z_Windows_NT_util.cpp
52.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
/*
* z_Windows_NT_util.cpp -- platform specific routines.
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "kmp.h"
#include "kmp_affinity.h"
#include "kmp_i18n.h"
#include "kmp_io.h"
#include "kmp_itt.h"
#include "kmp_wait_release.h"
/* This code is related to NtQuerySystemInformation() function. This function
is used in the Load balance algorithm for OMP_DYNAMIC=true to find the
number of running threads in the system. */
#include <ntsecapi.h> // UNICODE_STRING
#include <ntstatus.h>
enum SYSTEM_INFORMATION_CLASS {
SystemProcessInformation = 5
}; // SYSTEM_INFORMATION_CLASS
struct CLIENT_ID {
HANDLE UniqueProcess;
HANDLE UniqueThread;
}; // struct CLIENT_ID
enum THREAD_STATE {
StateInitialized,
StateReady,
StateRunning,
StateStandby,
StateTerminated,
StateWait,
StateTransition,
StateUnknown
}; // enum THREAD_STATE
struct VM_COUNTERS {
SIZE_T PeakVirtualSize;
SIZE_T VirtualSize;
ULONG PageFaultCount;
SIZE_T PeakWorkingSetSize;
SIZE_T WorkingSetSize;
SIZE_T QuotaPeakPagedPoolUsage;
SIZE_T QuotaPagedPoolUsage;
SIZE_T QuotaPeakNonPagedPoolUsage;
SIZE_T QuotaNonPagedPoolUsage;
SIZE_T PagefileUsage;
SIZE_T PeakPagefileUsage;
SIZE_T PrivatePageCount;
}; // struct VM_COUNTERS
struct SYSTEM_THREAD {
LARGE_INTEGER KernelTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER CreateTime;
ULONG WaitTime;
LPVOID StartAddress;
CLIENT_ID ClientId;
DWORD Priority;
LONG BasePriority;
ULONG ContextSwitchCount;
THREAD_STATE State;
ULONG WaitReason;
}; // SYSTEM_THREAD
KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0);
#if KMP_ARCH_X86
KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28);
KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52);
#else
KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32);
KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68);
#endif
struct SYSTEM_PROCESS_INFORMATION {
ULONG NextEntryOffset;
ULONG NumberOfThreads;
LARGE_INTEGER Reserved[3];
LARGE_INTEGER CreateTime;
LARGE_INTEGER UserTime;
LARGE_INTEGER KernelTime;
UNICODE_STRING ImageName;
DWORD BasePriority;
HANDLE ProcessId;
HANDLE ParentProcessId;
ULONG HandleCount;
ULONG Reserved2[2];
VM_COUNTERS VMCounters;
IO_COUNTERS IOCounters;
SYSTEM_THREAD Threads[1];
}; // SYSTEM_PROCESS_INFORMATION
typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION;
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56);
#if KMP_ARCH_X86
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184);
#else
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208);
KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256);
#endif
typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS,
PVOID, ULONG, PULONG);
NtQuerySystemInformation_t NtQuerySystemInformation = NULL;
HMODULE ntdll = NULL;
/* End of NtQuerySystemInformation()-related code */
static HMODULE kernel32 = NULL;
#if KMP_HANDLE_SIGNALS
typedef void (*sig_func_t)(int);
static sig_func_t __kmp_sighldrs[NSIG];
static int __kmp_siginstalled[NSIG];
#endif
#if KMP_USE_MONITOR
static HANDLE __kmp_monitor_ev;
#endif
static kmp_int64 __kmp_win32_time;
double __kmp_win32_tick;
int __kmp_init_runtime = FALSE;
CRITICAL_SECTION __kmp_win32_section;
void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) {
InitializeCriticalSection(&mx->cs);
#if USE_ITT_BUILD
__kmp_itt_system_object_created(&mx->cs, "Critical Section");
#endif /* USE_ITT_BUILD */
}
void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) {
DeleteCriticalSection(&mx->cs);
}
void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) {
EnterCriticalSection(&mx->cs);
}
int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) {
return TryEnterCriticalSection(&mx->cs);
}
void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) {
LeaveCriticalSection(&mx->cs);
}
void __kmp_win32_cond_init(kmp_win32_cond_t *cv) {
cv->waiters_count_ = 0;
cv->wait_generation_count_ = 0;
cv->release_count_ = 0;
/* Initialize the critical section */
__kmp_win32_mutex_init(&cv->waiters_count_lock_);
/* Create a manual-reset event. */
cv->event_ = CreateEvent(NULL, // no security
TRUE, // manual-reset
FALSE, // non-signaled initially
NULL); // unnamed
#if USE_ITT_BUILD
__kmp_itt_system_object_created(cv->event_, "Event");
#endif /* USE_ITT_BUILD */
}
void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) {
__kmp_win32_mutex_destroy(&cv->waiters_count_lock_);
__kmp_free_handle(cv->event_);
memset(cv, '\0', sizeof(*cv));
}
/* TODO associate cv with a team instead of a thread so as to optimize
the case where we wake up a whole team */
template <class C>
static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx,
kmp_info_t *th, C *flag) {
int my_generation;
int last_waiter;
/* Avoid race conditions */
__kmp_win32_mutex_lock(&cv->waiters_count_lock_);
/* Increment count of waiters */
cv->waiters_count_++;
/* Store current generation in our activation record. */
my_generation = cv->wait_generation_count_;
__kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
__kmp_win32_mutex_unlock(mx);
for (;;) {
int wait_done = 0;
DWORD res, timeout = 5000; // just tried to quess an appropriate number
/* Wait until the event is signaled */
res = WaitForSingleObject(cv->event_, timeout);
if (res == WAIT_OBJECT_0) {
// event signaled
__kmp_win32_mutex_lock(&cv->waiters_count_lock_);
/* Exit the loop when the <cv->event_> is signaled and there are still
waiting threads from this <wait_generation> that haven't been released
from this wait yet. */
wait_done = (cv->release_count_ > 0) &&
(cv->wait_generation_count_ != my_generation);
__kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
} else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) {
// check if the flag and cv counters are in consistent state
// as MS sent us debug dump whith inconsistent state of data
__kmp_win32_mutex_lock(mx);
typename C::flag_t old_f = flag->set_sleeping();
if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) {
__kmp_win32_mutex_unlock(mx);
continue;
}
// condition fulfilled, exiting
old_f = flag->unset_sleeping();
KMP_DEBUG_ASSERT(old_f & KMP_BARRIER_SLEEP_STATE);
TCW_PTR(th->th.th_sleep_loc, NULL);
KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition "
"fulfilled: flag's loc(%p): %u => %u\n",
flag->get(), old_f, *(flag->get())));
__kmp_win32_mutex_lock(&cv->waiters_count_lock_);
KMP_DEBUG_ASSERT(cv->waiters_count_ > 0);
cv->release_count_ = cv->waiters_count_;
cv->wait_generation_count_++;
wait_done = 1;
__kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
__kmp_win32_mutex_unlock(mx);
}
/* there used to be a semicolon after the if statement, it looked like a
bug, so i removed it */
if (wait_done)
break;
}
__kmp_win32_mutex_lock(mx);
__kmp_win32_mutex_lock(&cv->waiters_count_lock_);
cv->waiters_count_--;
cv->release_count_--;
last_waiter = (cv->release_count_ == 0);
__kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
if (last_waiter) {
/* We're the last waiter to be notified, so reset the manual event. */
ResetEvent(cv->event_);
}
}
void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) {
__kmp_win32_mutex_lock(&cv->waiters_count_lock_);
if (cv->waiters_count_ > 0) {
SetEvent(cv->event_);
/* Release all the threads in this generation. */
cv->release_count_ = cv->waiters_count_;
/* Start a new generation. */
cv->wait_generation_count_++;
}
__kmp_win32_mutex_unlock(&cv->waiters_count_lock_);
}
void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) {
__kmp_win32_cond_broadcast(cv);
}
void __kmp_enable(int new_state) {
if (__kmp_init_runtime)
LeaveCriticalSection(&__kmp_win32_section);
}
void __kmp_disable(int *old_state) {
*old_state = 0;
if (__kmp_init_runtime)
EnterCriticalSection(&__kmp_win32_section);
}
void __kmp_suspend_initialize(void) { /* do nothing */
}
void __kmp_suspend_initialize_thread(kmp_info_t *th) {
int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init);
int new_value = TRUE;
// Return if already initialized
if (old_value == new_value)
return;
// Wait, then return if being initialized
if (old_value == -1 ||
!__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) {
while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) {
KMP_CPU_PAUSE();
}
} else {
// Claim to be the initializer and do initializations
__kmp_win32_cond_init(&th->th.th_suspend_cv);
__kmp_win32_mutex_init(&th->th.th_suspend_mx);
KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value);
}
}
void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) {
/* this means we have initialize the suspension pthread objects for this
thread in this instance of the process */
__kmp_win32_cond_destroy(&th->th.th_suspend_cv);
__kmp_win32_mutex_destroy(&th->th.th_suspend_mx);
KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE);
}
}
int __kmp_try_suspend_mx(kmp_info_t *th) {
return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx);
}
void __kmp_lock_suspend_mx(kmp_info_t *th) {
__kmp_win32_mutex_lock(&th->th.th_suspend_mx);
}
void __kmp_unlock_suspend_mx(kmp_info_t *th) {
__kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
}
/* This routine puts the calling thread to sleep after setting the
sleep bit for the indicated flag variable to true. */
template <class C>
static inline void __kmp_suspend_template(int th_gtid, C *flag) {
kmp_info_t *th = __kmp_threads[th_gtid];
int status;
typename C::flag_t old_spin;
KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n",
th_gtid, flag->get()));
__kmp_suspend_initialize_thread(th);
__kmp_win32_mutex_lock(&th->th.th_suspend_mx);
KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's"
" loc(%p)\n",
th_gtid, flag->get()));
/* TODO: shouldn't this use release semantics to ensure that
__kmp_suspend_initialize_thread gets called first? */
old_spin = flag->set_sleeping();
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
__kmp_pause_status != kmp_soft_paused) {
flag->unset_sleeping();
__kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
return;
}
KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's"
" loc(%p)==%d\n",
th_gtid, flag->get(), *(flag->get())));
if (flag->done_check_val(old_spin)) {
old_spin = flag->unset_sleeping();
KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
"for flag's loc(%p)\n",
th_gtid, flag->get()));
} else {
#ifdef DEBUG_SUSPEND
__kmp_suspend_count++;
#endif
/* Encapsulate in a loop as the documentation states that this may "with
low probability" return when the condition variable has not been signaled
or broadcast */
int deactivated = FALSE;
TCW_PTR(th->th.th_sleep_loc, (void *)flag);
while (flag->is_sleeping()) {
KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
"kmp_win32_cond_wait()\n",
th_gtid));
// Mark the thread as no longer active (only in the first iteration of the
// loop).
if (!deactivated) {
th->th.th_active = FALSE;
if (th->th.th_active_in_pool) {
th->th.th_active_in_pool = FALSE;
KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
}
deactivated = TRUE;
__kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
flag);
} else {
__kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th,
flag);
}
#ifdef KMP_DEBUG
if (flag->is_sleeping()) {
KF_TRACE(100,
("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
}
#endif /* KMP_DEBUG */
} // while
// Mark the thread as active again (if it was previous marked as inactive)
if (deactivated) {
th->th.th_active = TRUE;
if (TCR_4(th->th.th_in_pool)) {
KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
th->th.th_active_in_pool = TRUE;
}
}
}
__kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
}
void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) {
__kmp_suspend_template(th_gtid, flag);
}
void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) {
__kmp_suspend_template(th_gtid, flag);
}
void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
__kmp_suspend_template(th_gtid, flag);
}
/* This routine signals the thread specified by target_gtid to wake up
after setting the sleep bit indicated by the flag argument to FALSE */
template <class C>
static inline void __kmp_resume_template(int target_gtid, C *flag) {
kmp_info_t *th = __kmp_threads[target_gtid];
int status;
#ifdef KMP_DEBUG
int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
#endif
KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
gtid, target_gtid));
__kmp_suspend_initialize_thread(th);
__kmp_win32_mutex_lock(&th->th.th_suspend_mx);
if (!flag) { // coming from __kmp_null_resume_wrapper
flag = (C *)th->th.th_sleep_loc;
}
// First, check if the flag is null or its type has changed. If so, someone
// else woke it up.
if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
// simply shows what
// flag was cast to
KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
"awake: flag's loc(%p)\n",
gtid, target_gtid, NULL));
__kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
return;
} else {
typename C::flag_t old_spin = flag->unset_sleeping();
if (!flag->is_sleeping_val(old_spin)) {
KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
"awake: flag's loc(%p): %u => %u\n",
gtid, target_gtid, flag->get(), old_spin, *(flag->get())));
__kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
return;
}
}
TCW_PTR(th->th.th_sleep_loc, NULL);
KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep "
"bit for flag's loc(%p)\n",
gtid, target_gtid, flag->get()));
__kmp_win32_cond_signal(&th->th.th_suspend_cv);
__kmp_win32_mutex_unlock(&th->th.th_suspend_mx);
KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
" for T#%d\n",
gtid, target_gtid));
}
void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) {
__kmp_resume_template(target_gtid, flag);
}
void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) {
__kmp_resume_template(target_gtid, flag);
}
void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
__kmp_resume_template(target_gtid, flag);
}
void __kmp_yield() { Sleep(0); }
void __kmp_gtid_set_specific(int gtid) {
if (__kmp_init_gtid) {
KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid,
__kmp_gtid_threadprivate_key));
if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1)))
KMP_FATAL(TLSSetValueFailed);
} else {
KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
}
}
int __kmp_gtid_get_specific() {
int gtid;
if (!__kmp_init_gtid) {
KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
"KMP_GTID_SHUTDOWN\n"));
return KMP_GTID_SHUTDOWN;
}
gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key);
if (gtid == 0) {
gtid = KMP_GTID_DNE;
} else {
gtid--;
}
KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
__kmp_gtid_threadprivate_key, gtid));
return gtid;
}
void __kmp_affinity_bind_thread(int proc) {
if (__kmp_num_proc_groups > 1) {
// Form the GROUP_AFFINITY struct directly, rather than filling
// out a bit vector and calling __kmp_set_system_affinity().
GROUP_AFFINITY ga;
KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT *
sizeof(DWORD_PTR))));
ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR));
ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR)));
ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0;
KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL);
if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) {
DWORD error = GetLastError();
if (__kmp_affinity_verbose) { // AC: continue silently if not verbose
kmp_msg_t err_code = KMP_ERR(error);
__kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code,
__kmp_msg_null);
if (__kmp_generate_warnings == kmp_warnings_off) {
__kmp_str_free(&err_code.str);
}
}
}
} else {
kmp_affin_mask_t *mask;
KMP_CPU_ALLOC_ON_STACK(mask);
KMP_CPU_ZERO(mask);
KMP_CPU_SET(proc, mask);
__kmp_set_system_affinity(mask, TRUE);
KMP_CPU_FREE_FROM_STACK(mask);
}
}
void __kmp_affinity_determine_capable(const char *env_var) {
// All versions of Windows* OS (since Win '95) support SetThreadAffinityMask().
#if KMP_GROUP_AFFINITY
KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR));
#else
KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR));
#endif
KA_TRACE(10, ("__kmp_affinity_determine_capable: "
"Windows* OS affinity interface functional (mask size = "
"%" KMP_SIZE_T_SPEC ").\n",
__kmp_affin_mask_size));
}
double __kmp_read_cpu_time(void) {
FILETIME CreationTime, ExitTime, KernelTime, UserTime;
int status;
double cpu_time;
cpu_time = 0;
status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime,
&KernelTime, &UserTime);
if (status) {
double sec = 0;
sec += KernelTime.dwHighDateTime;
sec += UserTime.dwHighDateTime;
/* Shift left by 32 bits */
sec *= (double)(1 << 16) * (double)(1 << 16);
sec += KernelTime.dwLowDateTime;
sec += UserTime.dwLowDateTime;
cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC;
}
return cpu_time;
}
int __kmp_read_system_info(struct kmp_sys_info *info) {
info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */
info->minflt = 0; /* the number of page faults serviced without any I/O */
info->majflt = 0; /* the number of page faults serviced that required I/O */
info->nswap = 0; // the number of times a process was "swapped" out of memory
info->inblock = 0; // the number of times the file system had to perform input
info->oublock = 0; // number of times the file system had to perform output
info->nvcsw = 0; /* the number of times a context switch was voluntarily */
info->nivcsw = 0; /* the number of times a context switch was forced */
return 1;
}
void __kmp_runtime_initialize(void) {
SYSTEM_INFO info;
kmp_str_buf_t path;
UINT path_size;
if (__kmp_init_runtime) {
return;
}
#if KMP_DYNAMIC_LIB
/* Pin dynamic library for the lifetime of application */
{
// First, turn off error message boxes
UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
HMODULE h;
BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
GET_MODULE_HANDLE_EX_FLAG_PIN,
(LPCTSTR)&__kmp_serial_initialize, &h);
KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded");
SetErrorMode(err_mode); // Restore error mode
KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n"));
}
#endif
InitializeCriticalSection(&__kmp_win32_section);
#if USE_ITT_BUILD
__kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section");
#endif /* USE_ITT_BUILD */
__kmp_initialize_system_tick();
#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
if (!__kmp_cpuinfo.initialized) {
__kmp_query_cpuid(&__kmp_cpuinfo);
}
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
/* Set up minimum number of threads to switch to TLS gtid */
#if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
// Windows* OS, static library.
/* New thread may use stack space previously used by another thread,
currently terminated. On Windows* OS, in case of static linking, we do not
know the moment of thread termination, and our structures (__kmp_threads
and __kmp_root arrays) are still keep info about dead threads. This leads
to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid
(by searching through stack addresses of all known threads) for
unregistered foreign tread.
Setting __kmp_tls_gtid_min to 0 workarounds this problem:
__kmp_get_global_thread_id() does not search through stacks, but get gtid
from TLS immediately.
--ln
*/
__kmp_tls_gtid_min = 0;
#else
__kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
#endif
/* for the static library */
if (!__kmp_gtid_threadprivate_key) {
__kmp_gtid_threadprivate_key = TlsAlloc();
if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) {
KMP_FATAL(TLSOutOfIndexes);
}
}
// Load ntdll.dll.
/* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue
(see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We
have to specify full path to the library. */
__kmp_str_buf_init(&path);
path_size = GetSystemDirectory(path.str, path.size);
KMP_DEBUG_ASSERT(path_size > 0);
if (path_size >= path.size) {
// Buffer is too short. Expand the buffer and try again.
__kmp_str_buf_reserve(&path, path_size);
path_size = GetSystemDirectory(path.str, path.size);
KMP_DEBUG_ASSERT(path_size > 0);
}
if (path_size > 0 && path_size < path.size) {
// Now we have system directory name in the buffer.
// Append backslash and name of dll to form full path,
path.used = path_size;
__kmp_str_buf_print(&path, "\\%s", "ntdll.dll");
// Now load ntdll using full path.
ntdll = GetModuleHandle(path.str);
}
KMP_DEBUG_ASSERT(ntdll != NULL);
if (ntdll != NULL) {
NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress(
ntdll, "NtQuerySystemInformation");
}
KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL);
#if KMP_GROUP_AFFINITY
// Load kernel32.dll.
// Same caveat - must use full system path name.
if (path_size > 0 && path_size < path.size) {
// Truncate the buffer back to just the system path length,
// discarding "\\ntdll.dll", and replacing it with "kernel32.dll".
path.used = path_size;
__kmp_str_buf_print(&path, "\\%s", "kernel32.dll");
// Load kernel32.dll using full path.
kernel32 = GetModuleHandle(path.str);
KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str));
// Load the function pointers to kernel32.dll routines
// that may or may not exist on this system.
if (kernel32 != NULL) {
__kmp_GetActiveProcessorCount =
(kmp_GetActiveProcessorCount_t)GetProcAddress(
kernel32, "GetActiveProcessorCount");
__kmp_GetActiveProcessorGroupCount =
(kmp_GetActiveProcessorGroupCount_t)GetProcAddress(
kernel32, "GetActiveProcessorGroupCount");
__kmp_GetThreadGroupAffinity =
(kmp_GetThreadGroupAffinity_t)GetProcAddress(
kernel32, "GetThreadGroupAffinity");
__kmp_SetThreadGroupAffinity =
(kmp_SetThreadGroupAffinity_t)GetProcAddress(
kernel32, "SetThreadGroupAffinity");
KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount"
" = %p\n",
__kmp_GetActiveProcessorCount));
KA_TRACE(10, ("__kmp_runtime_initialize: "
"__kmp_GetActiveProcessorGroupCount = %p\n",
__kmp_GetActiveProcessorGroupCount));
KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity"
" = %p\n",
__kmp_GetThreadGroupAffinity));
KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity"
" = %p\n",
__kmp_SetThreadGroupAffinity));
KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n",
sizeof(kmp_affin_mask_t)));
// See if group affinity is supported on this system.
// If so, calculate the #groups and #procs.
//
// Group affinity was introduced with Windows* 7 OS and
// Windows* Server 2008 R2 OS.
if ((__kmp_GetActiveProcessorCount != NULL) &&
(__kmp_GetActiveProcessorGroupCount != NULL) &&
(__kmp_GetThreadGroupAffinity != NULL) &&
(__kmp_SetThreadGroupAffinity != NULL) &&
((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) >
1)) {
// Calculate the total number of active OS procs.
int i;
KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
" detected\n",
__kmp_num_proc_groups));
__kmp_xproc = 0;
for (i = 0; i < __kmp_num_proc_groups; i++) {
DWORD size = __kmp_GetActiveProcessorCount(i);
__kmp_xproc += size;
KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n",
i, size));
}
} else {
KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups"
" detected\n",
__kmp_num_proc_groups));
}
}
}
if (__kmp_num_proc_groups <= 1) {
GetSystemInfo(&info);
__kmp_xproc = info.dwNumberOfProcessors;
}
#else
GetSystemInfo(&info);
__kmp_xproc = info.dwNumberOfProcessors;
#endif /* KMP_GROUP_AFFINITY */
// If the OS said there were 0 procs, take a guess and use a value of 2.
// This is done for Linux* OS, also. Do we need error / warning?
if (__kmp_xproc <= 0) {
__kmp_xproc = 2;
}
KA_TRACE(5,
("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc));
__kmp_str_buf_free(&path);
#if USE_ITT_BUILD
__kmp_itt_initialize();
#endif /* USE_ITT_BUILD */
__kmp_init_runtime = TRUE;
} // __kmp_runtime_initialize
void __kmp_runtime_destroy(void) {
if (!__kmp_init_runtime) {
return;
}
#if USE_ITT_BUILD
__kmp_itt_destroy();
#endif /* USE_ITT_BUILD */
/* we can't DeleteCriticalsection( & __kmp_win32_section ); */
/* due to the KX_TRACE() commands */
KA_TRACE(40, ("__kmp_runtime_destroy\n"));
if (__kmp_gtid_threadprivate_key) {
TlsFree(__kmp_gtid_threadprivate_key);
__kmp_gtid_threadprivate_key = 0;
}
__kmp_affinity_uninitialize();
DeleteCriticalSection(&__kmp_win32_section);
ntdll = NULL;
NtQuerySystemInformation = NULL;
#if KMP_ARCH_X86_64
kernel32 = NULL;
__kmp_GetActiveProcessorCount = NULL;
__kmp_GetActiveProcessorGroupCount = NULL;
__kmp_GetThreadGroupAffinity = NULL;
__kmp_SetThreadGroupAffinity = NULL;
#endif // KMP_ARCH_X86_64
__kmp_init_runtime = FALSE;
}
void __kmp_terminate_thread(int gtid) {
kmp_info_t *th = __kmp_threads[gtid];
if (!th)
return;
KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) {
/* It's OK, the thread may have exited already */
}
__kmp_free_handle(th->th.th_info.ds.ds_thread);
}
void __kmp_clear_system_time(void) {
BOOL status;
LARGE_INTEGER time;
status = QueryPerformanceCounter(&time);
__kmp_win32_time = (kmp_int64)time.QuadPart;
}
void __kmp_initialize_system_tick(void) {
{
BOOL status;
LARGE_INTEGER freq;
status = QueryPerformanceFrequency(&freq);
if (!status) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"),
KMP_ERR(error), __kmp_msg_null);
} else {
__kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart;
}
}
}
/* Calculate the elapsed wall clock time for the user */
void __kmp_elapsed(double *t) {
BOOL status;
LARGE_INTEGER now;
status = QueryPerformanceCounter(&now);
*t = ((double)now.QuadPart) * __kmp_win32_tick;
}
/* Calculate the elapsed wall clock tick for the user */
void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; }
void __kmp_read_system_time(double *delta) {
if (delta != NULL) {
BOOL status;
LARGE_INTEGER now;
status = QueryPerformanceCounter(&now);
*delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) *
__kmp_win32_tick;
}
}
/* Return the current time stamp in nsec */
kmp_uint64 __kmp_now_nsec() {
LARGE_INTEGER now;
QueryPerformanceCounter(&now);
return 1e9 * __kmp_win32_tick * now.QuadPart;
}
extern "C"
void *__stdcall __kmp_launch_worker(void *arg) {
volatile void *stack_data;
void *exit_val;
void *padding = 0;
kmp_info_t *this_thr = (kmp_info_t *)arg;
int gtid;
gtid = this_thr->th.th_info.ds.ds_gtid;
__kmp_gtid_set_specific(gtid);
#ifdef KMP_TDATA_GTID
#error "This define causes problems with LoadLibrary() + declspec(thread) " \
"on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
"reference: http://support.microsoft.com/kb/118816"
//__kmp_gtid = gtid;
#endif
#if USE_ITT_BUILD
__kmp_itt_thread_name(gtid);
#endif /* USE_ITT_BUILD */
__kmp_affinity_set_init_mask(gtid, FALSE);
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
// Set FP control regs to be a copy of the parallel initialization thread's.
__kmp_clear_x87_fpu_status_word();
__kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
__kmp_load_mxcsr(&__kmp_init_mxcsr);
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
if (__kmp_stkoffset > 0 && gtid > 0) {
padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
}
KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
if (TCR_4(__kmp_gtid_mode) <
2) { // check stack only if it is used to get gtid
TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data);
KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE);
__kmp_check_stack_overlap(this_thr);
}
KMP_MB();
exit_val = __kmp_launch_thread(this_thr);
KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive);
TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
KMP_MB();
return exit_val;
}
#if KMP_USE_MONITOR
/* The monitor thread controls all of the threads in the complex */
void *__stdcall __kmp_launch_monitor(void *arg) {
DWORD wait_status;
kmp_thread_t monitor;
int status;
int interval;
kmp_info_t *this_thr = (kmp_info_t *)arg;
KMP_DEBUG_ASSERT(__kmp_init_monitor);
TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started
// TODO: hide "2" in enum (like {true,false,started})
this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE);
KMP_MB(); /* Flush all pending memory write invalidates. */
KA_TRACE(10, ("__kmp_launch_monitor: launched\n"));
monitor = GetCurrentThread();
/* set thread priority */
status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST);
if (!status) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
}
/* register us as monitor */
__kmp_gtid_set_specific(KMP_GTID_MONITOR);
#ifdef KMP_TDATA_GTID
#error "This define causes problems with LoadLibrary() + declspec(thread) " \
"on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \
"reference: http://support.microsoft.com/kb/118816"
//__kmp_gtid = KMP_GTID_MONITOR;
#endif
#if USE_ITT_BUILD
__kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore
// monitor thread.
#endif /* USE_ITT_BUILD */
KMP_MB(); /* Flush all pending memory write invalidates. */
interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */
while (!TCR_4(__kmp_global.g.g_done)) {
/* This thread monitors the state of the system */
KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
wait_status = WaitForSingleObject(__kmp_monitor_ev, interval);
if (wait_status == WAIT_TIMEOUT) {
TCW_4(__kmp_global.g.g_time.dt.t_value,
TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
}
KMP_MB(); /* Flush all pending memory write invalidates. */
}
KA_TRACE(10, ("__kmp_launch_monitor: finished\n"));
status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL);
if (!status) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null);
}
if (__kmp_global.g.g_abort != 0) {
/* now we need to terminate the worker threads */
/* the value of t_abort is the signal we caught */
int gtid;
KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n",
(__kmp_global.g.g_abort)));
/* terminate the OpenMP worker threads */
/* TODO this is not valid for sibling threads!!
* the uber master might not be 0 anymore.. */
for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
__kmp_terminate_thread(gtid);
__kmp_cleanup();
Sleep(0);
KA_TRACE(10,
("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort));
if (__kmp_global.g.g_abort > 0) {
raise(__kmp_global.g.g_abort);
}
}
TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE);
KMP_MB();
return arg;
}
#endif
void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
kmp_thread_t handle;
DWORD idThread;
KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
th->th.th_info.ds.ds_gtid = gtid;
if (KMP_UBER_GTID(gtid)) {
int stack_data;
/* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for
other threads to use. Is it appropriate to just use GetCurrentThread?
When should we close this handle? When unregistering the root? */
{
BOOL rc;
rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(),
GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0,
FALSE, DUPLICATE_SAME_ACCESS);
KMP_ASSERT(rc);
KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, "
"handle = %" KMP_UINTPTR_SPEC "\n",
(LPVOID)th, th->th.th_info.ds.ds_thread));
th->th.th_info.ds.ds_thread_id = GetCurrentThreadId();
}
if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid
/* we will dynamically update the stack range if gtid_mode == 1 */
TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
__kmp_check_stack_overlap(th);
}
} else {
KMP_MB(); /* Flush all pending memory write invalidates. */
/* Set stack size for this thread now. */
KA_TRACE(10,
("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n",
stack_size));
stack_size += gtid * __kmp_stkoffset;
TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size);
TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
KA_TRACE(10,
("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC
" bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n",
(SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
(LPVOID)th, &idThread));
handle = CreateThread(
NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker,
(LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
KA_TRACE(10,
("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC
" bytes, &__kmp_launch_worker = %p, th = %p, "
"idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n",
(SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker,
(LPVOID)th, idThread, handle));
if (handle == 0) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
} else {
th->th.th_info.ds.ds_thread = handle;
}
KMP_MB(); /* Flush all pending memory write invalidates. */
}
KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
}
int __kmp_still_running(kmp_info_t *th) {
return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0));
}
#if KMP_USE_MONITOR
void __kmp_create_monitor(kmp_info_t *th) {
kmp_thread_t handle;
DWORD idThread;
int ideal, new_ideal;
if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
// We don't need monitor thread in case of MAX_BLOCKTIME
KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
"MAX blocktime\n"));
th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
th->th.th_info.ds.ds_gtid = 0;
TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation
return;
}
KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
KMP_MB(); /* Flush all pending memory write invalidates. */
__kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL);
if (__kmp_monitor_ev == NULL) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null);
}
#if USE_ITT_BUILD
__kmp_itt_system_object_created(__kmp_monitor_ev, "Event");
#endif /* USE_ITT_BUILD */
th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
// FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how
// to automatically expand stacksize based on CreateThread error code.
if (__kmp_monitor_stksize == 0) {
__kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
}
if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
__kmp_monitor_stksize = __kmp_sys_min_stksize;
}
KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n",
(int)__kmp_monitor_stksize));
TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
handle =
CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize,
(LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th,
STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread);
if (handle == 0) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null);
} else
th->th.th_info.ds.ds_thread = handle;
KMP_MB(); /* Flush all pending memory write invalidates. */
KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n",
(void *)th->th.th_info.ds.ds_thread));
}
#endif
/* Check to see if thread is still alive.
NOTE: The ExitProcess(code) system call causes all threads to Terminate
with a exit_val = code. Because of this we can not rely on exit_val having
any particular value. So this routine may return STILL_ALIVE in exit_val
even after the thread is dead. */
int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) {
DWORD rc;
rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val);
if (rc == 0) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error),
__kmp_msg_null);
}
return (*exit_val == STILL_ACTIVE);
}
void __kmp_exit_thread(int exit_status) {
ExitThread(exit_status);
} // __kmp_exit_thread
// This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor().
static void __kmp_reap_common(kmp_info_t *th) {
DWORD exit_val;
KMP_MB(); /* Flush all pending memory write invalidates. */
KA_TRACE(
10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid));
/* 2006-10-19:
There are two opposite situations:
1. Windows* OS keep thread alive after it resets ds_alive flag and
exits from thread function. (For example, see C70770/Q394281 "unloading of
dll based on OMP is very slow".)
2. Windows* OS may kill thread before it resets ds_alive flag.
Right solution seems to be waiting for *either* thread termination *or*
ds_alive resetting. */
{
// TODO: This code is very similar to KMP_WAIT. Need to generalize
// KMP_WAIT to cover this usage also.
void *obj = NULL;
kmp_uint32 spins;
#if USE_ITT_BUILD
KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive);
#endif /* USE_ITT_BUILD */
KMP_INIT_YIELD(spins);
do {
#if USE_ITT_BUILD
KMP_FSYNC_SPIN_PREPARE(obj);
#endif /* USE_ITT_BUILD */
__kmp_is_thread_alive(th, &exit_val);
KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
} while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive));
#if USE_ITT_BUILD
if (exit_val == STILL_ACTIVE) {
KMP_FSYNC_CANCEL(obj);
} else {
KMP_FSYNC_SPIN_ACQUIRED(obj);
}
#endif /* USE_ITT_BUILD */
}
__kmp_free_handle(th->th.th_info.ds.ds_thread);
/* NOTE: The ExitProcess(code) system call causes all threads to Terminate
with a exit_val = code. Because of this we can not rely on exit_val having
any particular value. */
if (exit_val == STILL_ACTIVE) {
KA_TRACE(1, ("__kmp_reap_common: thread still active.\n"));
} else if ((void *)exit_val != (void *)th) {
KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n"));
}
KA_TRACE(10,
("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC
"\n",
th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread));
th->th.th_info.ds.ds_thread = 0;
th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
th->th.th_info.ds.ds_thread_id = 0;
KMP_MB(); /* Flush all pending memory write invalidates. */
}
#if KMP_USE_MONITOR
void __kmp_reap_monitor(kmp_info_t *th) {
int status;
KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n",
(void *)th->th.th_info.ds.ds_thread));
// If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
// If both tid and gtid are 0, it means the monitor did not ever start.
// If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
return;
}
KMP_MB(); /* Flush all pending memory write invalidates. */
status = SetEvent(__kmp_monitor_ev);
if (status == FALSE) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null);
}
KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n",
th->th.th_info.ds.ds_gtid));
__kmp_reap_common(th);
__kmp_free_handle(__kmp_monitor_ev);
KMP_MB(); /* Flush all pending memory write invalidates. */
}
#endif
void __kmp_reap_worker(kmp_info_t *th) {
KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n",
th->th.th_info.ds.ds_gtid));
__kmp_reap_common(th);
}
#if KMP_HANDLE_SIGNALS
static void __kmp_team_handler(int signo) {
if (__kmp_global.g.g_abort == 0) {
// Stage 1 signal handler, let's shut down all of the threads.
if (__kmp_debug_buf) {
__kmp_dump_debug_buffer();
}
KMP_MB(); // Flush all pending memory write invalidates.
TCW_4(__kmp_global.g.g_abort, signo);
KMP_MB(); // Flush all pending memory write invalidates.
TCW_4(__kmp_global.g.g_done, TRUE);
KMP_MB(); // Flush all pending memory write invalidates.
}
} // __kmp_team_handler
static sig_func_t __kmp_signal(int signum, sig_func_t handler) {
sig_func_t old = signal(signum, handler);
if (old == SIG_ERR) {
int error = errno;
__kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error),
__kmp_msg_null);
}
return old;
}
static void __kmp_install_one_handler(int sig, sig_func_t handler,
int parallel_init) {
sig_func_t old;
KMP_MB(); /* Flush all pending memory write invalidates. */
KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig));
if (parallel_init) {
old = __kmp_signal(sig, handler);
// SIG_DFL on Windows* OS in NULL or 0.
if (old == __kmp_sighldrs[sig]) {
__kmp_siginstalled[sig] = 1;
} else { // Restore/keep user's handler if one previously installed.
old = __kmp_signal(sig, old);
}
} else {
// Save initial/system signal handlers to see if user handlers installed.
// 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals
// called once with parallel_init == TRUE.
old = __kmp_signal(sig, SIG_DFL);
__kmp_sighldrs[sig] = old;
__kmp_signal(sig, old);
}
KMP_MB(); /* Flush all pending memory write invalidates. */
} // __kmp_install_one_handler
static void __kmp_remove_one_handler(int sig) {
if (__kmp_siginstalled[sig]) {
sig_func_t old;
KMP_MB(); // Flush all pending memory write invalidates.
KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig));
old = __kmp_signal(sig, __kmp_sighldrs[sig]);
if (old != __kmp_team_handler) {
KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
"restoring: sig=%d\n",
sig));
old = __kmp_signal(sig, old);
}
__kmp_sighldrs[sig] = NULL;
__kmp_siginstalled[sig] = 0;
KMP_MB(); // Flush all pending memory write invalidates.
}
} // __kmp_remove_one_handler
void __kmp_install_signals(int parallel_init) {
KB_TRACE(10, ("__kmp_install_signals: called\n"));
if (!__kmp_handle_signals) {
KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - "
"handlers not installed\n"));
return;
}
__kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
__kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
__kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
__kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
__kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
__kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
} // __kmp_install_signals
void __kmp_remove_signals(void) {
int sig;
KB_TRACE(10, ("__kmp_remove_signals: called\n"));
for (sig = 1; sig < NSIG; ++sig) {
__kmp_remove_one_handler(sig);
}
} // __kmp_remove_signals
#endif // KMP_HANDLE_SIGNALS
/* Put the thread to sleep for a time period */
void __kmp_thread_sleep(int millis) {
DWORD status;
status = SleepEx((DWORD)millis, FALSE);
if (status) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error),
__kmp_msg_null);
}
}
// Determine whether the given address is mapped into the current address space.
int __kmp_is_address_mapped(void *addr) {
DWORD status;
MEMORY_BASIC_INFORMATION lpBuffer;
SIZE_T dwLength;
dwLength = sizeof(MEMORY_BASIC_INFORMATION);
status = VirtualQuery(addr, &lpBuffer, dwLength);
return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) ||
((lpBuffer.Protect == PAGE_NOACCESS) ||
(lpBuffer.Protect == PAGE_EXECUTE)));
}
kmp_uint64 __kmp_hardware_timestamp(void) {
kmp_uint64 r = 0;
QueryPerformanceCounter((LARGE_INTEGER *)&r);
return r;
}
/* Free handle and check the error code */
void __kmp_free_handle(kmp_thread_t tHandle) {
/* called with parameter type HANDLE also, thus suppose kmp_thread_t defined
* as HANDLE */
BOOL rc;
rc = CloseHandle(tHandle);
if (!rc) {
DWORD error = GetLastError();
__kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null);
}
}
int __kmp_get_load_balance(int max) {
static ULONG glb_buff_size = 100 * 1024;
// Saved count of the running threads for the thread balance algorithm
static int glb_running_threads = 0;
static double glb_call_time = 0; /* Thread balance algorithm call time */
int running_threads = 0; // Number of running threads in the system.
NTSTATUS status = 0;
ULONG buff_size = 0;
ULONG info_size = 0;
void *buffer = NULL;
PSYSTEM_PROCESS_INFORMATION spi = NULL;
int first_time = 1;
double call_time = 0.0; // start, finish;
__kmp_elapsed(&call_time);
if (glb_call_time &&
(call_time - glb_call_time < __kmp_load_balance_interval)) {
running_threads = glb_running_threads;
goto finish;
}
glb_call_time = call_time;
// Do not spend time on running algorithm if we have a permanent error.
if (NtQuerySystemInformation == NULL) {
running_threads = -1;
goto finish;
}
if (max <= 0) {
max = INT_MAX;
}
do {
if (first_time) {
buff_size = glb_buff_size;
} else {
buff_size = 2 * buff_size;
}
buffer = KMP_INTERNAL_REALLOC(buffer, buff_size);
if (buffer == NULL) {
running_threads = -1;
goto finish;
}
status = NtQuerySystemInformation(SystemProcessInformation, buffer,
buff_size, &info_size);
first_time = 0;
} while (status == STATUS_INFO_LENGTH_MISMATCH);
glb_buff_size = buff_size;
#define CHECK(cond) \
{ \
KMP_DEBUG_ASSERT(cond); \
if (!(cond)) { \
running_threads = -1; \
goto finish; \
} \
}
CHECK(buff_size >= info_size);
spi = PSYSTEM_PROCESS_INFORMATION(buffer);
for (;;) {
ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer);
CHECK(0 <= offset &&
offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size);
HANDLE pid = spi->ProcessId;
ULONG num = spi->NumberOfThreads;
CHECK(num >= 1);
size_t spi_size =
sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1);
CHECK(offset + spi_size <
info_size); // Make sure process info record fits the buffer.
if (spi->NextEntryOffset != 0) {
CHECK(spi_size <=
spi->NextEntryOffset); // And do not overlap with the next record.
}
// pid == 0 corresponds to the System Idle Process. It always has running
// threads on all cores. So, we don't consider the running threads of this
// process.
if (pid != 0) {
for (int i = 0; i < num; ++i) {
THREAD_STATE state = spi->Threads[i].State;
// Count threads that have Ready or Running state.
// !!! TODO: Why comment does not match the code???
if (state == StateRunning) {
++running_threads;
// Stop counting running threads if the number is already greater than
// the number of available cores
if (running_threads >= max) {
goto finish;
}
}
}
}
if (spi->NextEntryOffset == 0) {
break;
}
spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset);
}
#undef CHECK
finish: // Clean up and exit.
if (buffer != NULL) {
KMP_INTERNAL_FREE(buffer);
}
glb_running_threads = running_threads;
return running_threads;
} //__kmp_get_load_balance()