IslNodeBuilder.cpp 57.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
//===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the IslNodeBuilder, a class to translate an isl AST into
// a LLVM-IR AST.
//
//===----------------------------------------------------------------------===//

#include "polly/CodeGen/IslNodeBuilder.h"
#include "polly/CodeGen/BlockGenerators.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/CodeGen/IslAst.h"
#include "polly/CodeGen/IslExprBuilder.h"
#include "polly/CodeGen/LoopGeneratorsGOMP.h"
#include "polly/CodeGen/LoopGeneratorsKMP.h"
#include "polly/CodeGen/RuntimeDebugBuilder.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "isl/aff.h"
#include "isl/aff_type.h"
#include "isl/ast.h"
#include "isl/ast_build.h"
#include "isl/isl-noexceptions.h"
#include "isl/map.h"
#include "isl/set.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
#include "isl/val.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-codegen"

STATISTIC(VersionedScops, "Number of SCoPs that required versioning.");

STATISTIC(SequentialLoops, "Number of generated sequential for-loops");
STATISTIC(ParallelLoops, "Number of generated parallel for-loops");
STATISTIC(VectorLoops, "Number of generated vector for-loops");
STATISTIC(IfConditions, "Number of generated if-conditions");

/// OpenMP backend options
enum class OpenMPBackend { GNU, LLVM };

static cl::opt<bool> PollyGenerateRTCPrint(
    "polly-codegen-emit-rtc-print",
    cl::desc("Emit code that prints the runtime check result dynamically."),
    cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

// If this option is set we always use the isl AST generator to regenerate
// memory accesses. Without this option set we regenerate expressions using the
// original SCEV expressions and only generate new expressions in case the
// access relation has been changed and consequently must be regenerated.
static cl::opt<bool> PollyGenerateExpressions(
    "polly-codegen-generate-expressions",
    cl::desc("Generate AST expressions for unmodified and modified accesses"),
    cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> PollyTargetFirstLevelCacheLineSize(
    "polly-target-first-level-cache-line-size",
    cl::desc("The size of the first level cache line size specified in bytes."),
    cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<OpenMPBackend> PollyOmpBackend(
    "polly-omp-backend", cl::desc("Choose the OpenMP library to use:"),
    cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"),
               clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")),
    cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory));

isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node For,
                                            ICmpInst::Predicate &Predicate) {
  isl::ast_expr Cond = For.for_get_cond();
  isl::ast_expr Iterator = For.for_get_iterator();
  assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op &&
         "conditional expression is not an atomic upper bound");

  isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get());

  switch (OpType) {
  case isl_ast_op_le:
    Predicate = ICmpInst::ICMP_SLE;
    break;
  case isl_ast_op_lt:
    Predicate = ICmpInst::ICMP_SLT;
    break;
  default:
    llvm_unreachable("Unexpected comparison type in loop condition");
  }

  isl::ast_expr Arg0 = Cond.get_op_arg(0);

  assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id &&
         "conditional expression is not an atomic upper bound");

  isl::id UBID = Arg0.get_id();

  assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id &&
         "Could not get the iterator");

  isl::id IteratorID = Iterator.get_id();

  assert(UBID.get() == IteratorID.get() &&
         "conditional expression is not an atomic upper bound");

  return Cond.get_op_arg(1);
}

/// Return true if a return value of Predicate is true for the value represented
/// by passed isl_ast_expr_int.
static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr,
                               isl_bool (*Predicate)(__isl_keep isl_val *)) {
  if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) {
    isl_ast_expr_free(Expr);
    return false;
  }
  auto ExprVal = isl_ast_expr_get_val(Expr);
  isl_ast_expr_free(Expr);
  if (Predicate(ExprVal) != isl_bool_true) {
    isl_val_free(ExprVal);
    return false;
  }
  isl_val_free(ExprVal);
  return true;
}

int IslNodeBuilder::getNumberOfIterations(isl::ast_node For) {
  assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for);
  isl::ast_node Body = For.for_get_body();

  // First, check if we can actually handle this code.
  switch (isl_ast_node_get_type(Body.get())) {
  case isl_ast_node_user:
    break;
  case isl_ast_node_block: {
    isl::ast_node_list List = Body.block_get_children();
    for (isl::ast_node Node : List) {
      isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get());
      if (NodeType != isl_ast_node_user)
        return -1;
    }
    break;
  }
  default:
    return -1;
  }

  isl::ast_expr Init = For.for_get_init();
  if (!checkIslAstExprInt(Init.release(), isl_val_is_zero))
    return -1;
  isl::ast_expr Inc = For.for_get_inc();
  if (!checkIslAstExprInt(Inc.release(), isl_val_is_one))
    return -1;
  CmpInst::Predicate Predicate;
  isl::ast_expr UB = getUpperBound(For, Predicate);
  if (isl_ast_expr_get_type(UB.get()) != isl_ast_expr_int)
    return -1;
  isl::val UpVal = UB.get_val();
  int NumberIterations = UpVal.get_num_si();
  if (NumberIterations < 0)
    return -1;
  if (Predicate == CmpInst::ICMP_SLT)
    return NumberIterations;
  else
    return NumberIterations + 1;
}

/// Extract the values and SCEVs needed to generate code for a block.
static int findReferencesInBlock(struct SubtreeReferences &References,
                                 const ScopStmt *Stmt, BasicBlock *BB) {
  for (Instruction &Inst : *BB) {
    // Include invariant loads
    if (isa<LoadInst>(Inst))
      if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst))
        References.Values.insert(InvariantLoad);

    for (Value *SrcVal : Inst.operands()) {
      auto *Scope = References.LI.getLoopFor(BB);
      if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) {
        References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope));
        continue;
      } else if (Value *NewVal = References.GlobalMap.lookup(SrcVal))
        References.Values.insert(NewVal);
    }
  }
  return 0;
}

void addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr,
                           bool CreateScalarRefs) {
  auto &References = *static_cast<struct SubtreeReferences *>(UserPtr);

  if (Stmt->isBlockStmt())
    findReferencesInBlock(References, Stmt, Stmt->getBasicBlock());
  else if (Stmt->isRegionStmt()) {
    for (BasicBlock *BB : Stmt->getRegion()->blocks())
      findReferencesInBlock(References, Stmt, BB);
  } else {
    assert(Stmt->isCopyStmt());
    // Copy Stmts have no instructions that we need to consider.
  }

  for (auto &Access : *Stmt) {
    if (References.ParamSpace) {
      isl::space ParamSpace = Access->getLatestAccessRelation().get_space();
      (*References.ParamSpace) =
          References.ParamSpace->align_params(ParamSpace);
    }

    if (Access->isLatestArrayKind()) {
      auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr();
      if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr))
        if (Stmt->getParent()->contains(OpInst))
          continue;

      References.Values.insert(BasePtr);
      continue;
    }

    if (CreateScalarRefs)
      References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access));
  }
}

/// Extract the out-of-scop values and SCEVs referenced from a set describing
/// a ScopStmt.
///
/// This includes the SCEVUnknowns referenced by the SCEVs used in the
/// statement and the base pointers of the memory accesses. For scalar
/// statements we force the generation of alloca memory locations and list
/// these locations in the set of out-of-scop values as well.
///
/// @param Set     A set which references the ScopStmt we are interested in.
/// @param UserPtr A void pointer that can be casted to a SubtreeReferences
///                structure.
static void addReferencesFromStmtSet(isl::set Set,
                                     struct SubtreeReferences *UserPtr) {
  isl::id Id = Set.get_tuple_id();
  auto *Stmt = static_cast<const ScopStmt *>(Id.get_user());
  return addReferencesFromStmt(Stmt, UserPtr);
}

/// Extract the out-of-scop values and SCEVs referenced from a union set
/// referencing multiple ScopStmts.
///
/// This includes the SCEVUnknowns referenced by the SCEVs used in the
/// statement and the base pointers of the memory accesses. For scalar
/// statements we force the generation of alloca memory locations and list
/// these locations in the set of out-of-scop values as well.
///
/// @param USet       A union set referencing the ScopStmts we are interested
///                   in.
/// @param References The SubtreeReferences data structure through which
///                   results are returned and further information is
///                   provided.
static void
addReferencesFromStmtUnionSet(isl::union_set USet,
                              struct SubtreeReferences &References) {

  for (isl::set Set : USet.get_set_list())
    addReferencesFromStmtSet(Set, &References);
}

__isl_give isl_union_map *
IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) {
  return IslAstInfo::getSchedule(For);
}

void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For,
                                            SetVector<Value *> &Values,
                                            SetVector<const Loop *> &Loops) {
  SetVector<const SCEV *> SCEVs;
  struct SubtreeReferences References = {
      LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr};

  for (const auto &I : IDToValue)
    Values.insert(I.second);

  // NOTE: this is populated in IslNodeBuilder::addParameters
  for (const auto &I : OutsideLoopIterations)
    Values.insert(cast<SCEVUnknown>(I.second)->getValue());

  isl::union_set Schedule =
      isl::manage(isl_union_map_domain(getScheduleForAstNode(For)));
  addReferencesFromStmtUnionSet(Schedule, References);

  for (const SCEV *Expr : SCEVs) {
    findValues(Expr, SE, Values);
    findLoops(Expr, Loops);
  }

  Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); });

  /// Note: Code generation of induction variables of loops outside Scops
  ///
  /// Remove loops that contain the scop or that are part of the scop, as they
  /// are considered local. This leaves only loops that are before the scop, but
  /// do not contain the scop itself.
  /// We ignore loops perfectly contained in the Scop because these are already
  /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops
  /// whose induction variables are referred to by the Scop, but the Scop is not
  /// fully contained in these Loops. Since there can be many of these,
  /// we choose to codegen these on-demand.
  /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable.
  Loops.remove_if([this](const Loop *L) {
    return S.contains(L) || L->contains(S.getEntry());
  });

  // Contains Values that may need to be replaced with other values
  // due to replacements from the ValueMap. We should make sure
  // that we return correctly remapped values.
  // NOTE: this code path is tested by:
  //     1.  test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
  //     2.  test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
  SetVector<Value *> ReplacedValues;
  for (Value *V : Values) {
    ReplacedValues.insert(getLatestValue(V));
  }
  Values = ReplacedValues;
}

void IslNodeBuilder::updateValues(ValueMapT &NewValues) {
  SmallPtrSet<Value *, 5> Inserted;

  for (const auto &I : IDToValue) {
    IDToValue[I.first] = NewValues[I.second];
    Inserted.insert(I.second);
  }

  for (const auto &I : NewValues) {
    if (Inserted.count(I.first))
      continue;

    ValueMap[I.first] = I.second;
  }
}

Value *IslNodeBuilder::getLatestValue(Value *Original) const {
  auto It = ValueMap.find(Original);
  if (It == ValueMap.end())
    return Original;
  return It->second;
}

void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User,
                                      std::vector<Value *> &IVS,
                                      __isl_take isl_id *IteratorID,
                                      __isl_take isl_union_map *Schedule) {
  isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
  isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
  isl_id *Id = isl_ast_expr_get_id(StmtExpr);
  isl_ast_expr_free(StmtExpr);
  ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id);
  std::vector<LoopToScevMapT> VLTS(IVS.size());

  isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release());
  Schedule = isl_union_map_intersect_domain(Schedule, Domain);
  isl_map *S = isl_map_from_union_map(Schedule);

  auto *NewAccesses = createNewAccesses(Stmt, User);
  createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID);
  VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses);
  isl_id_to_ast_expr_free(NewAccesses);
  isl_map_free(S);
  isl_id_free(Id);
  isl_ast_node_free(User);
}

void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) {
  auto *Id = isl_ast_node_mark_get_id(Node);
  auto Child = isl_ast_node_mark_get_node(Node);
  isl_ast_node_free(Node);
  // If a child node of a 'SIMD mark' is a loop that has a single iteration,
  // it will be optimized away and we should skip it.
  if (strcmp(isl_id_get_name(Id), "SIMD") == 0 &&
      isl_ast_node_get_type(Child) == isl_ast_node_for) {
    bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
    int VectorWidth = getNumberOfIterations(isl::manage_copy(Child));
    if (Vector && 1 < VectorWidth && VectorWidth <= 16)
      createForVector(Child, VectorWidth);
    else
      createForSequential(isl::manage(Child), true);
    isl_id_free(Id);
    return;
  }
  if (strcmp(isl_id_get_name(Id), "Inter iteration alias-free") == 0) {
    auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id));
    Annotator.addInterIterationAliasFreeBasePtr(BasePtr);
  }
  create(Child);
  isl_id_free(Id);
}

void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For,
                                     int VectorWidth) {
  isl_ast_node *Body = isl_ast_node_for_get_body(For);
  isl_ast_expr *Init = isl_ast_node_for_get_init(For);
  isl_ast_expr *Inc = isl_ast_node_for_get_inc(For);
  isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For);
  isl_id *IteratorID = isl_ast_expr_get_id(Iterator);

  Value *ValueLB = ExprBuilder.create(Init);
  Value *ValueInc = ExprBuilder.create(Inc);

  Type *MaxType = ExprBuilder.getType(Iterator);
  MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
  MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());

  if (MaxType != ValueLB->getType())
    ValueLB = Builder.CreateSExt(ValueLB, MaxType);
  if (MaxType != ValueInc->getType())
    ValueInc = Builder.CreateSExt(ValueInc, MaxType);

  std::vector<Value *> IVS(VectorWidth);
  IVS[0] = ValueLB;

  for (int i = 1; i < VectorWidth; i++)
    IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv");

  isl_union_map *Schedule = getScheduleForAstNode(For);
  assert(Schedule && "For statement annotation does not contain its schedule");

  IDToValue[IteratorID] = ValueLB;

  switch (isl_ast_node_get_type(Body)) {
  case isl_ast_node_user:
    createUserVector(Body, IVS, isl_id_copy(IteratorID),
                     isl_union_map_copy(Schedule));
    break;
  case isl_ast_node_block: {
    isl_ast_node_list *List = isl_ast_node_block_get_children(Body);

    for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
      createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS,
                       isl_id_copy(IteratorID), isl_union_map_copy(Schedule));

    isl_ast_node_free(Body);
    isl_ast_node_list_free(List);
    break;
  }
  default:
    isl_ast_node_dump(Body);
    llvm_unreachable("Unhandled isl_ast_node in vectorizer");
  }

  IDToValue.erase(IDToValue.find(IteratorID));
  isl_id_free(IteratorID);
  isl_union_map_free(Schedule);

  isl_ast_node_free(For);
  isl_ast_expr_free(Iterator);

  VectorLoops++;
}

/// Restore the initial ordering of dimensions of the band node
///
/// In case the band node represents all the dimensions of the iteration
/// domain, recreate the band node to restore the initial ordering of the
/// dimensions.
///
/// @param Node The band node to be modified.
/// @return The modified schedule node.
static bool IsLoopVectorizerDisabled(isl::ast_node Node) {
  assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for);
  auto Body = Node.for_get_body();
  if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark)
    return false;
  auto Id = Body.mark_get_id();
  if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0)
    return true;
  return false;
}

void IslNodeBuilder::createForSequential(isl::ast_node For, bool MarkParallel) {
  Value *ValueLB, *ValueUB, *ValueInc;
  Type *MaxType;
  BasicBlock *ExitBlock;
  Value *IV;
  CmpInst::Predicate Predicate;

  bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For);

  isl::ast_node Body = For.for_get_body();

  // isl_ast_node_for_is_degenerate(For)
  //
  // TODO: For degenerated loops we could generate a plain assignment.
  //       However, for now we just reuse the logic for normal loops, which will
  //       create a loop with a single iteration.

  isl::ast_expr Init = For.for_get_init();
  isl::ast_expr Inc = For.for_get_inc();
  isl::ast_expr Iterator = For.for_get_iterator();
  isl::id IteratorID = Iterator.get_id();
  isl::ast_expr UB = getUpperBound(For, Predicate);

  ValueLB = ExprBuilder.create(Init.release());
  ValueUB = ExprBuilder.create(UB.release());
  ValueInc = ExprBuilder.create(Inc.release());

  MaxType = ExprBuilder.getType(Iterator.get());
  MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
  MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
  MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());

  if (MaxType != ValueLB->getType())
    ValueLB = Builder.CreateSExt(ValueLB, MaxType);
  if (MaxType != ValueUB->getType())
    ValueUB = Builder.CreateSExt(ValueUB, MaxType);
  if (MaxType != ValueInc->getType())
    ValueInc = Builder.CreateSExt(ValueInc, MaxType);

  // If we can show that LB <Predicate> UB holds at least once, we can
  // omit the GuardBB in front of the loop.
  bool UseGuardBB =
      !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
  IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock,
                  Predicate, &Annotator, MarkParallel, UseGuardBB,
                  LoopVectorizerDisabled);
  IDToValue[IteratorID.get()] = IV;

  create(Body.release());

  Annotator.popLoop(MarkParallel);

  IDToValue.erase(IDToValue.find(IteratorID.get()));

  Builder.SetInsertPoint(&ExitBlock->front());

  SequentialLoops++;
}

/// Remove the BBs contained in a (sub)function from the dominator tree.
///
/// This function removes the basic blocks that are part of a subfunction from
/// the dominator tree. Specifically, when generating code it may happen that at
/// some point the code generation continues in a new sub-function (e.g., when
/// generating OpenMP code). The basic blocks that are created in this
/// sub-function are then still part of the dominator tree of the original
/// function, such that the dominator tree reaches over function boundaries.
/// This is not only incorrect, but also causes crashes. This function now
/// removes from the dominator tree all basic blocks that are dominated (and
/// consequently reachable) from the entry block of this (sub)function.
///
/// FIXME: A LLVM (function or region) pass should not touch anything outside of
/// the function/region it runs on. Hence, the pure need for this function shows
/// that we do not comply to this rule. At the moment, this does not cause any
/// issues, but we should be aware that such issues may appear. Unfortunately
/// the current LLVM pass infrastructure does not allow to make Polly a module
/// or call-graph pass to solve this issue, as such a pass would not have access
/// to the per-function analyses passes needed by Polly. A future pass manager
/// infrastructure is supposed to enable such kind of access possibly allowing
/// us to create a cleaner solution here.
///
/// FIXME: Instead of adding the dominance information and then dropping it
/// later on, we should try to just not add it in the first place. This requires
/// some careful testing to make sure this does not break in interaction with
/// the SCEVBuilder and SplitBlock which may rely on the dominator tree or
/// which may try to update it.
///
/// @param F The function which contains the BBs to removed.
/// @param DT The dominator tree from which to remove the BBs.
static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) {
  DomTreeNode *N = DT.getNode(&F->getEntryBlock());
  std::vector<BasicBlock *> Nodes;

  // We can only remove an element from the dominator tree, if all its children
  // have been removed. To ensure this we obtain the list of nodes to remove
  // using a post-order tree traversal.
  for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
    Nodes.push_back(I->getBlock());

  for (BasicBlock *BB : Nodes)
    DT.eraseNode(BB);
}

void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) {
  isl_ast_node *Body;
  isl_ast_expr *Init, *Inc, *Iterator, *UB;
  isl_id *IteratorID;
  Value *ValueLB, *ValueUB, *ValueInc;
  Type *MaxType;
  Value *IV;
  CmpInst::Predicate Predicate;

  // The preamble of parallel code interacts different than normal code with
  // e.g., scalar initialization. Therefore, we ensure the parallel code is
  // separated from the last basic block.
  BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(),
                                 &*Builder.GetInsertPoint(), &DT, &LI);
  ParBB->setName("polly.parallel.for");
  Builder.SetInsertPoint(&ParBB->front());

  Body = isl_ast_node_for_get_body(For);
  Init = isl_ast_node_for_get_init(For);
  Inc = isl_ast_node_for_get_inc(For);
  Iterator = isl_ast_node_for_get_iterator(For);
  IteratorID = isl_ast_expr_get_id(Iterator);
  UB = getUpperBound(isl::manage_copy(For), Predicate).release();

  ValueLB = ExprBuilder.create(Init);
  ValueUB = ExprBuilder.create(UB);
  ValueInc = ExprBuilder.create(Inc);

  // OpenMP always uses SLE. In case the isl generated AST uses a SLT
  // expression, we need to adjust the loop bound by one.
  if (Predicate == CmpInst::ICMP_SLT)
    ValueUB = Builder.CreateAdd(
        ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType()));

  MaxType = ExprBuilder.getType(Iterator);
  MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
  MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
  MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());

  if (MaxType != ValueLB->getType())
    ValueLB = Builder.CreateSExt(ValueLB, MaxType);
  if (MaxType != ValueUB->getType())
    ValueUB = Builder.CreateSExt(ValueUB, MaxType);
  if (MaxType != ValueInc->getType())
    ValueInc = Builder.CreateSExt(ValueInc, MaxType);

  BasicBlock::iterator LoopBody;

  SetVector<Value *> SubtreeValues;
  SetVector<const Loop *> Loops;

  getReferencesInSubtree(For, SubtreeValues, Loops);

  // Create for all loops we depend on values that contain the current loop
  // iteration. These values are necessary to generate code for SCEVs that
  // depend on such loops. As a result we need to pass them to the subfunction.
  // See [Code generation of induction variables of loops outside Scops]
  for (const Loop *L : Loops) {
    Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L);
    SubtreeValues.insert(LoopInductionVar);
  }

  ValueMapT NewValues;

  std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr;

  switch (PollyOmpBackend) {
  case OpenMPBackend::GNU:
    ParallelLoopGenPtr.reset(
        new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL));
    break;
  case OpenMPBackend::LLVM:
    ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL));
    break;
  }

  IV = ParallelLoopGenPtr->createParallelLoop(
      ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody);
  BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
  Builder.SetInsertPoint(&*LoopBody);

  // Remember the parallel subfunction
  ParallelSubfunctions.push_back(LoopBody->getFunction());

  // Save the current values.
  auto ValueMapCopy = ValueMap;
  IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue;

  updateValues(NewValues);
  IDToValue[IteratorID] = IV;

  ValueMapT NewValuesReverse;

  for (auto P : NewValues)
    NewValuesReverse[P.second] = P.first;

  Annotator.addAlternativeAliasBases(NewValuesReverse);

  create(Body);

  Annotator.resetAlternativeAliasBases();
  // Restore the original values.
  ValueMap = ValueMapCopy;
  IDToValue = IDToValueCopy;

  Builder.SetInsertPoint(&*AfterLoop);
  removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT);

  for (const Loop *L : Loops)
    OutsideLoopIterations.erase(L);

  isl_ast_node_free(For);
  isl_ast_expr_free(Iterator);
  isl_id_free(IteratorID);

  ParallelLoops++;
}

/// Return whether any of @p Node's statements contain partial accesses.
///
/// Partial accesses are not supported by Polly's vector code generator.
static bool hasPartialAccesses(__isl_take isl_ast_node *Node) {
  return isl_ast_node_foreach_descendant_top_down(
             Node,
             [](isl_ast_node *Node, void *User) -> isl_bool {
               if (isl_ast_node_get_type(Node) != isl_ast_node_user)
                 return isl_bool_true;

               isl::ast_expr Expr =
                   isl::manage(isl_ast_node_user_get_expr(Node));
               isl::ast_expr StmtExpr = Expr.get_op_arg(0);
               isl::id Id = StmtExpr.get_id();

               ScopStmt *Stmt =
                   static_cast<ScopStmt *>(isl_id_get_user(Id.get()));
               isl::set StmtDom = Stmt->getDomain();
               for (auto *MA : *Stmt) {
                 if (MA->isLatestPartialAccess())
                   return isl_bool_error;
               }
               return isl_bool_true;
             },
             nullptr) == isl_stat_error;
}

void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
  bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;

  if (Vector && IslAstInfo::isInnermostParallel(For) &&
      !IslAstInfo::isReductionParallel(For)) {
    int VectorWidth = getNumberOfIterations(isl::manage_copy(For));
    if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) {
      createForVector(For, VectorWidth);
      return;
    }
  }

  if (IslAstInfo::isExecutedInParallel(For)) {
    createForParallel(For);
    return;
  }
  bool Parallel =
      (IslAstInfo::isParallel(For) && !IslAstInfo::isReductionParallel(For));
  createForSequential(isl::manage(For), Parallel);
}

void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
  isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);

  Function *F = Builder.GetInsertBlock()->getParent();
  LLVMContext &Context = F->getContext();

  BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
                                  &*Builder.GetInsertPoint(), &DT, &LI);
  CondBB->setName("polly.cond");
  BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
  MergeBB->setName("polly.merge");
  BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
  BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);

  DT.addNewBlock(ThenBB, CondBB);
  DT.addNewBlock(ElseBB, CondBB);
  DT.changeImmediateDominator(MergeBB, CondBB);

  Loop *L = LI.getLoopFor(CondBB);
  if (L) {
    L->addBasicBlockToLoop(ThenBB, LI);
    L->addBasicBlockToLoop(ElseBB, LI);
  }

  CondBB->getTerminator()->eraseFromParent();

  Builder.SetInsertPoint(CondBB);
  Value *Predicate = ExprBuilder.create(Cond);
  Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
  Builder.SetInsertPoint(ThenBB);
  Builder.CreateBr(MergeBB);
  Builder.SetInsertPoint(ElseBB);
  Builder.CreateBr(MergeBB);
  Builder.SetInsertPoint(&ThenBB->front());

  create(isl_ast_node_if_get_then(If));

  Builder.SetInsertPoint(&ElseBB->front());

  if (isl_ast_node_if_has_else(If))
    create(isl_ast_node_if_get_else(If));

  Builder.SetInsertPoint(&MergeBB->front());

  isl_ast_node_free(If);

  IfConditions++;
}

__isl_give isl_id_to_ast_expr *
IslNodeBuilder::createNewAccesses(ScopStmt *Stmt,
                                  __isl_keep isl_ast_node *Node) {
  isl_id_to_ast_expr *NewAccesses =
      isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx().get(), 0);

  auto *Build = IslAstInfo::getBuild(Node);
  assert(Build && "Could not obtain isl_ast_build from user node");
  Stmt->setAstBuild(isl::manage_copy(Build));

  for (auto *MA : *Stmt) {
    if (!MA->hasNewAccessRelation()) {
      if (PollyGenerateExpressions) {
        if (!MA->isAffine())
          continue;
        if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI())
          continue;

        auto *BasePtr =
            dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr());
        if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr))
          continue;
      } else {
        continue;
      }
    }
    assert(MA->isAffine() &&
           "Only affine memory accesses can be code generated");

    auto Schedule = isl_ast_build_get_schedule(Build);

#ifndef NDEBUG
    if (MA->isRead()) {
      auto Dom = Stmt->getDomain().release();
      auto SchedDom = isl_set_from_union_set(
          isl_union_map_domain(isl_union_map_copy(Schedule)));
      auto AccDom = isl_map_domain(MA->getAccessRelation().release());
      Dom = isl_set_intersect_params(Dom,
                                     Stmt->getParent()->getContext().release());
      SchedDom = isl_set_intersect_params(
          SchedDom, Stmt->getParent()->getContext().release());
      assert(isl_set_is_subset(SchedDom, AccDom) &&
             "Access relation not defined on full schedule domain");
      assert(isl_set_is_subset(Dom, AccDom) &&
             "Access relation not defined on full domain");
      isl_set_free(AccDom);
      isl_set_free(SchedDom);
      isl_set_free(Dom);
    }
#endif

    auto PWAccRel =
        MA->applyScheduleToAccessRelation(isl::manage(Schedule)).release();

    // isl cannot generate an index expression for access-nothing accesses.
    isl::set AccDomain =
        isl::manage(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel)));
    isl::set Context = S.getContext();
    AccDomain = AccDomain.intersect_params(Context);
    if (AccDomain.is_empty()) {
      isl_pw_multi_aff_free(PWAccRel);
      continue;
    }

    auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
    NewAccesses =
        isl_id_to_ast_expr_set(NewAccesses, MA->getId().release(), AccessExpr);
  }

  return NewAccesses;
}

void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr,
                                         ScopStmt *Stmt, LoopToScevMapT &LTS) {
  assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
         "Expression of type 'op' expected");
  assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
         "Operation of type 'call' expected");
  for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
    isl_ast_expr *SubExpr;
    Value *V;

    SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
    V = ExprBuilder.create(SubExpr);
    ScalarEvolution *SE = Stmt->getParent()->getSE();
    LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
  }

  isl_ast_expr_free(Expr);
}

void IslNodeBuilder::createSubstitutionsVector(
    __isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
    std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
    __isl_take isl_id *IteratorID) {
  int i = 0;

  Value *OldValue = IDToValue[IteratorID];
  for (Value *IV : IVS) {
    IDToValue[IteratorID] = IV;
    createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]);
    i++;
  }

  IDToValue[IteratorID] = OldValue;
  isl_id_free(IteratorID);
  isl_ast_expr_free(Expr);
}

void IslNodeBuilder::generateCopyStmt(
    ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
  assert(Stmt->size() == 2);
  auto ReadAccess = Stmt->begin();
  auto WriteAccess = ReadAccess++;
  assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite());
  assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() &&
         "Accesses use the same data type");
  assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind());
  auto *AccessExpr =
      isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release());
  auto *LoadValue = ExprBuilder.create(AccessExpr);
  AccessExpr =
      isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release());
  auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr);
  Builder.CreateStore(LoadValue, StoreAddr);
}

Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) {
  assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() &&
         "trying to materialize loop induction variable twice");
  const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
                                          SE.getUnknown(Builder.getInt64(1)), L,
                                          SCEV::FlagAnyWrap);
  Value *V = generateSCEV(OuterLIV);
  OutsideLoopIterations[L] = SE.getUnknown(V);
  return V;
}

void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
  LoopToScevMapT LTS;
  isl_id *Id;
  ScopStmt *Stmt;

  isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
  isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
  Id = isl_ast_expr_get_id(StmtExpr);
  isl_ast_expr_free(StmtExpr);

  LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());

  Stmt = (ScopStmt *)isl_id_get_user(Id);
  auto *NewAccesses = createNewAccesses(Stmt, User);
  if (Stmt->isCopyStmt()) {
    generateCopyStmt(Stmt, NewAccesses);
    isl_ast_expr_free(Expr);
  } else {
    createSubstitutions(Expr, Stmt, LTS);

    if (Stmt->isBlockStmt())
      BlockGen.copyStmt(*Stmt, LTS, NewAccesses);
    else
      RegionGen.copyStmt(*Stmt, LTS, NewAccesses);
  }

  isl_id_to_ast_expr_free(NewAccesses);
  isl_ast_node_free(User);
  isl_id_free(Id);
}

void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
  isl_ast_node_list *List = isl_ast_node_block_get_children(Block);

  for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
    create(isl_ast_node_list_get_ast_node(List, i));

  isl_ast_node_free(Block);
  isl_ast_node_list_free(List);
}

void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
  switch (isl_ast_node_get_type(Node)) {
  case isl_ast_node_error:
    llvm_unreachable("code generation error");
  case isl_ast_node_mark:
    createMark(Node);
    return;
  case isl_ast_node_for:
    createFor(Node);
    return;
  case isl_ast_node_if:
    createIf(Node);
    return;
  case isl_ast_node_user:
    createUser(Node);
    return;
  case isl_ast_node_block:
    createBlock(Node);
    return;
  }

  llvm_unreachable("Unknown isl_ast_node type");
}

bool IslNodeBuilder::materializeValue(isl_id *Id) {
  // If the Id is already mapped, skip it.
  if (!IDToValue.count(Id)) {
    auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id);
    Value *V = nullptr;

    // Parameters could refer to invariant loads that need to be
    // preloaded before we can generate code for the parameter. Thus,
    // check if any value referred to in ParamSCEV is an invariant load
    // and if so make sure its equivalence class is preloaded.
    SetVector<Value *> Values;
    findValues(ParamSCEV, SE, Values);
    for (auto *Val : Values) {
      // Check if the value is an instruction in a dead block within the SCoP
      // and if so do not code generate it.
      if (auto *Inst = dyn_cast<Instruction>(Val)) {
        if (S.contains(Inst)) {
          bool IsDead = true;

          // Check for "undef" loads first, then if there is a statement for
          // the parent of Inst and lastly if the parent of Inst has an empty
          // domain. In the first and last case the instruction is dead but if
          // there is a statement or the domain is not empty Inst is not dead.
          auto MemInst = MemAccInst::dyn_cast(Inst);
          auto Address = MemInst ? MemInst.getPointerOperand() : nullptr;
          if (Address && SE.getUnknown(UndefValue::get(Address->getType())) ==
                             SE.getPointerBase(SE.getSCEV(Address))) {
          } else if (S.getStmtFor(Inst)) {
            IsDead = false;
          } else {
            auto *Domain = S.getDomainConditions(Inst->getParent()).release();
            IsDead = isl_set_is_empty(Domain);
            isl_set_free(Domain);
          }

          if (IsDead) {
            V = UndefValue::get(ParamSCEV->getType());
            break;
          }
        }
      }

      if (auto *IAClass = S.lookupInvariantEquivClass(Val)) {
        // Check if this invariant access class is empty, hence if we never
        // actually added a loads instruction to it. In that case it has no
        // (meaningful) users and we should not try to code generate it.
        if (IAClass->InvariantAccesses.empty())
          V = UndefValue::get(ParamSCEV->getType());

        if (!preloadInvariantEquivClass(*IAClass)) {
          isl_id_free(Id);
          return false;
        }
      }
    }

    V = V ? V : generateSCEV(ParamSCEV);
    IDToValue[Id] = V;
  }

  isl_id_free(Id);
  return true;
}

bool IslNodeBuilder::materializeParameters(isl_set *Set) {
  for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) {
    if (!isl_set_involves_dims(Set, isl_dim_param, i, 1))
      continue;
    isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i);
    if (!materializeValue(Id))
      return false;
  }
  return true;
}

bool IslNodeBuilder::materializeParameters() {
  for (const SCEV *Param : S.parameters()) {
    isl_id *Id = S.getIdForParam(Param).release();
    if (!materializeValue(Id))
      return false;
  }
  return true;
}

/// Generate the computation of the size of the outermost dimension from the
/// Fortran array descriptor (in this case, `@g_arr`). The final `%size`
/// contains the size of the array.
///
/// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] }
/// %desc.dimensionty = type { i64, i64, i64 }
/// @g_arr = global %arrty zeroinitializer, align 32
/// ...
/// %0 = load i64, i64* getelementptr inbounds
///                       (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2)
/// %1 = load i64, i64* getelementptr inbounds
///                      (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1)
/// %2 = sub nsw i64 %0, %1
/// %size = add nsw i64 %2, 1
static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor,
                                             PollyIRBuilder &Builder,
                                             std::string ArrayName) {
  assert(GlobalDescriptor && "invalid global descriptor given");

  Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
                      Builder.getInt64(0), Builder.getInt32(2)};
  Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx,
                                            ArrayName + "_end_ptr");
  Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end");

  Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
                        Builder.getInt64(0), Builder.getInt32(1)};
  Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx,
                                              ArrayName + "_begin_ptr");
  Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin");

  Value *size =
      Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta");
  Type *endType = dyn_cast<IntegerType>(end->getType());
  assert(endType && "expected type of end to be integral");

  size = Builder.CreateNSWAdd(end,
                              ConstantInt::get(endType, 1, /* signed = */ true),
                              ArrayName + "_size");

  return size;
}

bool IslNodeBuilder::materializeFortranArrayOutermostDimension() {
  for (ScopArrayInfo *Array : S.arrays()) {
    if (Array->getNumberOfDimensions() == 0)
      continue;

    Value *FAD = Array->getFortranArrayDescriptor();
    if (!FAD)
      continue;

    isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release();
    assert(ParametricPwAff && "parametric pw_aff corresponding "
                              "to outermost dimension does not "
                              "exist");

    isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0);
    isl_pw_aff_free(ParametricPwAff);

    assert(Id && "pw_aff is not parametric");

    if (IDToValue.count(Id)) {
      isl_id_free(Id);
      continue;
    }

    Value *FinalValue =
        buildFADOutermostDimensionLoad(FAD, Builder, Array->getName());
    assert(FinalValue && "unable to build Fortran array "
                         "descriptor load of outermost dimension");
    IDToValue[Id] = FinalValue;
    isl_id_free(Id);
  }
  return true;
}

Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange,
                                              isl_ast_build *Build,
                                              Instruction *AccInst) {
  isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange);
  isl_ast_expr *Access =
      isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
  auto *Address = isl_ast_expr_address_of(Access);
  auto *AddressValue = ExprBuilder.create(Address);
  Value *PreloadVal;

  // Correct the type as the SAI might have a different type than the user
  // expects, especially if the base pointer is a struct.
  Type *Ty = AccInst->getType();

  auto *Ptr = AddressValue;
  auto Name = Ptr->getName();
  auto AS = Ptr->getType()->getPointerAddressSpace();
  Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast");
  PreloadVal = Builder.CreateLoad(Ptr, Name + ".load");
  if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal))
    PreloadInst->setAlignment(cast<LoadInst>(AccInst)->getAlign());

  // TODO: This is only a hot fix for SCoP sequences that use the same load
  //       instruction contained and hoisted by one of the SCoPs.
  if (SE.isSCEVable(Ty))
    SE.forgetValue(AccInst);

  return PreloadVal;
}

Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA,
                                            isl_set *Domain) {
  isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release());
  AccessRange = isl_set_gist_params(AccessRange, S.getContext().release());

  if (!materializeParameters(AccessRange)) {
    isl_set_free(AccessRange);
    isl_set_free(Domain);
    return nullptr;
  }

  auto *Build =
      isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release()));
  isl_set *Universe = isl_set_universe(isl_set_get_space(Domain));
  bool AlwaysExecuted = isl_set_is_equal(Domain, Universe);
  isl_set_free(Universe);

  Instruction *AccInst = MA.getAccessInstruction();
  Type *AccInstTy = AccInst->getType();

  Value *PreloadVal = nullptr;
  if (AlwaysExecuted) {
    PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst);
    isl_ast_build_free(Build);
    isl_set_free(Domain);
    return PreloadVal;
  }

  if (!materializeParameters(Domain)) {
    isl_ast_build_free(Build);
    isl_set_free(AccessRange);
    isl_set_free(Domain);
    return nullptr;
  }

  isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain);
  Domain = nullptr;

  ExprBuilder.setTrackOverflow(true);
  Value *Cond = ExprBuilder.create(DomainCond);
  Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(),
                                              "polly.preload.cond.overflown");
  Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result");
  ExprBuilder.setTrackOverflow(false);

  if (!Cond->getType()->isIntegerTy(1))
    Cond = Builder.CreateIsNotNull(Cond);

  BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
                                  &*Builder.GetInsertPoint(), &DT, &LI);
  CondBB->setName("polly.preload.cond");

  BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
  MergeBB->setName("polly.preload.merge");

  Function *F = Builder.GetInsertBlock()->getParent();
  LLVMContext &Context = F->getContext();
  BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F);

  DT.addNewBlock(ExecBB, CondBB);
  if (Loop *L = LI.getLoopFor(CondBB))
    L->addBasicBlockToLoop(ExecBB, LI);

  auto *CondBBTerminator = CondBB->getTerminator();
  Builder.SetInsertPoint(CondBBTerminator);
  Builder.CreateCondBr(Cond, ExecBB, MergeBB);
  CondBBTerminator->eraseFromParent();

  Builder.SetInsertPoint(ExecBB);
  Builder.CreateBr(MergeBB);

  Builder.SetInsertPoint(ExecBB->getTerminator());
  Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst);
  Builder.SetInsertPoint(MergeBB->getTerminator());
  auto *MergePHI = Builder.CreatePHI(
      AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge");
  PreloadVal = MergePHI;

  if (!PreAccInst) {
    PreloadVal = nullptr;
    PreAccInst = UndefValue::get(AccInstTy);
  }

  MergePHI->addIncoming(PreAccInst, ExecBB);
  MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB);

  isl_ast_build_free(Build);
  return PreloadVal;
}

bool IslNodeBuilder::preloadInvariantEquivClass(
    InvariantEquivClassTy &IAClass) {
  // For an equivalence class of invariant loads we pre-load the representing
  // element with the unified execution context. However, we have to map all
  // elements of the class to the one preloaded load as they are referenced
  // during the code generation and therefor need to be mapped.
  const MemoryAccessList &MAs = IAClass.InvariantAccesses;
  if (MAs.empty())
    return true;

  MemoryAccess *MA = MAs.front();
  assert(MA->isArrayKind() && MA->isRead());

  // If the access function was already mapped, the preload of this equivalence
  // class was triggered earlier already and doesn't need to be done again.
  if (ValueMap.count(MA->getAccessInstruction()))
    return true;

  // Check for recursion which can be caused by additional constraints, e.g.,
  // non-finite loop constraints. In such a case we have to bail out and insert
  // a "false" runtime check that will cause the original code to be executed.
  auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType);
  if (!PreloadedPtrs.insert(PtrId).second)
    return false;

  // The execution context of the IAClass.
  isl::set &ExecutionCtx = IAClass.ExecutionContext;

  // If the base pointer of this class is dependent on another one we have to
  // make sure it was preloaded already.
  auto *SAI = MA->getScopArrayInfo();
  if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) {
    if (!preloadInvariantEquivClass(*BaseIAClass))
      return false;

    // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and
    // we need to refine the ExecutionCtx.
    isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
    ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
  }

  // If the size of a dimension is dependent on another class, make sure it is
  // preloaded.
  for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) {
    const SCEV *Dim = SAI->getDimensionSize(i);
    SetVector<Value *> Values;
    findValues(Dim, SE, Values);
    for (auto *Val : Values) {
      if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) {
        if (!preloadInvariantEquivClass(*BaseIAClass))
          return false;

        // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx
        // and we need to refine the ExecutionCtx.
        isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
        ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
      }
    }
  }

  Instruction *AccInst = MA->getAccessInstruction();
  Type *AccInstTy = AccInst->getType();

  Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy());
  if (!PreloadVal)
    return false;

  for (const MemoryAccess *MA : MAs) {
    Instruction *MAAccInst = MA->getAccessInstruction();
    assert(PreloadVal->getType() == MAAccInst->getType());
    ValueMap[MAAccInst] = PreloadVal;
  }

  if (SE.isSCEVable(AccInstTy)) {
    isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release();
    if (ParamId)
      IDToValue[ParamId] = PreloadVal;
    isl_id_free(ParamId);
  }

  BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
  auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(),
                                AccInst->getName() + ".preload.s2a",
                                &*EntryBB->getFirstInsertionPt());
  Builder.CreateStore(PreloadVal, Alloca);
  ValueMapT PreloadedPointer;
  PreloadedPointer[PreloadVal] = AccInst;
  Annotator.addAlternativeAliasBases(PreloadedPointer);

  for (auto *DerivedSAI : SAI->getDerivedSAIs()) {
    Value *BasePtr = DerivedSAI->getBasePtr();

    for (const MemoryAccess *MA : MAs) {
      // As the derived SAI information is quite coarse, any load from the
      // current SAI could be the base pointer of the derived SAI, however we
      // should only change the base pointer of the derived SAI if we actually
      // preloaded it.
      if (BasePtr == MA->getOriginalBaseAddr()) {
        assert(BasePtr->getType() == PreloadVal->getType());
        DerivedSAI->setBasePtr(PreloadVal);
      }

      // For scalar derived SAIs we remap the alloca used for the derived value.
      if (BasePtr == MA->getAccessInstruction())
        ScalarMap[DerivedSAI] = Alloca;
    }
  }

  for (const MemoryAccess *MA : MAs) {
    Instruction *MAAccInst = MA->getAccessInstruction();
    // Use the escape system to get the correct value to users outside the SCoP.
    BlockGenerator::EscapeUserVectorTy EscapeUsers;
    for (auto *U : MAAccInst->users())
      if (Instruction *UI = dyn_cast<Instruction>(U))
        if (!S.contains(UI))
          EscapeUsers.push_back(UI);

    if (EscapeUsers.empty())
      continue;

    EscapeMap[MA->getAccessInstruction()] =
        std::make_pair(Alloca, std::move(EscapeUsers));
  }

  return true;
}

void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) {
  for (auto &SAI : S.arrays()) {
    if (SAI->getBasePtr())
      continue;

    assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) &&
           "The size of the outermost dimension is used to declare newly "
           "created arrays that require memory allocation.");

    Type *NewArrayType = nullptr;

    // Get the size of the array = size(dim_1)*...*size(dim_n)
    uint64_t ArraySizeInt = 1;
    for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) {
      auto *DimSize = SAI->getDimensionSize(i);
      unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize)
                                     ->getAPInt()
                                     .getLimitedValue();

      if (!NewArrayType)
        NewArrayType = SAI->getElementType();

      NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize);
      ArraySizeInt *= UnsignedDimSize;
    }

    if (SAI->isOnHeap()) {
      LLVMContext &Ctx = NewArrayType->getContext();

      // Get the IntPtrTy from the Datalayout
      auto IntPtrTy = DL.getIntPtrType(Ctx);

      // Get the size of the element type in bits
      unsigned Size = SAI->getElemSizeInBytes();

      // Insert the malloc call at polly.start
      auto InstIt = std::get<0>(StartExitBlocks)->getTerminator();
      auto *CreatedArray = CallInst::CreateMalloc(
          &*InstIt, IntPtrTy, SAI->getElementType(),
          ConstantInt::get(Type::getInt64Ty(Ctx), Size),
          ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr,
          SAI->getName());

      SAI->setBasePtr(CreatedArray);

      // Insert the free call at polly.exiting
      CallInst::CreateFree(CreatedArray,
                           std::get<1>(StartExitBlocks)->getTerminator());
    } else {
      auto InstIt = Builder.GetInsertBlock()
                        ->getParent()
                        ->getEntryBlock()
                        .getTerminator();

      auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(),
                                          SAI->getName(), &*InstIt);
      if (PollyTargetFirstLevelCacheLineSize)
        CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize));
      SAI->setBasePtr(CreatedArray);
    }
  }
}

bool IslNodeBuilder::preloadInvariantLoads() {
  auto &InvariantEquivClasses = S.getInvariantAccesses();
  if (InvariantEquivClasses.empty())
    return true;

  BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(),
                                     &*Builder.GetInsertPoint(), &DT, &LI);
  PreLoadBB->setName("polly.preload.begin");
  Builder.SetInsertPoint(&PreLoadBB->front());

  for (auto &IAClass : InvariantEquivClasses)
    if (!preloadInvariantEquivClass(IAClass))
      return false;

  return true;
}

void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
  // Materialize values for the parameters of the SCoP.
  materializeParameters();

  // materialize the outermost dimension parameters for a Fortran array.
  // NOTE: materializeParameters() does not work since it looks through
  // the SCEVs. We don't have a corresponding SCEV for the array size
  // parameter
  materializeFortranArrayOutermostDimension();

  // Generate values for the current loop iteration for all surrounding loops.
  //
  // We may also reference loops outside of the scop which do not contain the
  // scop itself, but as the number of such scops may be arbitrarily large we do
  // not generate code for them here, but only at the point of code generation
  // where these values are needed.
  Loop *L = LI.getLoopFor(S.getEntry());

  while (L != nullptr && S.contains(L))
    L = L->getParentLoop();

  while (L != nullptr) {
    materializeNonScopLoopInductionVariable(L);
    L = L->getParentLoop();
  }

  isl_set_free(Context);
}

Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) {
  /// We pass the insert location of our Builder, as Polly ensures during IR
  /// generation that there is always a valid CFG into which instructions are
  /// inserted. As a result, the insertpoint is known to be always followed by a
  /// terminator instruction. This means the insert point may be specified by a
  /// terminator instruction, but it can never point to an ->end() iterator
  /// which does not have a corresponding instruction. Hence, dereferencing
  /// the insertpoint to obtain an instruction is known to be save.
  ///
  /// We also do not need to update the Builder here, as new instructions are
  /// always inserted _before_ the given InsertLocation. As a result, the
  /// insert location remains valid.
  assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() &&
         "Insert location points after last valid instruction");
  Instruction *InsertLocation = &*Builder.GetInsertPoint();
  return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(),
                       InsertLocation, &ValueMap,
                       StartBlock->getSinglePredecessor());
}

/// The AST expression we generate to perform the run-time check assumes
/// computations on integer types of infinite size. As we only use 64-bit
/// arithmetic we check for overflows, in case of which we set the result
/// of this run-time check to false to be conservatively correct,
Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) {
  auto ExprBuilder = getExprBuilder();

  // In case the AST expression has integers larger than 64 bit, bail out. The
  // resulting LLVM-IR will contain operations on types that use more than 64
  // bits. These are -- in case wrapping intrinsics are used -- translated to
  // runtime library calls that are not available on all systems (e.g., Android)
  // and consequently will result in linker errors.
  if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) {
    isl_ast_expr_free(Condition);
    return Builder.getFalse();
  }

  ExprBuilder.setTrackOverflow(true);
  Value *RTC = ExprBuilder.create(Condition);
  if (!RTC->getType()->isIntegerTy(1))
    RTC = Builder.CreateIsNotNull(RTC);
  Value *OverflowHappened =
      Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown");

  if (PollyGenerateRTCPrint) {
    auto *F = Builder.GetInsertBlock()->getParent();
    RuntimeDebugBuilder::createCPUPrinter(
        Builder,
        "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() +
            "RTC: ",
        RTC, " Overflow: ", OverflowHappened,
        "\n"
        "  (0 failed, -1 succeeded)\n"
        "  (if one or both are 0 falling back to original code, if both are -1 "
        "executing Polly code)\n");
  }

  RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result");
  ExprBuilder.setTrackOverflow(false);

  if (!isa<ConstantInt>(RTC))
    VersionedScops++;

  return RTC;
}