grouping.c 21.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
/*
 * Copyright 2016      Sven Verdoolaege
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege.
 */

#include <isl/ctx.h>
#include <isl/id.h>
#include <isl/val.h>
#include <isl/space.h>
#include <isl/aff.h>
#include <isl/set.h>
#include <isl/map.h>
#include <isl/union_set.h>
#include <isl/union_map.h>
#include <isl/schedule.h>
#include <isl/schedule_node.h>

#include "ppcg.h"

/* Internal data structure for use during the detection of statements
 * that can be grouped.
 *
 * "sc" contains the original schedule constraints (not a copy).
 * "dep" contains the intersection of the validity and the proximity
 * constraints in "sc".  It may be NULL if it has not been computed yet.
 * "group_id" is the identifier for the next group that is extracted.
 *
 * "domain" is the set of statement instances that belong to any of the groups.
 * "contraction" maps the elements of "domain" to the corresponding group
 * instances.
 * "schedule" schedules the statements in each group relatively to each other.
 * These last three fields are NULL if no groups have been found so far.
 */
struct ppcg_grouping {
	isl_schedule_constraints *sc;

	isl_union_map *dep;
	int group_id;

	isl_union_set *domain;
	isl_union_pw_multi_aff *contraction;
	isl_schedule *schedule;
};

/* Clear all memory allocated by "grouping".
 */
static void ppcg_grouping_clear(struct ppcg_grouping *grouping)
{
	isl_union_map_free(grouping->dep);
	isl_union_set_free(grouping->domain);
	isl_union_pw_multi_aff_free(grouping->contraction);
	isl_schedule_free(grouping->schedule);
}

/* Compute the intersection of the proximity and validity dependences
 * in grouping->sc and store the result in grouping->dep, unless
 * this intersection has been computed before.
 */
static isl_stat ppcg_grouping_compute_dep(struct ppcg_grouping *grouping)
{
	isl_union_map *validity, *proximity;

	if (grouping->dep)
		return isl_stat_ok;

	validity = isl_schedule_constraints_get_validity(grouping->sc);
	proximity = isl_schedule_constraints_get_proximity(grouping->sc);
	grouping->dep = isl_union_map_intersect(validity, proximity);

	if (!grouping->dep)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Information extracted from one or more consecutive leaves
 * in the input schedule.
 *
 * "list" contains the sets of statement instances in the leaves,
 * one element in the list for each original leaf.
 * "domain" contains the union of the sets in "list".
 * "prefix" contains the prefix schedule of these elements.
 */
struct ppcg_grouping_leaf {
	isl_union_set *domain;
	isl_union_set_list *list;
	isl_multi_union_pw_aff *prefix;
};

/* Free all memory allocated for "leaves".
 */
static void ppcg_grouping_leaf_free(int n, struct ppcg_grouping_leaf leaves[])
{
	int i;

	if (!leaves)
		return;

	for (i = 0; i < n; ++i) {
		isl_union_set_free(leaves[i].domain);
		isl_union_set_list_free(leaves[i].list);
		isl_multi_union_pw_aff_free(leaves[i].prefix);
	}

	free(leaves);
}

/* Short-hand for retrieving the prefix schedule at "node"
 * in the form of an isl_multi_union_pw_aff.
 */
static __isl_give isl_multi_union_pw_aff *get_prefix(
	__isl_keep isl_schedule_node *node)
{
	return isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
}

/* Return an array of "n" elements with information extracted from
 * the "n" children of "node" starting at "first", all of which
 * are known to be filtered leaves.
 */
struct ppcg_grouping_leaf *extract_leaves(__isl_keep isl_schedule_node *node,
	int first, int n)
{
	int i;
	isl_ctx *ctx;
	struct ppcg_grouping_leaf *leaves;

	if (!node)
		return NULL;

	ctx = isl_schedule_node_get_ctx(node);
	leaves = isl_calloc_array(ctx, struct ppcg_grouping_leaf, n);
	if (!leaves)
		return NULL;

	for (i = 0; i < n; ++i) {
		isl_schedule_node *child;
		isl_union_set *domain;

		child = isl_schedule_node_get_child(node, first + i);
		child = isl_schedule_node_child(child, 0);
		domain = isl_schedule_node_get_domain(child);
		leaves[i].domain = isl_union_set_copy(domain);
		leaves[i].list = isl_union_set_list_from_union_set(domain);
		leaves[i].prefix = get_prefix(child);
		isl_schedule_node_free(child);
	}

	return leaves;
}

/* Internal data structure used by merge_leaves.
 *
 * "src" and "dst" point to the two consecutive leaves that are
 * under investigation for being merged.
 * "merge" is initially set to 0 and is set to 1 as soon as
 * it turns out that it is useful to merge the two leaves.
 */
struct ppcg_merge_leaves_data {
	int merge;
	struct ppcg_grouping_leaf *src;
	struct ppcg_grouping_leaf *dst;
};

/* Given a relation "map" between instances of two statements A and B,
 * does it relate every instance of A (according to the domain of "src")
 * to every instance of B (according to the domain of "dst")?
 */
static isl_bool covers_src_and_dst(__isl_keep isl_map *map,
	struct ppcg_grouping_leaf *src, struct ppcg_grouping_leaf *dst)
{
	isl_space *space;
	isl_set *set1, *set2;
	isl_bool is_subset;

	space = isl_space_domain(isl_map_get_space(map));
	set1 = isl_union_set_extract_set(src->domain, space);
	set2 = isl_map_domain(isl_map_copy(map));
	is_subset = isl_set_is_subset(set1, set2);
	isl_set_free(set1);
	isl_set_free(set2);
	if (is_subset < 0 || !is_subset)
		return is_subset;

	space = isl_space_range(isl_map_get_space(map));
	set1 = isl_union_set_extract_set(dst->domain, space);
	set2 = isl_map_range(isl_map_copy(map));
	is_subset = isl_set_is_subset(set1, set2);
	isl_set_free(set1);
	isl_set_free(set2);

	return is_subset;
}

/* Given a relation "map" between instances of two statements A and B,
 * are pairs of related instances executed together in the input schedule?
 * That is, is each pair of instances assigned the same value
 * by the corresponding prefix schedules?
 *
 * In particular, select the subset of "map" that has pairs of elements
 * with the same value for the prefix schedules and then check
 * if "map" is still a subset of the result.
 */
static isl_bool matches_prefix(__isl_keep isl_map *map,
	struct ppcg_grouping_leaf *src, struct ppcg_grouping_leaf *dst)
{
	isl_union_map *umap, *equal;
	isl_multi_union_pw_aff *src_prefix, *dst_prefix, *prefix;
	isl_bool is_subset;

	src_prefix = isl_multi_union_pw_aff_copy(src->prefix);
	dst_prefix = isl_multi_union_pw_aff_copy(dst->prefix);
	prefix = isl_multi_union_pw_aff_union_add(src_prefix, dst_prefix);

	umap = isl_union_map_from_map(isl_map_copy(map));
	equal = isl_union_map_copy(umap);
	equal = isl_union_map_eq_at_multi_union_pw_aff(equal, prefix);

	is_subset = isl_union_map_is_subset(umap, equal);

	isl_union_map_free(umap);
	isl_union_map_free(equal);

	return is_subset;
}

/* Given a set of validity and proximity schedule constraints "map"
 * between statements in consecutive leaves in a valid schedule,
 * should the two leaves be merged into one?
 *
 * In particular, the two are merged if the constraints form
 * a bijection between every instance of the first statement and
 * every instance of the second statement.  Moreover, each
 * pair of such dependent instances needs to be executed consecutively
 * in the input schedule.  That is, they need to be assigned
 * the same value by their prefix schedules.
 *
 * What this means is that for each instance of the first statement
 * there is exactly one instance of the second statement that
 * is executed immediately after the instance of the first statement and
 * that, moreover, both depends on this statement instance and
 * should be brought as close as possible to this statement instance.
 * In other words, it is both possible to execute the two instances
 * together (according to the input schedule) and desirable to do so
 * (according to the validity and proximity schedule constraints).
 */
static isl_stat check_merge(__isl_take isl_map *map, void *user)
{
	struct ppcg_merge_leaves_data *data = user;
	isl_bool ok;

	ok = covers_src_and_dst(map, data->src, data->dst);
	if (ok >= 0 && ok)
		ok = isl_map_is_bijective(map);
	if (ok >= 0 && ok)
		ok = matches_prefix(map, data->src, data->dst);

	isl_map_free(map);

	if (ok < 0)
		return isl_stat_error;
	if (!ok)
		return isl_stat_ok;

	data->merge = 1;
	return isl_stat_error;
}

/* Merge the leaves at position "pos" and "pos + 1" in "leaves".
 */
static isl_stat merge_pair(int n, struct ppcg_grouping_leaf leaves[], int pos)
{
	int i;

	leaves[pos].domain = isl_union_set_union(leaves[pos].domain,
						leaves[pos + 1].domain);
	leaves[pos].list = isl_union_set_list_concat(leaves[pos].list,
						leaves[pos + 1].list);
	leaves[pos].prefix = isl_multi_union_pw_aff_union_add(
				leaves[pos].prefix, leaves[pos + 1].prefix);
	for (i = pos + 1; i + 1 < n; ++i)
		leaves[i] = leaves[i + 1];
	leaves[n - 1].domain = NULL;
	leaves[n - 1].list = NULL;
	leaves[n - 1].prefix = NULL;

	if (!leaves[pos].domain || !leaves[pos].list || !leaves[pos].prefix)
		return isl_stat_error;

	return isl_stat_ok;
}

/* Merge pairs of consecutive leaves in "leaves" taking into account
 * the intersection of validity and proximity schedule constraints "dep".
 *
 * If a leaf has been merged with the next leaf, then the combination
 * is checked again for merging with the next leaf.
 * That is, if the leaves are A, B and C, then B may not have been
 * merged with C, but after merging A and B, it could still be useful
 * to merge the combination AB with C.
 *
 * Two leaves A and B are merged if there are instances of at least
 * one pair of statements, one statement in A and one B, such that
 * the validity and proximity schedule constraints between them
 * make them suitable for merging according to check_merge.
 *
 * Return the final number of leaves in the sequence, or -1 on error.
 */
static int merge_leaves(int n, struct ppcg_grouping_leaf leaves[],
	__isl_keep isl_union_map *dep)
{
	int i;
	struct ppcg_merge_leaves_data data;

	for (i = n - 1; i >= 0; --i) {
		isl_union_map *dep_i;
		isl_stat ok;

		if (i + 1 >= n)
			continue;

		dep_i = isl_union_map_copy(dep);
		dep_i = isl_union_map_intersect_domain(dep_i,
				isl_union_set_copy(leaves[i].domain));
		dep_i = isl_union_map_intersect_range(dep_i,
				isl_union_set_copy(leaves[i + 1].domain));
		data.merge = 0;
		data.src = &leaves[i];
		data.dst = &leaves[i + 1];
		ok = isl_union_map_foreach_map(dep_i, &check_merge, &data);
		isl_union_map_free(dep_i);
		if (ok < 0 && !data.merge)
			return -1;
		if (!data.merge)
			continue;
		if (merge_pair(n, leaves, i) < 0)
			return -1;
		--n;
		++i;
	}

	return n;
}

/* Construct a schedule with "domain" as domain, that executes
 * the elements of "list" in order (as a sequence).
 */
static __isl_give isl_schedule *schedule_from_domain_and_list(
	__isl_keep isl_union_set *domain, __isl_keep isl_union_set_list *list)
{
	isl_schedule *schedule;
	isl_schedule_node *node;

	schedule = isl_schedule_from_domain(isl_union_set_copy(domain));
	node = isl_schedule_get_root(schedule);
	isl_schedule_free(schedule);
	node = isl_schedule_node_child(node, 0);
	list = isl_union_set_list_copy(list);
	node = isl_schedule_node_insert_sequence(node, list);
	schedule = isl_schedule_node_get_schedule(node);
	isl_schedule_node_free(node);

	return schedule;
}

/* Construct a unique identifier for a group in "grouping".
 *
 * The name is of the form G_n, with n the first value starting at
 * grouping->group_id that does not result in an identifier
 * that is already in use in the domain of the original schedule
 * constraints.
 */
static isl_id *construct_group_id(struct ppcg_grouping *grouping,
	__isl_take isl_space *space)
{
	isl_ctx *ctx;
	isl_id *id;
	isl_bool empty;
	isl_union_set *domain;

	if (!space)
		return NULL;

	ctx = isl_space_get_ctx(space);
	domain = isl_schedule_constraints_get_domain(grouping->sc);

	do {
		char buffer[20];
		isl_id *id;
		isl_set *set;

		snprintf(buffer, sizeof(buffer), "G_%d", grouping->group_id);
		grouping->group_id++;
		id = isl_id_alloc(ctx, buffer, NULL);
		space = isl_space_set_tuple_id(space, isl_dim_set, id);
		set = isl_union_set_extract_set(domain, isl_space_copy(space));
		empty = isl_set_plain_is_empty(set);
		isl_set_free(set);
	} while (empty >= 0 && !empty);

	if (empty < 0)
		space = isl_space_free(space);

	id = isl_space_get_tuple_id(space, isl_dim_set);

	isl_space_free(space);
	isl_union_set_free(domain);

	return id;
}

/* Construct a contraction from "prefix" and "domain" for a new group
 * in "grouping".
 *
 * The values of the prefix schedule "prefix" are used as instances
 * of the new group.  The identifier of the group is constructed
 * in such a way that it does not conflict with those of earlier
 * groups nor with statements in the domain of the original
 * schedule constraints.
 * The isl_multi_union_pw_aff "prefix" then simply needs to be
 * converted to an isl_union_pw_multi_aff.  However, this is not
 * possible if "prefix" is zero-dimensional, so in this case,
 * a contraction is constructed from "domain" instead.
 */
static isl_union_pw_multi_aff *group_contraction_from_prefix_and_domain(
	struct ppcg_grouping *grouping,
	__isl_keep isl_multi_union_pw_aff *prefix,
	__isl_keep isl_union_set *domain)
{
	isl_id *id;
	isl_space *space;
	int dim;

	space = isl_multi_union_pw_aff_get_space(prefix);
	if (!space)
		return NULL;
	dim = isl_space_dim(space, isl_dim_set);
	id = construct_group_id(grouping, space);
	if (dim == 0) {
		isl_multi_val *mv;

		space = isl_multi_union_pw_aff_get_space(prefix);
		space = isl_space_set_tuple_id(space, isl_dim_set, id);
		mv = isl_multi_val_zero(space);
		domain = isl_union_set_copy(domain);
		return isl_union_pw_multi_aff_multi_val_on_domain(domain, mv);
	}
	prefix = isl_multi_union_pw_aff_copy(prefix);
	prefix = isl_multi_union_pw_aff_set_tuple_id(prefix, isl_dim_out, id);
	return isl_union_pw_multi_aff_from_multi_union_pw_aff(prefix);
}

/* Extend "grouping" with groups corresponding to merged
 * leaves in the list of potentially merged leaves "leaves".
 *
 * The "list" field of each element in "leaves" contains a list
 * of the instances sets of the original leaves that have been
 * merged into this element.  If at least two of the original leaves
 * have been merged into a given element, then add the corresponding
 * group to "grouping".
 * In particular, the domain is extended with the statement instances
 * of the merged leaves, the contraction is extended with a mapping
 * of these statement instances to instances of a new group and
 * the schedule is extended with a schedule that executes
 * the statement instances according to the order of the leaves
 * in which they appear.
 * Since the instances of the groups should already be scheduled apart
 * in the schedule into which this schedule will be plugged in,
 * the schedules of the individual groups are combined independently
 * of each other (as a set).
 */
static isl_stat add_groups(struct ppcg_grouping *grouping,
	int n, struct ppcg_grouping_leaf leaves[])
{
	int i;

	for (i = 0; i < n; ++i) {
		int n_leaf;
		isl_schedule *schedule;
		isl_union_set *domain;
		isl_union_pw_multi_aff *upma;

		n_leaf = isl_union_set_list_n_union_set(leaves[i].list);
		if (n_leaf < 0)
			return isl_stat_error;
		if (n_leaf <= 1)
			continue;
		schedule = schedule_from_domain_and_list(leaves[i].domain,
							leaves[i].list);
		upma = group_contraction_from_prefix_and_domain(grouping,
					leaves[i].prefix, leaves[i].domain);

		domain = isl_union_set_copy(leaves[i].domain);
		if (grouping->domain) {
			domain = isl_union_set_union(domain, grouping->domain);
			upma = isl_union_pw_multi_aff_union_add(upma,
						grouping->contraction);
			schedule = isl_schedule_set(schedule,
						grouping->schedule);
		}
		grouping->domain = domain;
		grouping->contraction = upma;
		grouping->schedule = schedule;

		if (!grouping->domain || !grouping->contraction ||
		    !grouping->schedule)
			return isl_stat_error;
	}

	return isl_stat_ok;
}

/* Look for any pairs of consecutive leaves among the "n" children of "node"
 * starting at "first" that should be merged together.
 * Store the results in "grouping".
 *
 * First make sure the intersection of validity and proximity
 * schedule constraints is available and extract the required
 * information from the "n" leaves.
 * Then try and merge consecutive leaves based on the validity
 * and proximity constraints.
 * If any pairs were successfully merged, then add groups
 * corresponding to the merged leaves to "grouping".
 */
static isl_stat group_subsequence(__isl_keep isl_schedule_node *node,
	int first, int n, struct ppcg_grouping *grouping)
{
	int n_merge;
	struct ppcg_grouping_leaf *leaves;

	if (ppcg_grouping_compute_dep(grouping) < 0)
		return isl_stat_error;

	leaves = extract_leaves(node, first, n);
	if (!leaves)
		return isl_stat_error;

	n_merge = merge_leaves(n, leaves, grouping->dep);
	if (n_merge >= 0 && n_merge < n &&
	    add_groups(grouping, n_merge, leaves) < 0)
		return isl_stat_error;

	ppcg_grouping_leaf_free(n, leaves);

	return isl_stat_ok;
}

/* If "node" is a sequence, then check if it has any consecutive
 * leaves that should be merged together and store the results
 * in "grouping".
 *
 * In particular, call group_subsequence on each consecutive
 * sequence of (filtered) leaves among the children of "node".
 */
static isl_bool detect_groups(__isl_keep isl_schedule_node *node, void *user)
{
	int i, n, first;
	struct ppcg_grouping *grouping = user;

	if (isl_schedule_node_get_type(node) != isl_schedule_node_sequence)
		return isl_bool_true;

	n = isl_schedule_node_n_children(node);
	if (n < 0)
		return isl_bool_error;

	first = -1;
	for (i = 0; i < n; ++i) {
		isl_schedule_node *child;
		enum isl_schedule_node_type type;

		child = isl_schedule_node_get_child(node, i);
		child = isl_schedule_node_child(child, 0);
		type = isl_schedule_node_get_type(child);
		isl_schedule_node_free(child);

		if (first >= 0 && type != isl_schedule_node_leaf) {
			if (group_subsequence(node, first, i - first,
						grouping) < 0)
				return isl_bool_error;
			first = -1;
		}
		if (first < 0 && type == isl_schedule_node_leaf)
			first = i;
	}
	if (first >= 0) {
		if (group_subsequence(node, first, n - first, grouping) < 0)
			return isl_bool_error;
	}

	return isl_bool_true;
}

/* Complete "grouping" to cover all statement instances in the domain
 * of grouping->sc.
 *
 * In particular, grouping->domain is set to the full set of statement
 * instances; group->contraction is extended with an identity
 * contraction on the additional instances and group->schedule
 * is extended with an independent schedule on those additional instances.
 * In the extension of group->contraction, the additional instances
 * are split into those belong to different statements and those
 * that belong to some of the same statements.  The first group
 * is replaced by its universe in order to simplify the contraction extension.
 */
static void complete_grouping(struct ppcg_grouping *grouping)
{
	isl_union_set *domain, *left, *overlap;
	isl_union_pw_multi_aff *upma;
	isl_schedule *schedule;

	domain = isl_schedule_constraints_get_domain(grouping->sc);
	left = isl_union_set_subtract(isl_union_set_copy(domain),
				    isl_union_set_copy(grouping->domain));
	schedule = isl_schedule_from_domain(isl_union_set_copy(left));
	schedule = isl_schedule_set(schedule, grouping->schedule);
	grouping->schedule = schedule;

	overlap = isl_union_set_universe(grouping->domain);
	grouping->domain = domain;
	overlap = isl_union_set_intersect(isl_union_set_copy(left), overlap);
	left = isl_union_set_subtract(left, isl_union_set_copy(overlap));
	left = isl_union_set_universe(left);
	left = isl_union_set_union(left, overlap);
	upma = isl_union_set_identity_union_pw_multi_aff(left);
	upma = isl_union_pw_multi_aff_union_add(upma, grouping->contraction);
	grouping->contraction = upma;
}

/* Compute a schedule on the domain of "sc" that respects the schedule
 * constraints in "sc".
 *
 * "schedule" is a known correct schedule that is used to combine
 * groups of statements if options->group_chains is set.
 * In particular, statements that are executed consecutively in a sequence
 * in this schedule and where all instances of the second depend on
 * the instance of the first that is executed in the same iteration
 * of outer band nodes are grouped together into a single statement.
 * The schedule constraints are then mapped to these groups of statements
 * and the resulting schedule is expanded again to refer to the original
 * statements.
 */
__isl_give isl_schedule *ppcg_compute_schedule(
	__isl_take isl_schedule_constraints *sc,
	__isl_keep isl_schedule *schedule, struct ppcg_options *options)
{
	struct ppcg_grouping grouping = { sc };
	isl_union_pw_multi_aff *contraction;
	isl_union_map *umap;
	isl_schedule *res, *expansion;

	if (!options->group_chains)
		return isl_schedule_constraints_compute_schedule(sc);

	grouping.group_id = 0;
	if (isl_schedule_foreach_schedule_node_top_down(schedule,
			&detect_groups, &grouping) < 0)
		goto error;
	if (!grouping.contraction) {
		ppcg_grouping_clear(&grouping);
		return isl_schedule_constraints_compute_schedule(sc);
	}
	complete_grouping(&grouping);
	contraction = isl_union_pw_multi_aff_copy(grouping.contraction);
	umap = isl_union_map_from_union_pw_multi_aff(contraction);

	sc = isl_schedule_constraints_apply(sc, umap);

	res = isl_schedule_constraints_compute_schedule(sc);

	contraction = isl_union_pw_multi_aff_copy(grouping.contraction);
	expansion = isl_schedule_copy(grouping.schedule);
	res = isl_schedule_expand(res, contraction, expansion);

	ppcg_grouping_clear(&grouping);
	return res;
error:
	ppcg_grouping_clear(&grouping);
	isl_schedule_constraints_free(sc);
	return NULL;
}