SCEVValidator.cpp 24.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

#include "polly/Support/SCEVValidator.h"
#include "polly/ScopDetection.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Support/Debug.h"

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-scev-validator"

namespace SCEVType {
/// The type of a SCEV
///
/// To check for the validity of a SCEV we assign to each SCEV a type. The
/// possible types are INT, PARAM, IV and INVALID. The order of the types is
/// important. The subexpressions of SCEV with a type X can only have a type
/// that is smaller or equal than X.
enum TYPE {
  // An integer value.
  INT,

  // An expression that is constant during the execution of the Scop,
  // but that may depend on parameters unknown at compile time.
  PARAM,

  // An expression that may change during the execution of the SCoP.
  IV,

  // An invalid expression.
  INVALID
};
} // namespace SCEVType

/// The result the validator returns for a SCEV expression.
class ValidatorResult {
  /// The type of the expression
  SCEVType::TYPE Type;

  /// The set of Parameters in the expression.
  ParameterSetTy Parameters;

public:
  /// The copy constructor
  ValidatorResult(const ValidatorResult &Source) {
    Type = Source.Type;
    Parameters = Source.Parameters;
  }

  /// Construct a result with a certain type and no parameters.
  ValidatorResult(SCEVType::TYPE Type) : Type(Type) {
    assert(Type != SCEVType::PARAM && "Did you forget to pass the parameter");
  }

  /// Construct a result with a certain type and a single parameter.
  ValidatorResult(SCEVType::TYPE Type, const SCEV *Expr) : Type(Type) {
    Parameters.insert(Expr);
  }

  /// Get the type of the ValidatorResult.
  SCEVType::TYPE getType() { return Type; }

  /// Is the analyzed SCEV constant during the execution of the SCoP.
  bool isConstant() { return Type == SCEVType::INT || Type == SCEVType::PARAM; }

  /// Is the analyzed SCEV valid.
  bool isValid() { return Type != SCEVType::INVALID; }

  /// Is the analyzed SCEV of Type IV.
  bool isIV() { return Type == SCEVType::IV; }

  /// Is the analyzed SCEV of Type INT.
  bool isINT() { return Type == SCEVType::INT; }

  /// Is the analyzed SCEV of Type PARAM.
  bool isPARAM() { return Type == SCEVType::PARAM; }

  /// Get the parameters of this validator result.
  const ParameterSetTy &getParameters() { return Parameters; }

  /// Add the parameters of Source to this result.
  void addParamsFrom(const ValidatorResult &Source) {
    Parameters.insert(Source.Parameters.begin(), Source.Parameters.end());
  }

  /// Merge a result.
  ///
  /// This means to merge the parameters and to set the Type to the most
  /// specific Type that matches both.
  void merge(const ValidatorResult &ToMerge) {
    Type = std::max(Type, ToMerge.Type);
    addParamsFrom(ToMerge);
  }

  void print(raw_ostream &OS) {
    switch (Type) {
    case SCEVType::INT:
      OS << "SCEVType::INT";
      break;
    case SCEVType::PARAM:
      OS << "SCEVType::PARAM";
      break;
    case SCEVType::IV:
      OS << "SCEVType::IV";
      break;
    case SCEVType::INVALID:
      OS << "SCEVType::INVALID";
      break;
    }
  }
};

raw_ostream &operator<<(raw_ostream &OS, class ValidatorResult &VR) {
  VR.print(OS);
  return OS;
}

bool polly::isConstCall(llvm::CallInst *Call) {
  if (Call->mayReadOrWriteMemory())
    return false;

  for (auto &Operand : Call->arg_operands())
    if (!isa<ConstantInt>(&Operand))
      return false;

  return true;
}

/// Check if a SCEV is valid in a SCoP.
struct SCEVValidator
    : public SCEVVisitor<SCEVValidator, class ValidatorResult> {
private:
  const Region *R;
  Loop *Scope;
  ScalarEvolution &SE;
  InvariantLoadsSetTy *ILS;

public:
  SCEVValidator(const Region *R, Loop *Scope, ScalarEvolution &SE,
                InvariantLoadsSetTy *ILS)
      : R(R), Scope(Scope), SE(SE), ILS(ILS) {}

  class ValidatorResult visitConstant(const SCEVConstant *Constant) {
    return ValidatorResult(SCEVType::INT);
  }

  class ValidatorResult visitZeroExtendOrTruncateExpr(const SCEV *Expr,
                                                      const SCEV *Operand) {
    ValidatorResult Op = visit(Operand);
    auto Type = Op.getType();

    // If unsigned operations are allowed return the operand, otherwise
    // check if we can model the expression without unsigned assumptions.
    if (PollyAllowUnsignedOperations || Type == SCEVType::INVALID)
      return Op;

    if (Type == SCEVType::IV)
      return ValidatorResult(SCEVType::INVALID);
    return ValidatorResult(SCEVType::PARAM, Expr);
  }

  class ValidatorResult visitTruncateExpr(const SCEVTruncateExpr *Expr) {
    return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
  }

  class ValidatorResult visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
    return visitZeroExtendOrTruncateExpr(Expr, Expr->getOperand());
  }

  class ValidatorResult visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
    return visit(Expr->getOperand());
  }

  class ValidatorResult visitAddExpr(const SCEVAddExpr *Expr) {
    ValidatorResult Return(SCEVType::INT);

    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
      ValidatorResult Op = visit(Expr->getOperand(i));
      Return.merge(Op);

      // Early exit.
      if (!Return.isValid())
        break;
    }

    return Return;
  }

  class ValidatorResult visitMulExpr(const SCEVMulExpr *Expr) {
    ValidatorResult Return(SCEVType::INT);

    bool HasMultipleParams = false;

    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
      ValidatorResult Op = visit(Expr->getOperand(i));

      if (Op.isINT())
        continue;

      if (Op.isPARAM() && Return.isPARAM()) {
        HasMultipleParams = true;
        continue;
      }

      if ((Op.isIV() || Op.isPARAM()) && !Return.isINT()) {
        LLVM_DEBUG(
            dbgs() << "INVALID: More than one non-int operand in MulExpr\n"
                   << "\tExpr: " << *Expr << "\n"
                   << "\tPrevious expression type: " << Return << "\n"
                   << "\tNext operand (" << Op << "): " << *Expr->getOperand(i)
                   << "\n");

        return ValidatorResult(SCEVType::INVALID);
      }

      Return.merge(Op);
    }

    if (HasMultipleParams && Return.isValid())
      return ValidatorResult(SCEVType::PARAM, Expr);

    return Return;
  }

  class ValidatorResult visitAddRecExpr(const SCEVAddRecExpr *Expr) {
    if (!Expr->isAffine()) {
      LLVM_DEBUG(dbgs() << "INVALID: AddRec is not affine");
      return ValidatorResult(SCEVType::INVALID);
    }

    ValidatorResult Start = visit(Expr->getStart());
    ValidatorResult Recurrence = visit(Expr->getStepRecurrence(SE));

    if (!Start.isValid())
      return Start;

    if (!Recurrence.isValid())
      return Recurrence;

    auto *L = Expr->getLoop();
    if (R->contains(L) && (!Scope || !L->contains(Scope))) {
      LLVM_DEBUG(
          dbgs() << "INVALID: Loop of AddRec expression boxed in an a "
                    "non-affine subregion or has a non-synthesizable exit "
                    "value.");
      return ValidatorResult(SCEVType::INVALID);
    }

    if (R->contains(L)) {
      if (Recurrence.isINT()) {
        ValidatorResult Result(SCEVType::IV);
        Result.addParamsFrom(Start);
        return Result;
      }

      LLVM_DEBUG(dbgs() << "INVALID: AddRec within scop has non-int"
                           "recurrence part");
      return ValidatorResult(SCEVType::INVALID);
    }

    assert(Recurrence.isConstant() && "Expected 'Recurrence' to be constant");

    // Directly generate ValidatorResult for Expr if 'start' is zero.
    if (Expr->getStart()->isZero())
      return ValidatorResult(SCEVType::PARAM, Expr);

    // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
    // if 'start' is not zero.
    const SCEV *ZeroStartExpr = SE.getAddRecExpr(
        SE.getConstant(Expr->getStart()->getType(), 0),
        Expr->getStepRecurrence(SE), Expr->getLoop(), Expr->getNoWrapFlags());

    ValidatorResult ZeroStartResult =
        ValidatorResult(SCEVType::PARAM, ZeroStartExpr);
    ZeroStartResult.addParamsFrom(Start);

    return ZeroStartResult;
  }

  class ValidatorResult visitSMaxExpr(const SCEVSMaxExpr *Expr) {
    ValidatorResult Return(SCEVType::INT);

    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
      ValidatorResult Op = visit(Expr->getOperand(i));

      if (!Op.isValid())
        return Op;

      Return.merge(Op);
    }

    return Return;
  }

  class ValidatorResult visitSMinExpr(const SCEVSMinExpr *Expr) {
    ValidatorResult Return(SCEVType::INT);

    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
      ValidatorResult Op = visit(Expr->getOperand(i));

      if (!Op.isValid())
        return Op;

      Return.merge(Op);
    }

    return Return;
  }

  class ValidatorResult visitUMaxExpr(const SCEVUMaxExpr *Expr) {
    // We do not support unsigned max operations. If 'Expr' is constant during
    // Scop execution we treat this as a parameter, otherwise we bail out.
    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
      ValidatorResult Op = visit(Expr->getOperand(i));

      if (!Op.isConstant()) {
        LLVM_DEBUG(dbgs() << "INVALID: UMaxExpr has a non-constant operand");
        return ValidatorResult(SCEVType::INVALID);
      }
    }

    return ValidatorResult(SCEVType::PARAM, Expr);
  }

  class ValidatorResult visitUMinExpr(const SCEVUMinExpr *Expr) {
    // We do not support unsigned min operations. If 'Expr' is constant during
    // Scop execution we treat this as a parameter, otherwise we bail out.
    for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
      ValidatorResult Op = visit(Expr->getOperand(i));

      if (!Op.isConstant()) {
        LLVM_DEBUG(dbgs() << "INVALID: UMinExpr has a non-constant operand");
        return ValidatorResult(SCEVType::INVALID);
      }
    }

    return ValidatorResult(SCEVType::PARAM, Expr);
  }

  ValidatorResult visitGenericInst(Instruction *I, const SCEV *S) {
    if (R->contains(I)) {
      LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an instruction "
                           "within the region\n");
      return ValidatorResult(SCEVType::INVALID);
    }

    return ValidatorResult(SCEVType::PARAM, S);
  }

  ValidatorResult visitCallInstruction(Instruction *I, const SCEV *S) {
    assert(I->getOpcode() == Instruction::Call && "Call instruction expected");

    if (R->contains(I)) {
      auto Call = cast<CallInst>(I);

      if (!isConstCall(Call))
        return ValidatorResult(SCEVType::INVALID, S);
    }
    return ValidatorResult(SCEVType::PARAM, S);
  }

  ValidatorResult visitLoadInstruction(Instruction *I, const SCEV *S) {
    if (R->contains(I) && ILS) {
      ILS->insert(cast<LoadInst>(I));
      return ValidatorResult(SCEVType::PARAM, S);
    }

    return visitGenericInst(I, S);
  }

  ValidatorResult visitDivision(const SCEV *Dividend, const SCEV *Divisor,
                                const SCEV *DivExpr,
                                Instruction *SDiv = nullptr) {

    // First check if we might be able to model the division, thus if the
    // divisor is constant. If so, check the dividend, otherwise check if
    // the whole division can be seen as a parameter.
    if (isa<SCEVConstant>(Divisor) && !Divisor->isZero())
      return visit(Dividend);

    // For signed divisions use the SDiv instruction to check for a parameter
    // division, for unsigned divisions check the operands.
    if (SDiv)
      return visitGenericInst(SDiv, DivExpr);

    ValidatorResult LHS = visit(Dividend);
    ValidatorResult RHS = visit(Divisor);
    if (LHS.isConstant() && RHS.isConstant())
      return ValidatorResult(SCEVType::PARAM, DivExpr);

    LLVM_DEBUG(
        dbgs() << "INVALID: unsigned division of non-constant expressions");
    return ValidatorResult(SCEVType::INVALID);
  }

  ValidatorResult visitUDivExpr(const SCEVUDivExpr *Expr) {
    if (!PollyAllowUnsignedOperations)
      return ValidatorResult(SCEVType::INVALID);

    auto *Dividend = Expr->getLHS();
    auto *Divisor = Expr->getRHS();
    return visitDivision(Dividend, Divisor, Expr);
  }

  ValidatorResult visitSDivInstruction(Instruction *SDiv, const SCEV *Expr) {
    assert(SDiv->getOpcode() == Instruction::SDiv &&
           "Assumed SDiv instruction!");

    auto *Dividend = SE.getSCEV(SDiv->getOperand(0));
    auto *Divisor = SE.getSCEV(SDiv->getOperand(1));
    return visitDivision(Dividend, Divisor, Expr, SDiv);
  }

  ValidatorResult visitSRemInstruction(Instruction *SRem, const SCEV *S) {
    assert(SRem->getOpcode() == Instruction::SRem &&
           "Assumed SRem instruction!");

    auto *Divisor = SRem->getOperand(1);
    auto *CI = dyn_cast<ConstantInt>(Divisor);
    if (!CI || CI->isZeroValue())
      return visitGenericInst(SRem, S);

    auto *Dividend = SRem->getOperand(0);
    auto *DividendSCEV = SE.getSCEV(Dividend);
    return visit(DividendSCEV);
  }

  ValidatorResult visitUnknown(const SCEVUnknown *Expr) {
    Value *V = Expr->getValue();

    if (!Expr->getType()->isIntegerTy() && !Expr->getType()->isPointerTy()) {
      LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr is not an integer or pointer");
      return ValidatorResult(SCEVType::INVALID);
    }

    if (isa<UndefValue>(V)) {
      LLVM_DEBUG(dbgs() << "INVALID: UnknownExpr references an undef value");
      return ValidatorResult(SCEVType::INVALID);
    }

    if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
      switch (I->getOpcode()) {
      case Instruction::IntToPtr:
        return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
      case Instruction::PtrToInt:
        return visit(SE.getSCEVAtScope(I->getOperand(0), Scope));
      case Instruction::Load:
        return visitLoadInstruction(I, Expr);
      case Instruction::SDiv:
        return visitSDivInstruction(I, Expr);
      case Instruction::SRem:
        return visitSRemInstruction(I, Expr);
      case Instruction::Call:
        return visitCallInstruction(I, Expr);
      default:
        return visitGenericInst(I, Expr);
      }
    }

    return ValidatorResult(SCEVType::PARAM, Expr);
  }
};

class SCEVHasIVParams {
  bool HasIVParams = false;

public:
  SCEVHasIVParams() {}

  bool follow(const SCEV *S) {
    const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
    if (!Unknown)
      return true;

    CallInst *Call = dyn_cast<CallInst>(Unknown->getValue());

    if (!Call)
      return true;

    if (isConstCall(Call)) {
      HasIVParams = true;
      return false;
    }

    return true;
  }

  bool isDone() { return HasIVParams; }
  bool hasIVParams() { return HasIVParams; }
};

/// Check whether a SCEV refers to an SSA name defined inside a region.
class SCEVInRegionDependences {
  const Region *R;
  Loop *Scope;
  const InvariantLoadsSetTy &ILS;
  bool AllowLoops;
  bool HasInRegionDeps = false;

public:
  SCEVInRegionDependences(const Region *R, Loop *Scope, bool AllowLoops,
                          const InvariantLoadsSetTy &ILS)
      : R(R), Scope(Scope), ILS(ILS), AllowLoops(AllowLoops) {}

  bool follow(const SCEV *S) {
    if (auto Unknown = dyn_cast<SCEVUnknown>(S)) {
      Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());

      CallInst *Call = dyn_cast<CallInst>(Unknown->getValue());

      if (Call && isConstCall(Call))
        return false;

      if (Inst) {
        // When we invariant load hoist a load, we first make sure that there
        // can be no dependences created by it in the Scop region. So, we should
        // not consider scalar dependences to `LoadInst`s that are invariant
        // load hoisted.
        //
        // If this check is not present, then we create data dependences which
        // are strictly not necessary by tracking the invariant load as a
        // scalar.
        LoadInst *LI = dyn_cast<LoadInst>(Inst);
        if (LI && ILS.count(LI) > 0)
          return false;
      }

      // Return true when Inst is defined inside the region R.
      if (!Inst || !R->contains(Inst))
        return true;

      HasInRegionDeps = true;
      return false;
    }

    if (auto AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
      if (AllowLoops)
        return true;

      auto *L = AddRec->getLoop();
      if (R->contains(L) && !L->contains(Scope)) {
        HasInRegionDeps = true;
        return false;
      }
    }

    return true;
  }
  bool isDone() { return false; }
  bool hasDependences() { return HasInRegionDeps; }
};

namespace polly {
/// Find all loops referenced in SCEVAddRecExprs.
class SCEVFindLoops {
  SetVector<const Loop *> &Loops;

public:
  SCEVFindLoops(SetVector<const Loop *> &Loops) : Loops(Loops) {}

  bool follow(const SCEV *S) {
    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S))
      Loops.insert(AddRec->getLoop());
    return true;
  }
  bool isDone() { return false; }
};

void findLoops(const SCEV *Expr, SetVector<const Loop *> &Loops) {
  SCEVFindLoops FindLoops(Loops);
  SCEVTraversal<SCEVFindLoops> ST(FindLoops);
  ST.visitAll(Expr);
}

/// Find all values referenced in SCEVUnknowns.
class SCEVFindValues {
  ScalarEvolution &SE;
  SetVector<Value *> &Values;

public:
  SCEVFindValues(ScalarEvolution &SE, SetVector<Value *> &Values)
      : SE(SE), Values(Values) {}

  bool follow(const SCEV *S) {
    const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(S);
    if (!Unknown)
      return true;

    Values.insert(Unknown->getValue());
    Instruction *Inst = dyn_cast<Instruction>(Unknown->getValue());
    if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
                  Inst->getOpcode() != Instruction::SDiv))
      return false;

    auto *Dividend = SE.getSCEV(Inst->getOperand(1));
    if (!isa<SCEVConstant>(Dividend))
      return false;

    auto *Divisor = SE.getSCEV(Inst->getOperand(0));
    SCEVFindValues FindValues(SE, Values);
    SCEVTraversal<SCEVFindValues> ST(FindValues);
    ST.visitAll(Dividend);
    ST.visitAll(Divisor);

    return false;
  }
  bool isDone() { return false; }
};

void findValues(const SCEV *Expr, ScalarEvolution &SE,
                SetVector<Value *> &Values) {
  SCEVFindValues FindValues(SE, Values);
  SCEVTraversal<SCEVFindValues> ST(FindValues);
  ST.visitAll(Expr);
}

bool hasIVParams(const SCEV *Expr) {
  SCEVHasIVParams HasIVParams;
  SCEVTraversal<SCEVHasIVParams> ST(HasIVParams);
  ST.visitAll(Expr);
  return HasIVParams.hasIVParams();
}

bool hasScalarDepsInsideRegion(const SCEV *Expr, const Region *R,
                               llvm::Loop *Scope, bool AllowLoops,
                               const InvariantLoadsSetTy &ILS) {
  SCEVInRegionDependences InRegionDeps(R, Scope, AllowLoops, ILS);
  SCEVTraversal<SCEVInRegionDependences> ST(InRegionDeps);
  ST.visitAll(Expr);
  return InRegionDeps.hasDependences();
}

bool isAffineExpr(const Region *R, llvm::Loop *Scope, const SCEV *Expr,
                  ScalarEvolution &SE, InvariantLoadsSetTy *ILS) {
  if (isa<SCEVCouldNotCompute>(Expr))
    return false;

  SCEVValidator Validator(R, Scope, SE, ILS);
  LLVM_DEBUG({
    dbgs() << "\n";
    dbgs() << "Expr: " << *Expr << "\n";
    dbgs() << "Region: " << R->getNameStr() << "\n";
    dbgs() << " -> ";
  });

  ValidatorResult Result = Validator.visit(Expr);

  LLVM_DEBUG({
    if (Result.isValid())
      dbgs() << "VALID\n";
    dbgs() << "\n";
  });

  return Result.isValid();
}

static bool isAffineExpr(Value *V, const Region *R, Loop *Scope,
                         ScalarEvolution &SE, ParameterSetTy &Params) {
  auto *E = SE.getSCEV(V);
  if (isa<SCEVCouldNotCompute>(E))
    return false;

  SCEVValidator Validator(R, Scope, SE, nullptr);
  ValidatorResult Result = Validator.visit(E);
  if (!Result.isValid())
    return false;

  auto ResultParams = Result.getParameters();
  Params.insert(ResultParams.begin(), ResultParams.end());

  return true;
}

bool isAffineConstraint(Value *V, const Region *R, llvm::Loop *Scope,
                        ScalarEvolution &SE, ParameterSetTy &Params,
                        bool OrExpr) {
  if (auto *ICmp = dyn_cast<ICmpInst>(V)) {
    return isAffineConstraint(ICmp->getOperand(0), R, Scope, SE, Params,
                              true) &&
           isAffineConstraint(ICmp->getOperand(1), R, Scope, SE, Params, true);
  } else if (auto *BinOp = dyn_cast<BinaryOperator>(V)) {
    auto Opcode = BinOp->getOpcode();
    if (Opcode == Instruction::And || Opcode == Instruction::Or)
      return isAffineConstraint(BinOp->getOperand(0), R, Scope, SE, Params,
                                false) &&
             isAffineConstraint(BinOp->getOperand(1), R, Scope, SE, Params,
                                false);
    /* Fall through */
  }

  if (!OrExpr)
    return false;

  return isAffineExpr(V, R, Scope, SE, Params);
}

ParameterSetTy getParamsInAffineExpr(const Region *R, Loop *Scope,
                                     const SCEV *Expr, ScalarEvolution &SE) {
  if (isa<SCEVCouldNotCompute>(Expr))
    return ParameterSetTy();

  InvariantLoadsSetTy ILS;
  SCEVValidator Validator(R, Scope, SE, &ILS);
  ValidatorResult Result = Validator.visit(Expr);
  assert(Result.isValid() && "Requested parameters for an invalid SCEV!");

  return Result.getParameters();
}

std::pair<const SCEVConstant *, const SCEV *>
extractConstantFactor(const SCEV *S, ScalarEvolution &SE) {
  auto *ConstPart = cast<SCEVConstant>(SE.getConstant(S->getType(), 1));

  if (auto *Constant = dyn_cast<SCEVConstant>(S))
    return std::make_pair(Constant, SE.getConstant(S->getType(), 1));

  auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
  if (AddRec) {
    auto *StartExpr = AddRec->getStart();
    if (StartExpr->isZero()) {
      auto StepPair = extractConstantFactor(AddRec->getStepRecurrence(SE), SE);
      auto *LeftOverAddRec =
          SE.getAddRecExpr(StartExpr, StepPair.second, AddRec->getLoop(),
                           AddRec->getNoWrapFlags());
      return std::make_pair(StepPair.first, LeftOverAddRec);
    }
    return std::make_pair(ConstPart, S);
  }

  if (auto *Add = dyn_cast<SCEVAddExpr>(S)) {
    SmallVector<const SCEV *, 4> LeftOvers;
    auto Op0Pair = extractConstantFactor(Add->getOperand(0), SE);
    auto *Factor = Op0Pair.first;
    if (SE.isKnownNegative(Factor)) {
      Factor = cast<SCEVConstant>(SE.getNegativeSCEV(Factor));
      LeftOvers.push_back(SE.getNegativeSCEV(Op0Pair.second));
    } else {
      LeftOvers.push_back(Op0Pair.second);
    }

    for (unsigned u = 1, e = Add->getNumOperands(); u < e; u++) {
      auto OpUPair = extractConstantFactor(Add->getOperand(u), SE);
      // TODO: Use something smarter than equality here, e.g., gcd.
      if (Factor == OpUPair.first)
        LeftOvers.push_back(OpUPair.second);
      else if (Factor == SE.getNegativeSCEV(OpUPair.first))
        LeftOvers.push_back(SE.getNegativeSCEV(OpUPair.second));
      else
        return std::make_pair(ConstPart, S);
    }

    auto *NewAdd = SE.getAddExpr(LeftOvers, Add->getNoWrapFlags());
    return std::make_pair(Factor, NewAdd);
  }

  auto *Mul = dyn_cast<SCEVMulExpr>(S);
  if (!Mul)
    return std::make_pair(ConstPart, S);

  SmallVector<const SCEV *, 4> LeftOvers;
  for (auto *Op : Mul->operands())
    if (isa<SCEVConstant>(Op))
      ConstPart = cast<SCEVConstant>(SE.getMulExpr(ConstPart, Op));
    else
      LeftOvers.push_back(Op);

  return std::make_pair(ConstPart, SE.getMulExpr(LeftOvers));
}

const SCEV *tryForwardThroughPHI(const SCEV *Expr, Region &R,
                                 ScalarEvolution &SE, LoopInfo &LI,
                                 const DominatorTree &DT) {
  if (auto *Unknown = dyn_cast<SCEVUnknown>(Expr)) {
    Value *V = Unknown->getValue();
    auto *PHI = dyn_cast<PHINode>(V);
    if (!PHI)
      return Expr;

    Value *Final = nullptr;

    for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
      BasicBlock *Incoming = PHI->getIncomingBlock(i);
      if (isErrorBlock(*Incoming, R, LI, DT) && R.contains(Incoming))
        continue;
      if (Final)
        return Expr;
      Final = PHI->getIncomingValue(i);
    }

    if (Final)
      return SE.getSCEV(Final);
  }
  return Expr;
}

Value *getUniqueNonErrorValue(PHINode *PHI, Region *R, LoopInfo &LI,
                              const DominatorTree &DT) {
  Value *V = nullptr;
  for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
    BasicBlock *BB = PHI->getIncomingBlock(i);
    if (!isErrorBlock(*BB, *R, LI, DT)) {
      if (V)
        return nullptr;
      V = PHI->getIncomingValue(i);
    }
  }

  return V;
}
} // namespace polly