SCEVValidator.cpp
24.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
#include "polly/Support/SCEVValidator.h"
#include "polly/ScopDetection.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-scev-validator"
namespace SCEVType {
/// The type of a SCEV
///
/// To check for the validity of a SCEV we assign to each SCEV a type. The
/// possible types are INT, PARAM, IV and INVALID. The order of the types is
/// important. The subexpressions of SCEV with a type X can only have a type
/// that is smaller or equal than X.
enum TYPE {
// An integer value.
INT,
// An expression that is constant during the execution of the Scop,
// but that may depend on parameters unknown at compile time.
PARAM,
// An expression that may change during the execution of the SCoP.
IV,
// An invalid expression.
INVALID
};
} // namespace SCEVType
/// The result the validator returns for a SCEV expression.
class ValidatorResult {
/// The type of the expression
SCEVType::TYPE Type;
/// The set of Parameters in the expression.
ParameterSetTy Parameters;
public:
/// The copy constructor
ValidatorResult(const ValidatorResult &Source) {
Type = Source.Type;
Parameters = Source.Parameters;
}
/// Construct a result with a certain type and no parameters.
ValidatorResult(SCEVType::TYPE Type) : Type(Type) {
assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter");
}
/// Construct a result with a certain type and a single parameter.
ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) {
Parameters.insert(Expr);
}
/// Get the type of the ValidatorResult.
SCEVType::TYPE getType() { return Type; }
/// Is the analyzed SCEV constant during the execution of the SCoP.
bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; }
/// Is the analyzed SCEV valid.
bool isValid() { return Type != SCEVType::INVALID; }
/// Is the analyzed SCEV of Type IV.
bool isIV() { return Type == SCEVType::IV; }
/// Is the analyzed SCEV of Type INT.
bool isINT() { return Type == SCEVType::INT; }
/// Is the analyzed SCEV of Type PARAM.
bool isPARAM() { return Type == SCEVType::PARAM; }
/// Get the parameters of this validator result.
const ParameterSetTy &getParameters() { return Parameters; }
/// Add the parameters of Source to this result.
void addParamsFrom(const ValidatorResult &Source) {
Parameters.insert(Source.Parameters.begin(), Source.Parameters.end());
}
/// Merge a result.
///
/// This means to merge the parameters and to set the Type to the most
/// specific Type that matches both.
void merge(const ValidatorResult &ToMerge) {
Type = std::max(Type, ToMerge.Type);
addParamsFrom(ToMerge);
}
void print(raw_ostream &OS) {
switch (Type) {
case SCEVType::INT:
OS << "SCEVType::INT";
break;
case SCEVType::PARAM:
OS << "SCEVType::PARAM";
break;
case SCEVType::IV:
OS << "SCEVType::IV";
break;
case SCEVType::INVALID:
OS << "SCEVType::INVALID";
break;
}
}
};
raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) {
VR.print(OS);
return OS;
}
bool polly::isConstCall(llvm::CallInst *Call) {
if (Call->mayReadOrWriteMemory())
return false;
for (auto &Operand : Call->arg_operands())
if (!isa<ConstantInt>(&Operand))
return false;
return true;
}
/// Check if a SCEV is valid in a SCoP.
struct SCEVValidator
: public SCEVVisitor<SCEVValidator, class ValidatorResult> {
private:
const Region *R;
Loop *Scope;
ScalarEvolution &SE;
InvariantLoadsSetTy *ILS;
public:
SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE,
InvariantLoadsSetTy *ILS)
: R(R), Scope(Scope), SE(SE), ILS(ILS) {}
class ValidatorResult visitConstant(const SCEVConstant *Constant) {
return ValidatorResult(SCEVType::INT);
}
class ValidatorResult visitZeroExtendOrTruncateExpr(const SCEV *Expr,
const SCEV *Operand) {
ValidatorResult Op = visit(Operand);
auto Type = Op.getType();
// If unsigned operations are allowed return the operand, otherwise
// check if we can model the expression without unsigned assumptions.
if (PollyAllowUnsignedOperations || Type == SCEVType::INVALID)
return Op;
if (Type == SCEVType::IV)
return ValidatorResult(SCEVType::INVALID);
return ValidatorResult(SCEVType::PARAM, Expr);
}
class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) {
return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
}
class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
}
class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
return visit(Expr->getOperand());
}
class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) {
ValidatorResult Return(SCEVType::INT);
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
Return.merge(Op);
// Early exit.
if (!Return.isValid())
break;
}
return Return;
}
class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) {
ValidatorResult Return(SCEVType::INT);
bool HasMultipleParams = false;
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (Op.isINT())
continue;
if (Op.isPARAM() && Return.isPARAM()) {
HasMultipleParams = true;
continue;
}
if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) {
LLVM_DEBUG(
dbgs() << "INVALID: More than one non-int operand in MulExpr\n"
<< "\tExpr: " << *Expr << "\n"
<< "\tPrevious expression type: " << Return << "\n"
<< "\tNext operand (" << Op << "): " << *Expr->getOperand(i)
<< "\n");
return ValidatorResult(SCEVType::INVALID);
}
Return.merge(Op);
}
if (HasMultipleParams && Return.isValid())
return ValidatorResult(SCEVType::PARAM, Expr);
return Return;
}
class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) {
if (!Expr->isAffine()) {
LLVM_DEBUG(dbgs() << "INVALID: AddRec is not affine");
return ValidatorResult(SCEVType::INVALID);
}
ValidatorResult Start = visit(Expr->getStart());
ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE));
if (!Start.isValid())
return Start;
if (!Recurrence.isValid())
return Recurrence;
auto *L = Expr->getLoop();
if (R->contains(L) && (!Scope || !L->contains(Scope))) {
LLVM_DEBUG(
dbgs() << "INVALID: Loop of AddRec expression boxed in an a "
"non-affine subregion or has a non-synthesizable exit "
"value.");
return ValidatorResult(SCEVType::INVALID);
}
if (R->contains(L)) {
if (Recurrence.isINT()) {
ValidatorResult Result(SCEVType::IV);
Result.addParamsFrom(Start);
return Result;
}
LLVM_DEBUG(dbgs() << "INVALID: AddRec within scop has non-int"
"recurrence part");
return ValidatorResult(SCEVType::INVALID);
}
assert(Recurrence.isConstant() && "Expected 'Recurrence' to be constant");
// Directly generate ValidatorResult for Expr if 'start' is zero.
if (Expr->getStart()->isZero())
return ValidatorResult(SCEVType::PARAM, Expr);
// Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
// if 'start' is not zero.
const SCEV *ZeroStartExpr = SE.getAddRecExpr(
SE.getConstant(Expr->getStart()->getType(), 0),
Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags());
ValidatorResult ZeroStartResult =
ValidatorResult(SCEVType::PARAM, ZeroStartExpr);
ZeroStartResult.addParamsFrom(Start);
return ZeroStartResult;
}
class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) {
ValidatorResult Return(SCEVType::INT);
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (!Op.isValid())
return Op;
Return.merge(Op);
}
return Return;
}
class ValidatorResult visitSMinExpr(const SCEVSMinExpr *Expr) {
ValidatorResult Return(SCEVType::INT);
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (!Op.isValid())
return Op;
Return.merge(Op);
}
return Return;
}
class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) {
// We do not support unsigned max operations. If 'Expr' is constant during
// Scop execution we treat this as a parameter, otherwise we bail out.
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (!Op.isConstant()) {
LLVM_DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand");
return ValidatorResult(SCEVType::INVALID);
}
}
return ValidatorResult(SCEVType::PARAM, Expr);
}
class ValidatorResult visitUMinExpr(const SCEVUMinExpr *Expr) {
// We do not support unsigned min operations. If 'Expr' is constant during
// Scop execution we treat this as a parameter, otherwise we bail out.
for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
ValidatorResult Op = visit(Expr->getOperand(i));
if (!Op.isConstant()) {
LLVM_DEBUG(dbgs() << "INVALID: UMinExpr has a non-constant operand");
return ValidatorResult(SCEVType::INVALID);
}
}
return ValidatorResult(SCEVType::PARAM, Expr);
}
ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) {
if (R->contains(I)) {
LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction "
"within the region\n");
return ValidatorResult(SCEVType::INVALID);
}
return ValidatorResult(SCEVType::PARAM, S);
}
ValidatorResult visitCallInstruction(Instruction *I, const SCEV *S) {
assert(I->getOpcode() == Instruction::Call && "Call instruction expected");
if (R->contains(I)) {
auto Call = cast<CallInst>(I);
if (!isConstCall(Call))
return ValidatorResult(SCEVType::INVALID, S);
}
return ValidatorResult(SCEVType::PARAM, S);
}
ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) {
if (R->contains(I) && ILS) {
ILS->insert(cast<LoadInst>(I));
return ValidatorResult(SCEVType::PARAM, S);
}
return visitGenericInst(I, S);
}
ValidatorResult visitDivision(const SCEV *Dividend, const SCEV *Divisor,
const SCEV *DivExpr,
Instruction *SDiv = nullptr) {
// First check if we might be able to model the division, thus if the
// divisor is constant. If so, check the dividend, otherwise check if
// the whole division can be seen as a parameter.
if (isa<SCEVConstant>(Divisor) && !Divisor->isZero())
return visit(Dividend);
// For signed divisions use the SDiv instruction to check for a parameter
// division, for unsigned divisions check the operands.
if (SDiv)
return visitGenericInst(SDiv, DivExpr);
ValidatorResult LHS = visit(Dividend);
ValidatorResult RHS = visit(Divisor);
if (LHS.isConstant() && RHS.isConstant())
return ValidatorResult(SCEVType::PARAM, DivExpr);
LLVM_DEBUG(
dbgs() << "INVALID: unsigned division of non-constant expressions");
return ValidatorResult(SCEVType::INVALID);
}
ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) {
if (!PollyAllowUnsignedOperations)
return ValidatorResult(SCEVType::INVALID);
auto *Dividend = Expr->getLHS();
auto *Divisor = Expr->getRHS();
return visitDivision(Dividend, Divisor, Expr);
}
ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *Expr) {
assert(SDiv->getOpcode() == Instruction::SDiv &&
"Assumed SDiv instruction!");
auto *Dividend = SE.getSCEV(SDiv->getOperand(0));
auto *Divisor = SE.getSCEV(SDiv->getOperand(1));
return visitDivision(Dividend, Divisor, Expr, SDiv);
}
ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) {
assert(SRem->getOpcode() == Instruction::SRem &&
"Assumed SRem instruction!");
auto *Divisor = SRem->getOperand(1);
auto *CI = dyn_cast<ConstantInt>(Divisor);
if (!CI || CI->isZeroValue())
return visitGenericInst(SRem, S);
auto *Dividend = SRem->getOperand(0);
auto *DividendSCEV = SE.getSCEV(Dividend);
return visit(DividendSCEV);
}
ValidatorResult visitUnknown(const SCEVUnknown *Expr) {
Value *V = Expr->getValue();
if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) {
LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr is not an integer or pointer");
return ValidatorResult(SCEVType::INVALID);
}
if (isa<UndefValue>(V)) {
LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value");
return ValidatorResult(SCEVType::INVALID);
}
if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
switch (I->getOpcode()) {
case Instruction::IntToPtr:
return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
case Instruction::PtrToInt:
return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
case Instruction::Load:
return visitLoadInstruction(I, Expr);
case Instruction::SDiv:
return visitSDivInstruction(I, Expr);
case Instruction::SRem:
return visitSRemInstruction(I, Expr);
case Instruction::Call:
return visitCallInstruction(I, Expr);
default:
return visitGenericInst(I, Expr);
}
}
return ValidatorResult(SCEVType::PARAM, Expr);
}
};
class SCEVHasIVParams {
bool HasIVParams = false;
public:
SCEVHasIVParams() {}
bool follow(const SCEV *S) {
const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
if (!Unknown)
return true;
CallInst *Call = dyn_cast<CallInst>(Unknown->getValue());
if (!Call)
return true;
if (isConstCall(Call)) {
HasIVParams = true;
return false;
}
return true;
}
bool isDone() { return HasIVParams; }
bool hasIVParams() { return HasIVParams; }
};
/// Check whether a SCEV refers to an SSA name defined inside a region.
class SCEVInRegionDependences {
const Region *R;
Loop *Scope;
const InvariantLoadsSetTy &ILS;
bool AllowLoops;
bool HasInRegionDeps = false;
public:
SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops,
const InvariantLoadsSetTy &ILS)
: R(R), Scope(Scope), ILS(ILS), AllowLoops(AllowLoops) {}
bool follow(const SCEV *S) {
if (auto Unknown = dyn_cast<SCEVUnknown>(S)) {
Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
CallInst *Call = dyn_cast<CallInst>(Unknown->getValue());
if (Call && isConstCall(Call))
return false;
if (Inst) {
// When we invariant load hoist a load, we first make sure that there
// can be no dependences created by it in the Scop region. So, we should
// not consider scalar dependences to `LoadInst`s that are invariant
// load hoisted.
//
// If this check is not present, then we create data dependences which
// are strictly not necessary by tracking the invariant load as a
// scalar.
LoadInst *LI = dyn_cast<LoadInst>(Inst);
if (LI && ILS.count(LI) > 0)
return false;
}
// Return true when Inst is defined inside the region R.
if (!Inst || !R->contains(Inst))
return true;
HasInRegionDeps = true;
return false;
}
if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
if (AllowLoops)
return true;
auto *L = AddRec->getLoop();
if (R->contains(L) && !L->contains(Scope)) {
HasInRegionDeps = true;
return false;
}
}
return true;
}
bool isDone() { return false; }
bool hasDependences() { return HasInRegionDeps; }
};
namespace polly {
/// Find all loops referenced in SCEVAddRecExprs.
class SCEVFindLoops {
SetVector<const Loop *> &Loops;
public:
SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {}
bool follow(const SCEV *S) {
if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S))
Loops.insert(AddRec->getLoop());
return true;
}
bool isDone() { return false; }
};
void findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) {
SCEVFindLoops FindLoops(Loops);
SCEVTraversal<SCEVFindLoops> ST(FindLoops);
ST.visitAll(Expr);
}
/// Find all values referenced in SCEVUnknowns.
class SCEVFindValues {
ScalarEvolution &SE;
SetVector<Value *> &Values;
public:
SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values)
: SE(SE), Values(Values) {}
bool follow(const SCEV *S) {
const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
if (!Unknown)
return true;
Values.insert(Unknown->getValue());
Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
Inst->getOpcode() != Instruction::SDiv))
return false;
auto *Dividend = SE.getSCEV(Inst->getOperand(1));
if (!isa<SCEVConstant>(Dividend))
return false;
auto *Divisor = SE.getSCEV(Inst->getOperand(0));
SCEVFindValues FindValues(SE, Values);
SCEVTraversal<SCEVFindValues> ST(FindValues);
ST.visitAll(Dividend);
ST.visitAll(Divisor);
return false;
}
bool isDone() { return false; }
};
void findValues(const SCEV *Expr, ScalarEvolution &SE,
SetVector<Value *> &Values) {
SCEVFindValues FindValues(SE, Values);
SCEVTraversal<SCEVFindValues> ST(FindValues);
ST.visitAll(Expr);
}
bool hasIVParams(const SCEV *Expr) {
SCEVHasIVParams HasIVParams;
SCEVTraversal<SCEVHasIVParams> ST(HasIVParams);
ST.visitAll(Expr);
return HasIVParams.hasIVParams();
}
bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R,
llvm::Loop *Scope, bool AllowLoops,
const InvariantLoadsSetTy &ILS) {
SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops, ILS);
SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps);
ST.visitAll(Expr);
return InRegionDeps.hasDependences();
}
bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr,
ScalarEvolution &SE, InvariantLoadsSetTy *ILS) {
if (isa<SCEVCouldNotCompute>(Expr))
return false;
SCEVValidator Validator(R, Scope, SE, ILS);
LLVM_DEBUG({
dbgs() << "\n";
dbgs() << "Expr: " << *Expr << "\n";
dbgs() << "Region: " << R->getNameStr() << "\n";
dbgs() << " -> ";
});
ValidatorResult Result = Validator.visit(Expr);
LLVM_DEBUG({
if (Result.isValid())
dbgs() << "VALID\n";
dbgs() << "\n";
});
return Result.isValid();
}
static bool isAffineExpr(Value *V, const Region *R, Loop *Scope,
ScalarEvolution &SE, ParameterSetTy &Params) {
auto *E = SE.getSCEV(V);
if (isa<SCEVCouldNotCompute>(E))
return false;
SCEVValidator Validator(R, Scope, SE, nullptr);
ValidatorResult Result = Validator.visit(E);
if (!Result.isValid())
return false;
auto ResultParams = Result.getParameters();
Params.insert(ResultParams.begin(), ResultParams.end());
return true;
}
bool isAffineConstraint(Value *V, const Region *R, llvm::Loop *Scope,
ScalarEvolution &SE, ParameterSetTy &Params,
bool OrExpr) {
if (auto *ICmp = dyn_cast<ICmpInst>(V)) {
return isAffineConstraint(ICmp->getOperand(0), R, Scope, SE, Params,
true) &&
isAffineConstraint(ICmp->getOperand(1), R, Scope, SE, Params, true);
} else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) {
auto Opcode = BinOp->getOpcode();
if (Opcode == Instruction::And || Opcode == Instruction::Or)
return isAffineConstraint(BinOp->getOperand(0), R, Scope, SE, Params,
false) &&
isAffineConstraint(BinOp->getOperand(1), R, Scope, SE, Params,
false);
/* Fall through */
}
if (!OrExpr)
return false;
return isAffineExpr(V, R, Scope, SE, Params);
}
ParameterSetTy getParamsInAffineExpr(const Region *R, Loop *Scope,
const SCEV *Expr, ScalarEvolution &SE) {
if (isa<SCEVCouldNotCompute>(Expr))
return ParameterSetTy();
InvariantLoadsSetTy ILS;
SCEVValidator Validator(R, Scope, SE, &ILS);
ValidatorResult Result = Validator.visit(Expr);
assert(Result.isValid() && "Requested parameters for an invalid SCEV!");
return Result.getParameters();
}
std::pair<const SCEVConstant *, const SCEV *>
extractConstantFactor(const SCEV *S, ScalarEvolution &SE) {
auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1));
if (auto *Constant = dyn_cast<SCEVConstant>(S))
return std::make_pair(Constant, SE.getConstant(S->getType(), 1));
auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
if (AddRec) {
auto *StartExpr = AddRec->getStart();
if (StartExpr->isZero()) {
auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE);
auto *LeftOverAddRec =
SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(),
AddRec->getNoWrapFlags());
return std::make_pair(StepPair.first, LeftOverAddRec);
}
return std::make_pair(ConstPart, S);
}
if (auto *Add = dyn_cast<SCEVAddExpr>(S)) {
SmallVector<const SCEV *, 4> LeftOvers;
auto Op0Pair = extractConstantFactor(Add->getOperand(0), SE);
auto *Factor = Op0Pair.first;
if (SE.isKnownNegative(Factor)) {
Factor = cast<SCEVConstant>(SE.getNegativeSCEV(Factor));
LeftOvers.push_back(SE.getNegativeSCEV(Op0Pair.second));
} else {
LeftOvers.push_back(Op0Pair.second);
}
for (unsigned u = 1, e = Add->getNumOperands(); u < e; u++) {
auto OpUPair = extractConstantFactor(Add->getOperand(u), SE);
// TODO: Use something smarter than equality here, e.g., gcd.
if (Factor == OpUPair.first)
LeftOvers.push_back(OpUPair.second);
else if (Factor == SE.getNegativeSCEV(OpUPair.first))
LeftOvers.push_back(SE.getNegativeSCEV(OpUPair.second));
else
return std::make_pair(ConstPart, S);
}
auto *NewAdd = SE.getAddExpr(LeftOvers, Add->getNoWrapFlags());
return std::make_pair(Factor, NewAdd);
}
auto *Mul = dyn_cast<SCEVMulExpr>(S);
if (!Mul)
return std::make_pair(ConstPart, S);
SmallVector<const SCEV *, 4> LeftOvers;
for (auto *Op : Mul->operands())
if (isa<SCEVConstant>(Op))
ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op));
else
LeftOvers.push_back(Op);
return std::make_pair(ConstPart, SE.getMulExpr(LeftOvers));
}
const SCEV *tryForwardThroughPHI(const SCEV *Expr, Region &R,
ScalarEvolution &SE, LoopInfo &LI,
const DominatorTree &DT) {
if (auto *Unknown = dyn_cast<SCEVUnknown>(Expr)) {
Value *V = Unknown->getValue();
auto *PHI = dyn_cast<PHINode>(V);
if (!PHI)
return Expr;
Value *Final = nullptr;
for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
BasicBlock *Incoming = PHI->getIncomingBlock(i);
if (isErrorBlock(*Incoming, R, LI, DT) && R.contains(Incoming))
continue;
if (Final)
return Expr;
Final = PHI->getIncomingValue(i);
}
if (Final)
return SE.getSCEV(Final);
}
return Expr;
}
Value *getUniqueNonErrorValue(PHINode *PHI, Region *R, LoopInfo &LI,
const DominatorTree &DT) {
Value *V = nullptr;
for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
BasicBlock *BB = PHI->getIncomingBlock(i);
if (!isErrorBlock(*BB, *R, LI, DT)) {
if (V)
return nullptr;
V = PHI->getIncomingValue(i);
}
}
return V;
}
} // namespace polly