map())
                    .apply_range(ReadSchedule.reverse());

    // { DomainDef[] -> Scatter[] }
    auto UseScatter =
        singleton(Uses.domain().unwrap(),
                  Writes.get_space().map_from_domain_and_range(ScatterSpace));

    // { DomainDef[] -> Zone[] }
    auto Lifetime = betweenScatter(WriteScatter, UseScatter, false, true);

    // { DomainDef[] -> DomainRead[] }
    auto DefUses = Uses.domain_factor_domain();

    return std::make_pair(DefUses, Lifetime);
  }

  /// Try to map a MemoryKind::Value to a given array element.
  ///
  /// @param SAI       Representation of the scalar's memory to map.
  /// @param TargetElt { Scatter[] -> Element[] }
  ///                  Suggestion where to map a scalar to when at a timepoint.
  ///
  /// @return true if the scalar was successfully mapped.
  bool tryMapValue(const ScopArrayInfo *SAI, isl::map TargetElt) {
    assert(SAI->isValueKind());

    auto *DefMA = S->getValueDef(SAI);
    assert(DefMA->isValueKind());
    assert(DefMA->isMustWrite());
    auto *V = DefMA->getAccessValue();
    auto *DefInst = DefMA->getAccessInstruction();

    // Stop if the scalar has already been mapped.
    if (!DefMA->getLatestScopArrayInfo()->isValueKind())
      return false;

    // { DomainDef[] -> Scatter[] }
    auto DefSched = getScatterFor(DefMA);

    // Where each write is mapped to, according to the suggestion.
    // { DomainDef[] -> Element[] }
    auto DefTarget = TargetElt.apply_domain(DefSched.reverse());
    simplify(DefTarget);
    LLVM_DEBUG(dbgs() << "    Def Mapping: " << DefTarget << '\n');

    auto OrigDomain = getDomainFor(DefMA);
    auto MappedDomain = DefTarget.domain();
    if (!OrigDomain.is_subset(MappedDomain)) {
      LLVM_DEBUG(
          dbgs()
          << "    Reject because mapping does not encompass all instances\n");
      return false;
    }

    // { DomainDef[] -> Zone[] }
    isl::map Lifetime;

    // { DomainDef[] -> DomainUse[] }
    isl::union_map DefUses;

    std::tie(DefUses, Lifetime) = computeValueUses(SAI);
    LLVM_DEBUG(dbgs() << "    Lifetime: " << Lifetime << '\n');

    /// { [Element[] -> Zone[]] }
    auto EltZone = Lifetime.apply_domain(DefTarget).wrap();
    simplify(EltZone);

    // When known knowledge is disabled, just return the unknown value. It will
    // either get filtered out or conflict with itself.
    // { DomainDef[] -> ValInst[] }
    isl::map ValInst;
    if (DelicmComputeKnown)
      ValInst = makeValInst(V, DefMA->getStatement(),
                            LI->getLoopFor(DefInst->getParent()));
    else
      ValInst = makeUnknownForDomain(DefMA->getStatement());

    // { DomainDef[] -> [Element[] -> Zone[]] }
    auto EltKnownTranslator = DefTarget.range_product(Lifetime);

    // { [Element[] -> Zone[]] -> ValInst[] }
    auto EltKnown = ValInst.apply_domain(EltKnownTranslator);
    simplify(EltKnown);

    // { DomainDef[] -> [Element[] -> Scatter[]] }
    auto WrittenTranslator = DefTarget.range_product(DefSched);

    // { [Element[] -> Scatter[]] -> ValInst[] }
    auto DefEltSched = ValInst.apply_domain(WrittenTranslator);
    simplify(DefEltSched);

    Knowledge Proposed(EltZone, nullptr, filterKnownValInst(EltKnown),
                       DefEltSched);
    if (isConflicting(Proposed))
      return false;

    // { DomainUse[] -> Element[] }
    auto UseTarget = DefUses.reverse().apply_range(DefTarget);

    mapValue(SAI, std::move(DefTarget), std::move(UseTarget),
             std::move(Lifetime), std::move(Proposed));
    return true;
  }

  /// After a scalar has been mapped, update the global knowledge.
  void applyLifetime(Knowledge Proposed) {
    Zone.learnFrom(std::move(Proposed));
  }

  /// Map a MemoryKind::Value scalar to an array element.
  ///
  /// Callers must have ensured that the mapping is valid and not conflicting.
  ///
  /// @param SAI       The ScopArrayInfo representing the scalar's memory to
  ///                  map.
  /// @param DefTarget { DomainDef[] -> Element[] }
  ///                  The array element to map the scalar to.
  /// @param UseTarget { DomainUse[] -> Element[] }
  ///                  The array elements the uses are mapped to.
  /// @param Lifetime  { DomainDef[] -> Zone[] }
  ///                  The lifetime of each llvm::Value definition for
  ///                  reporting.
  /// @param Proposed  Mapping constraints for reporting.
  void mapValue(const ScopArrayInfo *SAI, isl::map DefTarget,
                isl::union_map UseTarget, isl::map Lifetime,
                Knowledge Proposed) {
    // Redirect the read accesses.
    for (auto *MA : S->getValueUses(SAI)) {
      // { DomainUse[] }
      auto Domain = getDomainFor(MA);

      // { DomainUse[] -> Element[] }
      auto NewAccRel = UseTarget.intersect_domain(Domain);
      simplify(NewAccRel);

      assert(isl_union_map_n_map(NewAccRel.get()) == 1);
      MA->setNewAccessRelation(isl::map::from_union_map(NewAccRel));
    }

    auto *WA = S->getValueDef(SAI);
    WA->setNewAccessRelation(DefTarget);
    applyLifetime(Proposed);

    MappedValueScalars++;
    NumberOfMappedValueScalars += 1;
  }

  isl::map makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
                       bool IsCertain = true) {
    // When known knowledge is disabled, just return the unknown value. It will
    // either get filtered out or conflict with itself.
    if (!DelicmComputeKnown)
      return makeUnknownForDomain(UserStmt);
    return ZoneAlgorithm::makeValInst(Val, UserStmt, Scope, IsCertain);
  }

  /// Express the incoming values of a PHI for each incoming statement in an
  /// isl::union_map.
  ///
  /// @param SAI The PHI scalar represented by a ScopArrayInfo.
  ///
  /// @return { PHIWriteDomain[] -> ValInst[] }
  isl::union_map determinePHIWrittenValues(const ScopArrayInfo *SAI) {
    auto Result = makeEmptyUnionMap();

    // Collect the incoming values.
    for (auto *MA : S->getPHIIncomings(SAI)) {
      // { DomainWrite[] -> ValInst[] }
      isl::union_map ValInst;
      auto *WriteStmt = MA->getStatement();

      auto Incoming = MA->getIncoming();
      assert(!Incoming.empty());
      if (Incoming.size() == 1) {
        ValInst = makeValInst(Incoming[0].second, WriteStmt,
                              LI->getLoopFor(Incoming[0].first));
      } else {
        // If the PHI is in a subregion's exit node it can have multiple
        // incoming values (+ maybe another incoming edge from an unrelated
        // block). We cannot directly represent it as a single llvm::Value.
        // We currently model it as unknown value, but modeling as the PHIInst
        // itself could be OK, too.
        ValInst = makeUnknownForDomain(WriteStmt);
      }

      Result = Result.unite(ValInst);
    }

    assert(Result.is_single_valued() &&
           "Cannot have multiple incoming values for same incoming statement");
    return Result;
  }

  /// Try to map a MemoryKind::PHI scalar to a given array element.
  ///
  /// @param SAI       Representation of the scalar's memory to map.
  /// @param TargetElt { Scatter[] -> Element[] }
  ///                  Suggestion where to map the scalar to when at a
  ///                  timepoint.
  ///
  /// @return true if the PHI scalar has been mapped.
  bool tryMapPHI(const ScopArrayInfo *SAI, isl::map TargetElt) {
    auto *PHIRead = S->getPHIRead(SAI);
    assert(PHIRead->isPHIKind());
    assert(PHIRead->isRead());

    // Skip if already been mapped.
    if (!PHIRead->getLatestScopArrayInfo()->isPHIKind())
      return false;

    // { DomainRead[] -> Scatter[] }
    auto PHISched = getScatterFor(PHIRead);

    // { DomainRead[] -> Element[] }
    auto PHITarget = PHISched.apply_range(TargetElt);
    simplify(PHITarget);
    LLVM_DEBUG(dbgs() << "    Mapping: " << PHITarget << '\n');

    auto OrigDomain = getDomainFor(PHIRead);
    auto MappedDomain = PHITarget.domain();
    if (!OrigDomain.is_subset(MappedDomain)) {
      LLVM_DEBUG(
          dbgs()
          << "    Reject because mapping does not encompass all instances\n");
      return false;
    }

    // { DomainRead[] -> DomainWrite[] }
    auto PerPHIWrites = computePerPHI(SAI);

    // { DomainWrite[] -> Element[] }
    auto WritesTarget = PerPHIWrites.apply_domain(PHITarget).reverse();
    simplify(WritesTarget);

    // { DomainWrite[] }
    auto UniverseWritesDom = isl::union_set::empty(ParamSpace);

    for (auto *MA : S->getPHIIncomings(SAI))
      UniverseWritesDom = UniverseWritesDom.add_set(getDomainFor(MA));

    auto RelevantWritesTarget = WritesTarget;
    if (DelicmOverapproximateWrites)
      WritesTarget = expandMapping(WritesTarget, UniverseWritesDom);

    auto ExpandedWritesDom = WritesTarget.domain();
    if (!DelicmPartialWrites &&
        !UniverseWritesDom.is_subset(ExpandedWritesDom)) {
      LLVM_DEBUG(
          dbgs() << "    Reject because did not find PHI write mapping for "
                    "all instances\n");
      if (DelicmOverapproximateWrites)
        LLVM_DEBUG(dbgs() << "      Relevant Mapping:    "
                          << RelevantWritesTarget << '\n');
      LLVM_DEBUG(dbgs() << "      Deduced Mapping:     " << WritesTarget
                        << '\n');
      LLVM_DEBUG(dbgs() << "      Missing instances:    "
                        << UniverseWritesDom.subtract(ExpandedWritesDom)
                        << '\n');
      return false;
    }

    //  { DomainRead[] -> Scatter[] }
    isl::union_map PerPHIWriteScatterUmap = PerPHIWrites.apply_range(Schedule);
    isl::map PerPHIWriteScatter =
        singleton(PerPHIWriteScatterUmap, PHISched.get_space());

    // { DomainRead[] -> Zone[] }
    auto Lifetime = betweenScatter(PerPHIWriteScatter, PHISched, false, true);
    simplify(Lifetime);
    LLVM_DEBUG(dbgs() << "    Lifetime: " << Lifetime << "\n");

    // { DomainWrite[] -> Zone[] }
    auto WriteLifetime = isl::union_map(Lifetime).apply_domain(PerPHIWrites);

    // { DomainWrite[] -> ValInst[] }
    auto WrittenValue = determinePHIWrittenValues(SAI);

    // { DomainWrite[] -> [Element[] -> Scatter[]] }
    auto WrittenTranslator = WritesTarget.range_product(Schedule);

    // { [Element[] -> Scatter[]] -> ValInst[] }
    auto Written = WrittenValue.apply_domain(WrittenTranslator);
    simplify(Written);

    // { DomainWrite[] -> [Element[] -> Zone[]] }
    auto LifetimeTranslator = WritesTarget.range_product(WriteLifetime);

    // { DomainWrite[] -> ValInst[] }
    auto WrittenKnownValue = filterKnownValInst(WrittenValue);

    // { [Element[] -> Zone[]] -> ValInst[] }
    auto EltLifetimeInst = WrittenKnownValue.apply_domain(LifetimeTranslator);
    simplify(EltLifetimeInst);

    // { [Element[] -> Zone[] }
    auto Occupied = LifetimeTranslator.range();
    simplify(Occupied);

    Knowledge Proposed(Occupied, nullptr, EltLifetimeInst, Written);
    if (isConflicting(Proposed))
      return false;

    mapPHI(SAI, std::move(PHITarget), std::move(WritesTarget),
           std::move(Lifetime), std::move(Proposed));
    return true;
  }

  /// Map a MemoryKind::PHI scalar to an array element.
  ///
  /// Callers must have ensured that the mapping is valid and not conflicting
  /// with the common knowledge.
  ///
  /// @param SAI         The ScopArrayInfo representing the scalar's memory to
  ///                    map.
  /// @param ReadTarget  { DomainRead[] -> Element[] }
  ///                    The array element to map the scalar to.
  /// @param WriteTarget { DomainWrite[] -> Element[] }
  ///                    New access target for each PHI incoming write.
  /// @param Lifetime    { DomainRead[] -> Zone[] }
  ///                    The lifetime of each PHI for reporting.
  /// @param Proposed    Mapping constraints for reporting.
  void mapPHI(const ScopArrayInfo *SAI, isl::map ReadTarget,
              isl::union_map WriteTarget, isl::map Lifetime,
              Knowledge Proposed) {
    // { Element[] }
    isl::space ElementSpace = ReadTarget.get_space().range();

    // Redirect the PHI incoming writes.
    for (auto *MA : S->getPHIIncomings(SAI)) {
      // { DomainWrite[] }
      auto Domain = getDomainFor(MA);

      // { DomainWrite[] -> Element[] }
      auto NewAccRel = WriteTarget.intersect_domain(Domain);
      simplify(NewAccRel);

      isl::space NewAccRelSpace =
          Domain.get_space().map_from_domain_and_range(ElementSpace);
      isl::map NewAccRelMap = singleton(NewAccRel, NewAccRelSpace);
      MA->setNewAccessRelation(NewAccRelMap);
    }

    // Redirect the PHI read.
    auto *PHIRead = S->getPHIRead(SAI);
    PHIRead->setNewAccessRelation(ReadTarget);
    applyLifetime(Proposed);

    MappedPHIScalars++;
    NumberOfMappedPHIScalars++;
  }

  /// Search and map scalars to memory overwritten by @p TargetStoreMA.
  ///
  /// Start trying to map scalars that are used in the same statement as the
  /// store. For every successful mapping, try to also map scalars of the
  /// statements where those are written. Repeat, until no more mapping
  /// opportunity is found.
  ///
  /// There is currently no preference in which order scalars are tried.
  /// Ideally, we would direct it towards a load instruction of the same array
  /// element.
  bool collapseScalarsToStore(MemoryAccess *TargetStoreMA) {
    assert(TargetStoreMA->isLatestArrayKind());
    assert(TargetStoreMA->isMustWrite());

    auto TargetStmt = TargetStoreMA->getStatement();

    // { DomTarget[] }
    auto TargetDom = getDomainFor(TargetStmt);

    // { DomTarget[] -> Element[] }
    auto TargetAccRel = getAccessRelationFor(TargetStoreMA);

    // { Zone[] -> DomTarget[] }
    // For each point in time, find the next target store instance.
    auto Target =
        computeScalarReachingOverwrite(Schedule, TargetDom, false, true);

    // { Zone[] -> Element[] }
    // Use the target store's write location as a suggestion to map scalars to.
    auto EltTarget = Target.apply_range(TargetAccRel);
    simplify(EltTarget);
    LLVM_DEBUG(dbgs() << "    Target mapping is " << EltTarget << '\n');

    // Stack of elements not yet processed.
    SmallVector<MemoryAccess *, 16> Worklist;

    // Set of scalars already tested.
    SmallPtrSet<const ScopArrayInfo *, 16> Closed;

    // Lambda to add all scalar reads to the work list.
    auto ProcessAllIncoming = [&](ScopStmt *Stmt) {
      for (auto *MA : *Stmt) {
        if (!MA->isLatestScalarKind())
          continue;
        if (!MA->isRead())
          continue;

        Worklist.push_back(MA);
      }
    };

    auto *WrittenVal = TargetStoreMA->getAccessInstruction()->getOperand(0);
    if (auto *WrittenValInputMA = TargetStmt->lookupInputAccessOf(WrittenVal))
      Worklist.push_back(WrittenValInputMA);
    else
      ProcessAllIncoming(TargetStmt);

    auto AnyMapped = false;
    auto &DL = S->getRegion().getEntry()->getModule()->getDataLayout();
    auto StoreSize =
        DL.getTypeAllocSize(TargetStoreMA->getAccessValue()->getType());

    while (!Worklist.empty()) {
      auto *MA = Worklist.pop_back_val();

      auto *SAI = MA->getScopArrayInfo();
      if (Closed.count(SAI))
        continue;
      Closed.insert(SAI);
      LLVM_DEBUG(dbgs() << "\n    Trying to map " << MA << " (SAI: " << SAI
                        << ")\n");

      // Skip non-mappable scalars.
      if (!isMappable(SAI))
        continue;

      auto MASize = DL.getTypeAllocSize(MA->getAccessValue()->getType());
      if (MASize > StoreSize) {
        LLVM_DEBUG(
            dbgs() << "    Reject because storage size is insufficient\n");
        continue;
      }

      // Try to map MemoryKind::Value scalars.
      if (SAI->isValueKind()) {
        if (!tryMapValue(SAI, EltTarget))
          continue;

        auto *DefAcc = S->getValueDef(SAI);
        ProcessAllIncoming(DefAcc->getStatement());

        AnyMapped = true;
        continue;
      }

      // Try to map MemoryKind::PHI scalars.
      if (SAI->isPHIKind()) {
        if (!tryMapPHI(SAI, EltTarget))
          continue;
        // Add inputs of all incoming statements to the worklist. Prefer the
        // input accesses of the incoming blocks.
        for (auto *PHIWrite : S->getPHIIncomings(SAI)) {
          auto *PHIWriteStmt = PHIWrite->getStatement();
          bool FoundAny = false;
          for (auto Incoming : PHIWrite->getIncoming()) {
            auto *IncomingInputMA =
                PHIWriteStmt->lookupInputAccessOf(Incoming.second);
            if (!IncomingInputMA)
              continue;

            Worklist.push_back(IncomingInputMA);
            FoundAny = true;
          }

          if (!FoundAny)
            ProcessAllIncoming(PHIWrite->getStatement());
        }

        AnyMapped = true;
        continue;
      }
    }

    if (AnyMapped) {
      TargetsMapped++;
      NumberOfTargetsMapped++;
    }
    return AnyMapped;
  }

  /// Compute when an array element is unused.
  ///
  /// @return { [Element[] -> Zone[]] }
  isl::union_set computeLifetime() const {
    // { Element[] -> Zone[] }
    auto ArrayUnused = computeArrayUnused(Schedule, AllMustWrites, AllReads,
                                          false, false, true);

    auto Result = ArrayUnused.wrap();

    simplify(Result);
    return Result;
  }

  /// Determine when an array element is written to, and which value instance is
  /// written.
  ///
  /// @return { [Element[] -> Scatter[]] -> ValInst[] }
  isl::union_map computeWritten() const {
    // { [Element[] -> Scatter[]] -> ValInst[] }
    auto EltWritten = applyDomainRange(AllWriteValInst, Schedule);

    simplify(EltWritten);
    return EltWritten;
  }

  /// Determine whether an access touches at most one element.
  ///
  /// The accessed element could be a scalar or accessing an array with constant
  /// subscript, such that all instances access only that element.
  ///
  /// @param MA The access to test.
  ///
  /// @return True, if zero or one elements are accessed; False if at least two
  ///         different elements are accessed.
  bool isScalarAccess(MemoryAccess *MA) {
    auto Map = getAccessRelationFor(MA);
    auto Set = Map.range();
    return Set.is_singleton();
  }

  /// Print mapping statistics to @p OS.
  void printStatistics(llvm::raw_ostream &OS, int Indent = 0) const {
    OS.indent(Indent) << "Statistics {\n";
    OS.indent(Indent + 4) << "Compatible overwrites: "
                          << NumberOfCompatibleTargets << "\n";
    OS.indent(Indent + 4) << "Overwrites mapped to:  " << NumberOfTargetsMapped
                          << '\n';
    OS.indent(Indent + 4) << "Value scalars mapped:  "
                          << NumberOfMappedValueScalars << '\n';
    OS.indent(Indent + 4) << "PHI scalars mapped:    "
                          << NumberOfMappedPHIScalars << '\n';
    OS.indent(Indent) << "}\n";
  }

  /// Return whether at least one transformation been applied.
  bool isModified() const { return NumberOfTargetsMapped > 0; }

public:
  DeLICMImpl(Scop *S, LoopInfo *LI) : ZoneAlgorithm("polly-delicm", S, LI) {}

  /// Calculate the lifetime (definition to last use) of every array element.
  ///
  /// @return True if the computed lifetimes (#Zone) is usable.
  bool computeZone() {
    // Check that nothing strange occurs.
    collectCompatibleElts();

    isl::union_set EltUnused;
    isl::union_map EltKnown, EltWritten;

    {
      IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), DelicmMaxOps);

      computeCommon();

      EltUnused = computeLifetime();
      EltKnown = computeKnown(true, false);
      EltWritten = computeWritten();
    }
    DeLICMAnalyzed++;

    if (!EltUnused || !EltKnown || !EltWritten) {
      assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota &&
             "The only reason that these things have not been computed should "
             "be if the max-operations limit hit");
      DeLICMOutOfQuota++;
      LLVM_DEBUG(dbgs() << "DeLICM analysis exceeded max_operations\n");
      DebugLoc Begin, End;
      getDebugLocations(getBBPairForRegion(&S->getRegion()), Begin, End);
      OptimizationRemarkAnalysis R(DEBUG_TYPE, "OutOfQuota", Begin,
                                   S->getEntry());
      R << "maximal number of operations exceeded during zone analysis";
      S->getFunction().getContext().diagnose(R);
      return false;
    }

    Zone = OriginalZone = Knowledge(nullptr, EltUnused, EltKnown, EltWritten);
    LLVM_DEBUG(dbgs() << "Computed Zone:\n"; OriginalZone.print(dbgs(), 4));

    assert(Zone.isUsable() && OriginalZone.isUsable());
    return true;
  }

  /// Try to map as many scalars to unused array elements as possible.
  ///
  /// Multiple scalars might be mappable to intersecting unused array element
  /// zones, but we can only chose one. This is a greedy algorithm, therefore
  /// the first processed element claims it.
  void greedyCollapse() {
    bool Modified = false;

    for (auto &Stmt : *S) {
      for (auto *MA : Stmt) {
        if (!MA->isLatestArrayKind())
          continue;
        if (!MA->isWrite())
          continue;

        if (MA->isMayWrite()) {
          LLVM_DEBUG(dbgs() << "Access " << MA
                            << " pruned because it is a MAY_WRITE\n");
          OptimizationRemarkMissed R(DEBUG_TYPE, "TargetMayWrite",
                                     MA->getAccessInstruction());
          R << "Skipped possible mapping target because it is not an "
               "unconditional overwrite";
          S->getFunction().getContext().diagnose(R);
          continue;
        }

        if (Stmt.getNumIterators() == 0) {
          LLVM_DEBUG(dbgs() << "Access " << MA
                            << " pruned because it is not in a loop\n");
          OptimizationRemarkMissed R(DEBUG_TYPE, "WriteNotInLoop",
                                     MA->getAccessInstruction());
          R << "skipped possible mapping target because it is not in a loop";
          S->getFunction().getContext().diagnose(R);
          continue;
        }

        if (isScalarAccess(MA)) {
          LLVM_DEBUG(dbgs()
                     << "Access " << MA
                     << " pruned because it writes only a single element\n");
          OptimizationRemarkMissed R(DEBUG_TYPE, "ScalarWrite",
                                     MA->getAccessInstruction());
          R << "skipped possible mapping target because the memory location "
               "written to does not depend on its outer loop";
          S->getFunction().getContext().diagnose(R);
          continue;
        }

        if (!isa<StoreInst>(MA->getAccessInstruction())) {
          LLVM_DEBUG(dbgs() << "Access " << MA
                            << " pruned because it is not a StoreInst\n");
          OptimizationRemarkMissed R(DEBUG_TYPE, "NotAStore",
                                     MA->getAccessInstruction());
          R << "skipped possible mapping target because non-store instructions "
               "are not supported";
          S->getFunction().getContext().diagnose(R);
          continue;
        }

        // Check for more than one element acces per statement instance.
        // Currently we expect write accesses to be functional, eg. disallow
        //
        //   { Stmt[0] -> [i] : 0 <= i < 2 }
        //
        // This may occur when some accesses to the element write/read only
        // parts of the element, eg. a single byte. Polly then divides each
        // element into subelements of the smallest access length, normal access
        // then touch multiple of such subelements. It is very common when the
        // array is accesses with memset, memcpy or memmove which take i8*
        // arguments.
        isl::union_map AccRel = MA->getLatestAccessRelation();
        if (!AccRel.is_single_valued().is_true()) {
          LLVM_DEBUG(dbgs() << "Access " << MA
                            << " is incompatible because it writes multiple "
                               "elements per instance\n");
          OptimizationRemarkMissed R(DEBUG_TYPE, "NonFunctionalAccRel",
                                     MA->getAccessInstruction());
          R << "skipped possible mapping target because it writes more than "
               "one element";
          S->getFunction().getContext().diagnose(R);
          continue;
        }

        isl::union_set TouchedElts = AccRel.range();
        if (!TouchedElts.is_subset(CompatibleElts)) {
          LLVM_DEBUG(
              dbgs()
              << "Access " << MA
              << " is incompatible because it touches incompatible elements\n");
          OptimizationRemarkMissed R(DEBUG_TYPE, "IncompatibleElts",
                                     MA->getAccessInstruction());
          R << "skipped possible mapping target because a target location "
               "cannot be reliably analyzed";
          S->getFunction().getContext().diagnose(R);
          continue;
        }

        assert(isCompatibleAccess(MA));
        NumberOfCompatibleTargets++;
        LLVM_DEBUG(dbgs() << "Analyzing target access " << MA << "\n");
        if (collapseScalarsToStore(MA))
          Modified = true;
      }
    }

    if (Modified)
      DeLICMScopsModified++;
  }

  /// Dump the internal information about a performed DeLICM to @p OS.
  void print(llvm::raw_ostream &OS, int Indent = 0) {
    if (!Zone.isUsable()) {
      OS.indent(Indent) << "Zone not computed\n";
      return;
    }

    printStatistics(OS, Indent);
    if (!isModified()) {
      OS.indent(Indent) << "No modification has been made\n";
      return;
    }
    printAccesses(OS, Indent);
  }
};

class DeLICM : public ScopPass {
private:
  DeLICM(const DeLICM &) = delete;
  const DeLICM &operator=(const DeLICM &) = delete;

  /// The pass implementation, also holding per-scop data.
  std::unique_ptr<DeLICMImpl> Impl;

  void collapseToUnused(Scop &S) {
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    Impl = std::make_unique<DeLICMImpl>(&S, &LI);

    if (!Impl->computeZone()) {
      LLVM_DEBUG(dbgs() << "Abort because cannot reliably compute lifetimes\n");
      return;
    }

    LLVM_DEBUG(dbgs() << "Collapsing scalars to unused array elements...\n");
    Impl->greedyCollapse();

    LLVM_DEBUG(dbgs() << "\nFinal Scop:\n");
    LLVM_DEBUG(dbgs() << S);
  }

public:
  static char ID;
  explicit DeLICM() : ScopPass(ID) {}

  virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequiredTransitive<ScopInfoRegionPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.setPreservesAll();
  }

  virtual bool runOnScop(Scop &S) override {
    // Free resources for previous scop's computation, if not yet done.
    releaseMemory();

    collapseToUnused(S);

    auto ScopStats = S.getStatistics();
    NumValueWrites += ScopStats.NumValueWrites;
    NumValueWritesInLoops += ScopStats.NumValueWritesInLoops;
    NumPHIWrites += ScopStats.NumPHIWrites;
    NumPHIWritesInLoops += ScopStats.NumPHIWritesInLoops;
    NumSingletonWrites += ScopStats.NumSingletonWrites;
    NumSingletonWritesInLoops += ScopStats.NumSingletonWritesInLoops;

    return false;
  }

  virtual void printScop(raw_ostream &OS, Scop &S) const override {
    if (!Impl)
      return;
    assert(Impl->getScop() == &S);

    OS << "DeLICM result:\n";
    Impl->print(OS);
  }

  virtual void releaseMemory() override { Impl.reset(); }
};

char DeLICM::ID;
} // anonymous namespace

Pass *polly::createDeLICMPass() { return new DeLICM(); }

INITIALIZE_PASS_BEGIN(DeLICM, "polly-delicm", "Polly - DeLICM/DePRE", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(DeLICM, "polly-delicm", "Polly - DeLICM/DePRE", false,
                    false)

bool polly::isConflicting(
    isl::union_set ExistingOccupied, isl::union_set ExistingUnused,
    isl::union_map ExistingKnown, isl::union_map ExistingWrites,
    isl::union_set ProposedOccupied, isl::union_set ProposedUnused,
    isl::union_map ProposedKnown, isl::union_map ProposedWrites,
    llvm::raw_ostream *OS, unsigned Indent) {
  Knowledge Existing(std::move(ExistingOccupied), std::move(ExistingUnused),
                     std::move(ExistingKnown), std::move(ExistingWrites));
  Knowledge Proposed(std::move(ProposedOccupied), std::move(ProposedUnused),
                     std::move(ProposedKnown), std::move(ProposedWrites));

  return Knowledge::isConflicting(Existing, Proposed, OS, Indent);
}