rtl.cpp 42.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
//===----RTLs/cuda/src/rtl.cpp - Target RTLs Implementation ------- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// RTL for CUDA machine
//
//===----------------------------------------------------------------------===//

#include <cassert>
#include <cstddef>
#include <cuda.h>
#include <list>
#include <memory>
#include <mutex>
#include <string>
#include <vector>

#include "Debug.h"
#include "omptargetplugin.h"

#define TARGET_NAME CUDA
#define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL"

// Utility for retrieving and printing CUDA error string.
#ifdef OMPTARGET_DEBUG
#define CUDA_ERR_STRING(err)                                                   \
  do {                                                                         \
    if (getDebugLevel() > 0) {                                                 \
      const char *errStr = nullptr;                                            \
      CUresult errStr_status = cuGetErrorString(err, &errStr);                 \
      if (errStr_status == CUDA_ERROR_INVALID_VALUE)                           \
        DP("Unrecognized CUDA error code: %d\n", err);                         \
      else if (errStr_status == CUDA_SUCCESS)                                  \
        DP("CUDA error is: %s\n", errStr);                                     \
      else {                                                                   \
        DP("Unresolved CUDA error code: %d\n", err);                           \
        DP("Unsuccessful cuGetErrorString return status: %d\n",                \
           errStr_status);                                                     \
      }                                                                        \
    }                                                                          \
  } while (false)
#else // OMPTARGET_DEBUG
#define CUDA_ERR_STRING(err) {}
#endif // OMPTARGET_DEBUG

#include "../../common/elf_common.c"

/// Keep entries table per device.
struct FuncOrGblEntryTy {
  __tgt_target_table Table;
  std::vector<__tgt_offload_entry> Entries;
};

enum ExecutionModeType {
  SPMD, // constructors, destructors,
  // combined constructs (`teams distribute parallel for [simd]`)
  GENERIC, // everything else
  NONE
};

/// Use a single entity to encode a kernel and a set of flags.
struct KernelTy {
  CUfunction Func;

  // execution mode of kernel
  // 0 - SPMD mode (without master warp)
  // 1 - Generic mode (with master warp)
  int8_t ExecutionMode;

  /// Maximal number of threads per block for this kernel.
  int MaxThreadsPerBlock = 0;

  KernelTy(CUfunction _Func, int8_t _ExecutionMode)
      : Func(_Func), ExecutionMode(_ExecutionMode) {}
};

/// Device environment data
/// Manually sync with the deviceRTL side for now, move to a dedicated header
/// file later.
struct omptarget_device_environmentTy {
  int32_t debug_level;
};

namespace {
bool checkResult(CUresult Err, const char *ErrMsg) {
  if (Err == CUDA_SUCCESS)
    return true;

  DP("%s", ErrMsg);
  CUDA_ERR_STRING(Err);
  return false;
}

int memcpyDtoD(const void *SrcPtr, void *DstPtr, int64_t Size,
               CUstream Stream) {
  CUresult Err =
      cuMemcpyDtoDAsync((CUdeviceptr)DstPtr, (CUdeviceptr)SrcPtr, Size, Stream);

  if (Err != CUDA_SUCCESS) {
    DP("Error when copying data from device to device. Pointers: src "
       "= " DPxMOD ", dst = " DPxMOD ", size = %" PRId64 "\n",
       DPxPTR(SrcPtr), DPxPTR(DstPtr), Size);
    CUDA_ERR_STRING(Err);
    return OFFLOAD_FAIL;
  }

  return OFFLOAD_SUCCESS;
}

// Structure contains per-device data
struct DeviceDataTy {
  /// List that contains all the kernels.
  std::list<KernelTy> KernelsList;

  std::list<FuncOrGblEntryTy> FuncGblEntries;

  CUcontext Context = nullptr;
  // Device properties
  int ThreadsPerBlock = 0;
  int BlocksPerGrid = 0;
  int WarpSize = 0;
  // OpenMP properties
  int NumTeams = 0;
  int NumThreads = 0;
};

class StreamManagerTy {
  int NumberOfDevices;
  // The initial size of stream pool
  int EnvNumInitialStreams;
  // Per-device stream mutex
  std::vector<std::unique_ptr<std::mutex>> StreamMtx;
  // Per-device stream Id indicates the next available stream in the pool
  std::vector<int> NextStreamId;
  // Per-device stream pool
  std::vector<std::vector<CUstream>> StreamPool;
  // Reference to per-device data
  std::vector<DeviceDataTy> &DeviceData;

  // If there is no CUstream left in the pool, we will resize the pool to
  // allocate more CUstream. This function should be called with device mutex,
  // and we do not resize to smaller one.
  void resizeStreamPool(const int DeviceId, const size_t NewSize) {
    std::vector<CUstream> &Pool = StreamPool[DeviceId];
    const size_t CurrentSize = Pool.size();
    assert(NewSize > CurrentSize && "new size is not larger than current size");

    CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
    if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n")) {
      // We will return if cannot switch to the right context in case of
      // creating bunch of streams that are not corresponding to the right
      // device. The offloading will fail later because selected CUstream is
      // nullptr.
      return;
    }

    Pool.resize(NewSize, nullptr);

    for (size_t I = CurrentSize; I < NewSize; ++I) {
      checkResult(cuStreamCreate(&Pool[I], CU_STREAM_NON_BLOCKING),
                  "Error returned from cuStreamCreate\n");
    }
  }

public:
  StreamManagerTy(const int NumberOfDevices,
                  std::vector<DeviceDataTy> &DeviceData)
      : NumberOfDevices(NumberOfDevices), EnvNumInitialStreams(32),
        DeviceData(DeviceData) {
    StreamPool.resize(NumberOfDevices);
    NextStreamId.resize(NumberOfDevices);
    StreamMtx.resize(NumberOfDevices);

    if (const char *EnvStr = getenv("LIBOMPTARGET_NUM_INITIAL_STREAMS"))
      EnvNumInitialStreams = std::stoi(EnvStr);

    // Initialize the next stream id
    std::fill(NextStreamId.begin(), NextStreamId.end(), 0);

    // Initialize stream mutex
    for (std::unique_ptr<std::mutex> &Ptr : StreamMtx)
      Ptr = std::make_unique<std::mutex>();
  }

  ~StreamManagerTy() {
    // Destroy streams
    for (int I = 0; I < NumberOfDevices; ++I) {
      checkResult(cuCtxSetCurrent(DeviceData[I].Context),
                  "Error returned from cuCtxSetCurrent\n");

      for (CUstream &S : StreamPool[I]) {
        if (S)
          checkResult(cuStreamDestroy(S),
                      "Error returned from cuStreamDestroy\n");
      }
    }
  }

  // Get a CUstream from pool. Per-device next stream id always points to the
  // next available CUstream. That means, CUstreams [0, id-1] have been
  // assigned, and [id,] are still available. If there is no CUstream left, we
  // will ask more CUstreams from CUDA RT. Each time a CUstream is assigned,
  // the id will increase one.
  // xxxxxs+++++++++
  //      ^
  //      id
  // After assignment, the pool becomes the following and s is assigned.
  // xxxxxs+++++++++
  //       ^
  //       id
  CUstream getStream(const int DeviceId) {
    const std::lock_guard<std::mutex> Lock(*StreamMtx[DeviceId]);
    int &Id = NextStreamId[DeviceId];
    // No CUstream left in the pool, we need to request from CUDA RT
    if (Id == StreamPool[DeviceId].size()) {
      // By default we double the stream pool every time
      resizeStreamPool(DeviceId, Id * 2);
    }
    return StreamPool[DeviceId][Id++];
  }

  // Return a CUstream back to pool. As mentioned above, per-device next
  // stream is always points to the next available CUstream, so when we return
  // a CUstream, we need to first decrease the id, and then copy the CUstream
  // back.
  // It is worth noting that, the order of streams return might be different
  // from that they're assigned, that saying, at some point, there might be
  // two identical CUstreams.
  // xxax+a+++++
  //     ^
  //     id
  // However, it doesn't matter, because they're always on the two sides of
  // id. The left one will in the end be overwritten by another CUstream.
  // Therefore, after several execution, the order of pool might be different
  // from its initial state.
  void returnStream(const int DeviceId, CUstream Stream) {
    const std::lock_guard<std::mutex> Lock(*StreamMtx[DeviceId]);
    int &Id = NextStreamId[DeviceId];
    assert(Id > 0 && "Wrong stream ID");
    StreamPool[DeviceId][--Id] = Stream;
  }

  bool initializeDeviceStreamPool(const int DeviceId) {
    assert(StreamPool[DeviceId].empty() && "stream pool has been initialized");

    resizeStreamPool(DeviceId, EnvNumInitialStreams);

    // Check the size of stream pool
    if (StreamPool[DeviceId].size() != EnvNumInitialStreams)
      return false;

    // Check whether each stream is valid
    for (CUstream &S : StreamPool[DeviceId])
      if (!S)
        return false;

    return true;
  }
};

class DeviceRTLTy {
  int NumberOfDevices;
  // OpenMP environment properties
  int EnvNumTeams;
  int EnvTeamLimit;
  // OpenMP requires flags
  int64_t RequiresFlags;

  static constexpr const int HardTeamLimit = 1U << 16U; // 64k
  static constexpr const int HardThreadLimit = 1024;
  static constexpr const int DefaultNumTeams = 128;
  static constexpr const int DefaultNumThreads = 128;

  std::unique_ptr<StreamManagerTy> StreamManager;
  std::vector<DeviceDataTy> DeviceData;
  std::vector<CUmodule> Modules;

  // Record entry point associated with device
  void addOffloadEntry(const int DeviceId, const __tgt_offload_entry entry) {
    FuncOrGblEntryTy &E = DeviceData[DeviceId].FuncGblEntries.back();
    E.Entries.push_back(entry);
  }

  // Return a pointer to the entry associated with the pointer
  const __tgt_offload_entry *getOffloadEntry(const int DeviceId,
                                             const void *Addr) const {
    for (const __tgt_offload_entry &Itr :
         DeviceData[DeviceId].FuncGblEntries.back().Entries)
      if (Itr.addr == Addr)
        return &Itr;

    return nullptr;
  }

  // Return the pointer to the target entries table
  __tgt_target_table *getOffloadEntriesTable(const int DeviceId) {
    FuncOrGblEntryTy &E = DeviceData[DeviceId].FuncGblEntries.back();

    if (E.Entries.empty())
      return nullptr;

    // Update table info according to the entries and return the pointer
    E.Table.EntriesBegin = E.Entries.data();
    E.Table.EntriesEnd = E.Entries.data() + E.Entries.size();

    return &E.Table;
  }

  // Clear entries table for a device
  void clearOffloadEntriesTable(const int DeviceId) {
    DeviceData[DeviceId].FuncGblEntries.emplace_back();
    FuncOrGblEntryTy &E = DeviceData[DeviceId].FuncGblEntries.back();
    E.Entries.clear();
    E.Table.EntriesBegin = E.Table.EntriesEnd = nullptr;
  }

  CUstream getStream(const int DeviceId, __tgt_async_info *AsyncInfoPtr) const {
    assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr");

    if (!AsyncInfoPtr->Queue)
      AsyncInfoPtr->Queue = StreamManager->getStream(DeviceId);

    return reinterpret_cast<CUstream>(AsyncInfoPtr->Queue);
  }

public:
  // This class should not be copied
  DeviceRTLTy(const DeviceRTLTy &) = delete;
  DeviceRTLTy(DeviceRTLTy &&) = delete;

  DeviceRTLTy()
      : NumberOfDevices(0), EnvNumTeams(-1), EnvTeamLimit(-1),
        RequiresFlags(OMP_REQ_UNDEFINED) {

    DP("Start initializing CUDA\n");

    CUresult Err = cuInit(0);
    if (!checkResult(Err, "Error returned from cuInit\n")) {
      return;
    }

    Err = cuDeviceGetCount(&NumberOfDevices);
    if (!checkResult(Err, "Error returned from cuDeviceGetCount\n"))
      return;

    if (NumberOfDevices == 0) {
      DP("There are no devices supporting CUDA.\n");
      return;
    }

    DeviceData.resize(NumberOfDevices);

    // Get environment variables regarding teams
    if (const char *EnvStr = getenv("OMP_TEAM_LIMIT")) {
      // OMP_TEAM_LIMIT has been set
      EnvTeamLimit = std::stoi(EnvStr);
      DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit);
    }
    if (const char *EnvStr = getenv("OMP_NUM_TEAMS")) {
      // OMP_NUM_TEAMS has been set
      EnvNumTeams = std::stoi(EnvStr);
      DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams);
    }

    StreamManager =
        std::make_unique<StreamManagerTy>(NumberOfDevices, DeviceData);
  }

  ~DeviceRTLTy() {
    // First destruct stream manager in case of Contexts is destructed before it
    StreamManager = nullptr;

    for (CUmodule &M : Modules)
      // Close module
      if (M)
        checkResult(cuModuleUnload(M), "Error returned from cuModuleUnload\n");

    for (DeviceDataTy &D : DeviceData) {
      // Destroy context
      if (D.Context) {
        checkResult(cuCtxSetCurrent(D.Context),
                    "Error returned from cuCtxSetCurrent\n");
        CUdevice Device;
        checkResult(cuCtxGetDevice(&Device),
                    "Error returned from cuCtxGetDevice\n");
        checkResult(cuDevicePrimaryCtxRelease(Device),
                    "Error returned from cuDevicePrimaryCtxRelease\n");
      }
    }
  }

  // Check whether a given DeviceId is valid
  bool isValidDeviceId(const int DeviceId) const {
    return DeviceId >= 0 && DeviceId < NumberOfDevices;
  }

  int getNumOfDevices() const { return NumberOfDevices; }

  void setRequiresFlag(const int64_t Flags) { this->RequiresFlags = Flags; }

  int initDevice(const int DeviceId) {
    CUdevice Device;

    DP("Getting device %d\n", DeviceId);
    CUresult Err = cuDeviceGet(&Device, DeviceId);
    if (!checkResult(Err, "Error returned from cuDeviceGet\n"))
      return OFFLOAD_FAIL;

    // Query the current flags of the primary context and set its flags if
    // it is inactive
    unsigned int FormerPrimaryCtxFlags = 0;
    int FormerPrimaryCtxIsActive = 0;
    Err = cuDevicePrimaryCtxGetState(Device, &FormerPrimaryCtxFlags,
                                     &FormerPrimaryCtxIsActive);
    if (!checkResult(Err, "Error returned from cuDevicePrimaryCtxGetState\n"))
      return OFFLOAD_FAIL;

    if (FormerPrimaryCtxIsActive) {
      DP("The primary context is active, no change to its flags\n");
      if ((FormerPrimaryCtxFlags & CU_CTX_SCHED_MASK) !=
          CU_CTX_SCHED_BLOCKING_SYNC)
        DP("Warning the current flags are not CU_CTX_SCHED_BLOCKING_SYNC\n");
    } else {
      DP("The primary context is inactive, set its flags to "
         "CU_CTX_SCHED_BLOCKING_SYNC\n");
      Err = cuDevicePrimaryCtxSetFlags(Device, CU_CTX_SCHED_BLOCKING_SYNC);
      if (!checkResult(Err, "Error returned from cuDevicePrimaryCtxSetFlags\n"))
        return OFFLOAD_FAIL;
    }

    // Retain the per device primary context and save it to use whenever this
    // device is selected.
    Err = cuDevicePrimaryCtxRetain(&DeviceData[DeviceId].Context, Device);
    if (!checkResult(Err, "Error returned from cuDevicePrimaryCtxRetain\n"))
      return OFFLOAD_FAIL;

    Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
    if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
      return OFFLOAD_FAIL;

    // Initialize stream pool
    if (!StreamManager->initializeDeviceStreamPool(DeviceId))
      return OFFLOAD_FAIL;

    // Query attributes to determine number of threads/block and blocks/grid.
    int MaxGridDimX;
    Err = cuDeviceGetAttribute(&MaxGridDimX, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X,
                               Device);
    if (Err != CUDA_SUCCESS) {
      DP("Error getting max grid dimension, use default value %d\n",
         DeviceRTLTy::DefaultNumTeams);
      DeviceData[DeviceId].BlocksPerGrid = DeviceRTLTy::DefaultNumTeams;
    } else if (MaxGridDimX <= DeviceRTLTy::HardTeamLimit) {
      DP("Using %d CUDA blocks per grid\n", MaxGridDimX);
      DeviceData[DeviceId].BlocksPerGrid = MaxGridDimX;
    } else {
      DP("Max CUDA blocks per grid %d exceeds the hard team limit %d, capping "
         "at the hard limit\n",
         MaxGridDimX, DeviceRTLTy::HardTeamLimit);
      DeviceData[DeviceId].BlocksPerGrid = DeviceRTLTy::HardTeamLimit;
    }

    // We are only exploiting threads along the x axis.
    int MaxBlockDimX;
    Err = cuDeviceGetAttribute(&MaxBlockDimX,
                               CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, Device);
    if (Err != CUDA_SUCCESS) {
      DP("Error getting max block dimension, use default value %d\n",
         DeviceRTLTy::DefaultNumThreads);
      DeviceData[DeviceId].ThreadsPerBlock = DeviceRTLTy::DefaultNumThreads;
    } else if (MaxBlockDimX <= DeviceRTLTy::HardThreadLimit) {
      DP("Using %d CUDA threads per block\n", MaxBlockDimX);
      DeviceData[DeviceId].ThreadsPerBlock = MaxBlockDimX;
    } else {
      DP("Max CUDA threads per block %d exceeds the hard thread limit %d, "
         "capping at the hard limit\n",
         MaxBlockDimX, DeviceRTLTy::HardThreadLimit);
      DeviceData[DeviceId].ThreadsPerBlock = DeviceRTLTy::HardThreadLimit;
    }

    // Get and set warp size
    int WarpSize;
    Err =
        cuDeviceGetAttribute(&WarpSize, CU_DEVICE_ATTRIBUTE_WARP_SIZE, Device);
    if (Err != CUDA_SUCCESS) {
      DP("Error getting warp size, assume default value 32\n");
      DeviceData[DeviceId].WarpSize = 32;
    } else {
      DP("Using warp size %d\n", WarpSize);
      DeviceData[DeviceId].WarpSize = WarpSize;
    }

    // Adjust teams to the env variables
    if (EnvTeamLimit > 0 && DeviceData[DeviceId].BlocksPerGrid > EnvTeamLimit) {
      DP("Capping max CUDA blocks per grid to OMP_TEAM_LIMIT=%d\n",
         EnvTeamLimit);
      DeviceData[DeviceId].BlocksPerGrid = EnvTeamLimit;
    }

    INFO(DeviceId,
         "Device supports up to %d CUDA blocks and %d threads with a "
         "warp size of %d\n",
         DeviceData[DeviceId].BlocksPerGrid,
         DeviceData[DeviceId].ThreadsPerBlock, DeviceData[DeviceId].WarpSize);

    // Set default number of teams
    if (EnvNumTeams > 0) {
      DP("Default number of teams set according to environment %d\n",
         EnvNumTeams);
      DeviceData[DeviceId].NumTeams = EnvNumTeams;
    } else {
      DeviceData[DeviceId].NumTeams = DeviceRTLTy::DefaultNumTeams;
      DP("Default number of teams set according to library's default %d\n",
         DeviceRTLTy::DefaultNumTeams);
    }

    if (DeviceData[DeviceId].NumTeams > DeviceData[DeviceId].BlocksPerGrid) {
      DP("Default number of teams exceeds device limit, capping at %d\n",
         DeviceData[DeviceId].BlocksPerGrid);
      DeviceData[DeviceId].NumTeams = DeviceData[DeviceId].BlocksPerGrid;
    }

    // Set default number of threads
    DeviceData[DeviceId].NumThreads = DeviceRTLTy::DefaultNumThreads;
    DP("Default number of threads set according to library's default %d\n",
       DeviceRTLTy::DefaultNumThreads);
    if (DeviceData[DeviceId].NumThreads >
        DeviceData[DeviceId].ThreadsPerBlock) {
      DP("Default number of threads exceeds device limit, capping at %d\n",
         DeviceData[DeviceId].ThreadsPerBlock);
      DeviceData[DeviceId].NumTeams = DeviceData[DeviceId].ThreadsPerBlock;
    }

    return OFFLOAD_SUCCESS;
  }

  __tgt_target_table *loadBinary(const int DeviceId,
                                 const __tgt_device_image *Image) {
    // Set the context we are using
    CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
    if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
      return nullptr;

    // Clear the offload table as we are going to create a new one.
    clearOffloadEntriesTable(DeviceId);

    // Create the module and extract the function pointers.
    CUmodule Module;
    DP("Load data from image " DPxMOD "\n", DPxPTR(Image->ImageStart));
    Err = cuModuleLoadDataEx(&Module, Image->ImageStart, 0, nullptr, nullptr);
    if (!checkResult(Err, "Error returned from cuModuleLoadDataEx\n"))
      return nullptr;

    DP("CUDA module successfully loaded!\n");

    Modules.push_back(Module);

    // Find the symbols in the module by name.
    const __tgt_offload_entry *HostBegin = Image->EntriesBegin;
    const __tgt_offload_entry *HostEnd = Image->EntriesEnd;

    std::list<KernelTy> &KernelsList = DeviceData[DeviceId].KernelsList;
    for (const __tgt_offload_entry *E = HostBegin; E != HostEnd; ++E) {
      if (!E->addr) {
        // We return nullptr when something like this happens, the host should
        // have always something in the address to uniquely identify the target
        // region.
        DP("Invalid binary: host entry '<null>' (size = %zd)...\n", E->size);
        return nullptr;
      }

      if (E->size) {
        __tgt_offload_entry Entry = *E;
        CUdeviceptr CUPtr;
        size_t CUSize;
        Err = cuModuleGetGlobal(&CUPtr, &CUSize, Module, E->name);
        // We keep this style here because we need the name
        if (Err != CUDA_SUCCESS) {
          DP("Loading global '%s' (Failed)\n", E->name);
          CUDA_ERR_STRING(Err);
          return nullptr;
        }

        if (CUSize != E->size) {
          DP("Loading global '%s' - size mismatch (%zd != %zd)\n", E->name,
             CUSize, E->size);
          return nullptr;
        }

        DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n",
           DPxPTR(E - HostBegin), E->name, DPxPTR(CUPtr));

        Entry.addr = (void *)(CUPtr);

        // Note: In the current implementation declare target variables
        // can either be link or to. This means that once unified
        // memory is activated via the requires directive, the variable
        // can be used directly from the host in both cases.
        // TODO: when variables types other than to or link are added,
        // the below condition should be changed to explicitly
        // check for to and link variables types:
        // (RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && (e->flags &
        // OMP_DECLARE_TARGET_LINK || e->flags == OMP_DECLARE_TARGET_TO))
        if (RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY) {
          // If unified memory is present any target link or to variables
          // can access host addresses directly. There is no longer a
          // need for device copies.
          cuMemcpyHtoD(CUPtr, E->addr, sizeof(void *));
          DP("Copy linked variable host address (" DPxMOD
             ") to device address (" DPxMOD ")\n",
             DPxPTR(*((void **)E->addr)), DPxPTR(CUPtr));
        }

        addOffloadEntry(DeviceId, Entry);

        continue;
      }

      CUfunction Func;
      Err = cuModuleGetFunction(&Func, Module, E->name);
      // We keep this style here because we need the name
      if (Err != CUDA_SUCCESS) {
        DP("Loading '%s' (Failed)\n", E->name);
        CUDA_ERR_STRING(Err);
        return nullptr;
      }

      DP("Entry point " DPxMOD " maps to %s (" DPxMOD ")\n",
         DPxPTR(E - HostBegin), E->name, DPxPTR(Func));

      // default value GENERIC (in case symbol is missing from cubin file)
      int8_t ExecModeVal = ExecutionModeType::GENERIC;
      std::string ExecModeNameStr(E->name);
      ExecModeNameStr += "_exec_mode";
      const char *ExecModeName = ExecModeNameStr.c_str();

      CUdeviceptr ExecModePtr;
      size_t CUSize;
      Err = cuModuleGetGlobal(&ExecModePtr, &CUSize, Module, ExecModeName);
      if (Err == CUDA_SUCCESS) {
        if (CUSize != sizeof(int8_t)) {
          DP("Loading global exec_mode '%s' - size mismatch (%zd != %zd)\n",
             ExecModeName, CUSize, sizeof(int8_t));
          return nullptr;
        }

        Err = cuMemcpyDtoH(&ExecModeVal, ExecModePtr, CUSize);
        if (Err != CUDA_SUCCESS) {
          DP("Error when copying data from device to host. Pointers: "
             "host = " DPxMOD ", device = " DPxMOD ", size = %zd\n",
             DPxPTR(&ExecModeVal), DPxPTR(ExecModePtr), CUSize);
          CUDA_ERR_STRING(Err);
          return nullptr;
        }

        if (ExecModeVal < 0 || ExecModeVal > 1) {
          DP("Error wrong exec_mode value specified in cubin file: %d\n",
             ExecModeVal);
          return nullptr;
        }
      } else {
        DP("Loading global exec_mode '%s' - symbol missing, using default "
           "value GENERIC (1)\n",
           ExecModeName);
        CUDA_ERR_STRING(Err);
      }

      KernelsList.emplace_back(Func, ExecModeVal);

      __tgt_offload_entry Entry = *E;
      Entry.addr = &KernelsList.back();
      addOffloadEntry(DeviceId, Entry);
    }

    // send device environment data to the device
    {
      omptarget_device_environmentTy DeviceEnv{0};

#ifdef OMPTARGET_DEBUG
      if (const char *EnvStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG"))
        DeviceEnv.debug_level = std::stoi(EnvStr);
#endif

      const char *DeviceEnvName = "omptarget_device_environment";
      CUdeviceptr DeviceEnvPtr;
      size_t CUSize;

      Err = cuModuleGetGlobal(&DeviceEnvPtr, &CUSize, Module, DeviceEnvName);
      if (Err == CUDA_SUCCESS) {
        if (CUSize != sizeof(DeviceEnv)) {
          DP("Global device_environment '%s' - size mismatch (%zu != %zu)\n",
             DeviceEnvName, CUSize, sizeof(int32_t));
          CUDA_ERR_STRING(Err);
          return nullptr;
        }

        Err = cuMemcpyHtoD(DeviceEnvPtr, &DeviceEnv, CUSize);
        if (Err != CUDA_SUCCESS) {
          DP("Error when copying data from host to device. Pointers: "
             "host = " DPxMOD ", device = " DPxMOD ", size = %zu\n",
             DPxPTR(&DeviceEnv), DPxPTR(DeviceEnvPtr), CUSize);
          CUDA_ERR_STRING(Err);
          return nullptr;
        }

        DP("Sending global device environment data %zu bytes\n", CUSize);
      } else {
        DP("Finding global device environment '%s' - symbol missing.\n",
           DeviceEnvName);
        DP("Continue, considering this is a device RTL which does not accept "
           "environment setting.\n");
      }
    }

    return getOffloadEntriesTable(DeviceId);
  }

  void *dataAlloc(const int DeviceId, const int64_t Size) const {
    if (Size == 0)
      return nullptr;

    CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
    if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
      return nullptr;

    CUdeviceptr DevicePtr;
    Err = cuMemAlloc(&DevicePtr, Size);
    if (!checkResult(Err, "Error returned from cuMemAlloc\n"))
      return nullptr;

    return (void *)DevicePtr;
  }

  int dataSubmit(const int DeviceId, const void *TgtPtr, const void *HstPtr,
                 const int64_t Size, __tgt_async_info *AsyncInfoPtr) const {
    assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr");

    CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
    if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
      return OFFLOAD_FAIL;

    CUstream Stream = getStream(DeviceId, AsyncInfoPtr);

    Err = cuMemcpyHtoDAsync((CUdeviceptr)TgtPtr, HstPtr, Size, Stream);
    if (Err != CUDA_SUCCESS) {
      DP("Error when copying data from host to device. Pointers: host = " DPxMOD
         ", device = " DPxMOD ", size = %" PRId64 "\n",
         DPxPTR(HstPtr), DPxPTR(TgtPtr), Size);
      CUDA_ERR_STRING(Err);
      return OFFLOAD_FAIL;
    }

    return OFFLOAD_SUCCESS;
  }

  int dataRetrieve(const int DeviceId, void *HstPtr, const void *TgtPtr,
                   const int64_t Size, __tgt_async_info *AsyncInfoPtr) const {
    assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr");

    CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
    if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
      return OFFLOAD_FAIL;

    CUstream Stream = getStream(DeviceId, AsyncInfoPtr);

    Err = cuMemcpyDtoHAsync(HstPtr, (CUdeviceptr)TgtPtr, Size, Stream);
    if (Err != CUDA_SUCCESS) {
      DP("Error when copying data from device to host. Pointers: host = " DPxMOD
         ", device = " DPxMOD ", size = %" PRId64 "\n",
         DPxPTR(HstPtr), DPxPTR(TgtPtr), Size);
      CUDA_ERR_STRING(Err);
      return OFFLOAD_FAIL;
    }

    return OFFLOAD_SUCCESS;
  }

  int dataExchange(int SrcDevId, const void *SrcPtr, int DstDevId, void *DstPtr,
                   int64_t Size, __tgt_async_info *AsyncInfoPtr) const {
    assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr");

    CUresult Err = cuCtxSetCurrent(DeviceData[SrcDevId].Context);
    if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
      return OFFLOAD_FAIL;

    CUstream Stream = getStream(SrcDevId, AsyncInfoPtr);

    // If they are two devices, we try peer to peer copy first
    if (SrcDevId != DstDevId) {
      int CanAccessPeer = 0;
      Err = cuDeviceCanAccessPeer(&CanAccessPeer, SrcDevId, DstDevId);
      if (Err != CUDA_SUCCESS) {
        DP("Error returned from cuDeviceCanAccessPeer. src = %" PRId32
           ", dst = %" PRId32 "\n",
           SrcDevId, DstDevId);
        CUDA_ERR_STRING(Err);
        return memcpyDtoD(SrcPtr, DstPtr, Size, Stream);
      }

      if (!CanAccessPeer) {
        DP("P2P memcpy not supported so fall back to D2D memcpy");
        return memcpyDtoD(SrcPtr, DstPtr, Size, Stream);
      }

      Err = cuCtxEnablePeerAccess(DeviceData[DstDevId].Context, 0);
      if (Err != CUDA_SUCCESS) {
        DP("Error returned from cuCtxEnablePeerAccess. src = %" PRId32
           ", dst = %" PRId32 "\n",
           SrcDevId, DstDevId);
        CUDA_ERR_STRING(Err);
        return memcpyDtoD(SrcPtr, DstPtr, Size, Stream);
      }

      Err = cuMemcpyPeerAsync((CUdeviceptr)DstPtr, DeviceData[DstDevId].Context,
                              (CUdeviceptr)SrcPtr, DeviceData[SrcDevId].Context,
                              Size, Stream);
      if (Err == CUDA_SUCCESS)
        return OFFLOAD_SUCCESS;

      DP("Error returned from cuMemcpyPeerAsync. src_ptr = " DPxMOD
         ", src_id =%" PRId32 ", dst_ptr = " DPxMOD ", dst_id =%" PRId32 "\n",
         DPxPTR(SrcPtr), SrcDevId, DPxPTR(DstPtr), DstDevId);
      CUDA_ERR_STRING(Err);
    }

    return memcpyDtoD(SrcPtr, DstPtr, Size, Stream);
  }

  int dataDelete(const int DeviceId, void *TgtPtr) const {
    CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
    if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
      return OFFLOAD_FAIL;

    Err = cuMemFree((CUdeviceptr)TgtPtr);
    if (!checkResult(Err, "Error returned from cuMemFree\n"))
      return OFFLOAD_FAIL;

    return OFFLOAD_SUCCESS;
  }

  int runTargetTeamRegion(const int DeviceId, void *TgtEntryPtr, void **TgtArgs,
                          ptrdiff_t *TgtOffsets, const int ArgNum,
                          const int TeamNum, const int ThreadLimit,
                          const unsigned int LoopTripCount,
                          __tgt_async_info *AsyncInfo) const {
    CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
    if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
      return OFFLOAD_FAIL;

    // All args are references.
    std::vector<void *> Args(ArgNum);
    std::vector<void *> Ptrs(ArgNum);

    for (int I = 0; I < ArgNum; ++I) {
      Ptrs[I] = (void *)((intptr_t)TgtArgs[I] + TgtOffsets[I]);
      Args[I] = &Ptrs[I];
    }

    KernelTy *KernelInfo = reinterpret_cast<KernelTy *>(TgtEntryPtr);

    int CudaThreadsPerBlock;
    if (ThreadLimit > 0) {
      DP("Setting CUDA threads per block to requested %d\n", ThreadLimit);
      CudaThreadsPerBlock = ThreadLimit;
      // Add master warp if necessary
      if (KernelInfo->ExecutionMode == GENERIC) {
        DP("Adding master warp: +%d threads\n", DeviceData[DeviceId].WarpSize);
        CudaThreadsPerBlock += DeviceData[DeviceId].WarpSize;
      }
    } else {
      DP("Setting CUDA threads per block to default %d\n",
         DeviceData[DeviceId].NumThreads);
      CudaThreadsPerBlock = DeviceData[DeviceId].NumThreads;
    }

    if (CudaThreadsPerBlock > DeviceData[DeviceId].ThreadsPerBlock) {
      DP("Threads per block capped at device limit %d\n",
         DeviceData[DeviceId].ThreadsPerBlock);
      CudaThreadsPerBlock = DeviceData[DeviceId].ThreadsPerBlock;
    }

    if (!KernelInfo->MaxThreadsPerBlock) {
      Err = cuFuncGetAttribute(&KernelInfo->MaxThreadsPerBlock,
                               CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK,
                               KernelInfo->Func);
      if (!checkResult(Err, "Error returned from cuFuncGetAttribute\n"))
        return OFFLOAD_FAIL;
    }

    if (KernelInfo->MaxThreadsPerBlock < CudaThreadsPerBlock) {
      DP("Threads per block capped at kernel limit %d\n",
         KernelInfo->MaxThreadsPerBlock);
      CudaThreadsPerBlock = KernelInfo->MaxThreadsPerBlock;
    }

    unsigned int CudaBlocksPerGrid;
    if (TeamNum <= 0) {
      if (LoopTripCount > 0 && EnvNumTeams < 0) {
        if (KernelInfo->ExecutionMode == SPMD) {
          // We have a combined construct, i.e. `target teams distribute
          // parallel for [simd]`. We launch so many teams so that each thread
          // will execute one iteration of the loop. round up to the nearest
          // integer
          CudaBlocksPerGrid = ((LoopTripCount - 1) / CudaThreadsPerBlock) + 1;
        } else {
          // If we reach this point, then we have a non-combined construct, i.e.
          // `teams distribute` with a nested `parallel for` and each team is
          // assigned one iteration of the `distribute` loop. E.g.:
          //
          // #pragma omp target teams distribute
          // for(...loop_tripcount...) {
          //   #pragma omp parallel for
          //   for(...) {}
          // }
          //
          // Threads within a team will execute the iterations of the `parallel`
          // loop.
          CudaBlocksPerGrid = LoopTripCount;
        }
        DP("Using %d teams due to loop trip count %" PRIu32
           " and number of threads per block %d\n",
           CudaBlocksPerGrid, LoopTripCount, CudaThreadsPerBlock);
      } else {
        DP("Using default number of teams %d\n", DeviceData[DeviceId].NumTeams);
        CudaBlocksPerGrid = DeviceData[DeviceId].NumTeams;
      }
    } else if (TeamNum > DeviceData[DeviceId].BlocksPerGrid) {
      DP("Capping number of teams to team limit %d\n",
         DeviceData[DeviceId].BlocksPerGrid);
      CudaBlocksPerGrid = DeviceData[DeviceId].BlocksPerGrid;
    } else {
      DP("Using requested number of teams %d\n", TeamNum);
      CudaBlocksPerGrid = TeamNum;
    }

    INFO(DeviceId,
         "Launching kernel %s with %d blocks and %d threads in %s "
         "mode\n",
         (getOffloadEntry(DeviceId, TgtEntryPtr))
             ? getOffloadEntry(DeviceId, TgtEntryPtr)->name
             : "(null)",
         CudaBlocksPerGrid, CudaThreadsPerBlock,
         (KernelInfo->ExecutionMode == SPMD) ? "SPMD" : "Generic");

    CUstream Stream = getStream(DeviceId, AsyncInfo);
    Err = cuLaunchKernel(KernelInfo->Func, CudaBlocksPerGrid, /* gridDimY */ 1,
                         /* gridDimZ */ 1, CudaThreadsPerBlock,
                         /* blockDimY */ 1, /* blockDimZ */ 1,
                         /* sharedMemBytes */ 0, Stream, &Args[0], nullptr);
    if (!checkResult(Err, "Error returned from cuLaunchKernel\n"))
      return OFFLOAD_FAIL;

    DP("Launch of entry point at " DPxMOD " successful!\n",
       DPxPTR(TgtEntryPtr));

    return OFFLOAD_SUCCESS;
  }

  int synchronize(const int DeviceId, __tgt_async_info *AsyncInfoPtr) const {
    CUstream Stream = reinterpret_cast<CUstream>(AsyncInfoPtr->Queue);
    CUresult Err = cuStreamSynchronize(Stream);
    if (Err != CUDA_SUCCESS) {
      DP("Error when synchronizing stream. stream = " DPxMOD
         ", async info ptr = " DPxMOD "\n",
         DPxPTR(Stream), DPxPTR(AsyncInfoPtr));
      CUDA_ERR_STRING(Err);
      return OFFLOAD_FAIL;
    }

    // Once the stream is synchronized, return it to stream pool and reset
    // async_info. This is to make sure the synchronization only works for its
    // own tasks.
    StreamManager->returnStream(
        DeviceId, reinterpret_cast<CUstream>(AsyncInfoPtr->Queue));
    AsyncInfoPtr->Queue = nullptr;

    return OFFLOAD_SUCCESS;
  }
};

DeviceRTLTy DeviceRTL;
} // namespace

// Exposed library API function
#ifdef __cplusplus
extern "C" {
#endif

int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) {
  return elf_check_machine(image, /* EM_CUDA */ 190);
}

int32_t __tgt_rtl_number_of_devices() { return DeviceRTL.getNumOfDevices(); }

int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) {
  DP("Init requires flags to %" PRId64 "\n", RequiresFlags);
  DeviceRTL.setRequiresFlag(RequiresFlags);
  return RequiresFlags;
}

int32_t __tgt_rtl_is_data_exchangable(int32_t src_dev_id, int dst_dev_id) {
  if (DeviceRTL.isValidDeviceId(src_dev_id) &&
      DeviceRTL.isValidDeviceId(dst_dev_id))
    return 1;

  return 0;
}

int32_t __tgt_rtl_init_device(int32_t device_id) {
  assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");

  return DeviceRTL.initDevice(device_id);
}

__tgt_target_table *__tgt_rtl_load_binary(int32_t device_id,
                                          __tgt_device_image *image) {
  assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");

  return DeviceRTL.loadBinary(device_id, image);
}

void *__tgt_rtl_data_alloc(int32_t device_id, int64_t size, void *) {
  assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");

  return DeviceRTL.dataAlloc(device_id, size);
}

int32_t __tgt_rtl_data_submit(int32_t device_id, void *tgt_ptr, void *hst_ptr,
                              int64_t size) {
  assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");

  __tgt_async_info async_info;
  const int32_t rc = __tgt_rtl_data_submit_async(device_id, tgt_ptr, hst_ptr,
                                                 size, &async_info);
  if (rc != OFFLOAD_SUCCESS)
    return OFFLOAD_FAIL;

  return __tgt_rtl_synchronize(device_id, &async_info);
}

int32_t __tgt_rtl_data_submit_async(int32_t device_id, void *tgt_ptr,
                                    void *hst_ptr, int64_t size,
                                    __tgt_async_info *async_info_ptr) {
  assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
  assert(async_info_ptr && "async_info_ptr is nullptr");

  return DeviceRTL.dataSubmit(device_id, tgt_ptr, hst_ptr, size,
                              async_info_ptr);
}

int32_t __tgt_rtl_data_retrieve(int32_t device_id, void *hst_ptr, void *tgt_ptr,
                                int64_t size) {
  assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");

  __tgt_async_info async_info;
  const int32_t rc = __tgt_rtl_data_retrieve_async(device_id, hst_ptr, tgt_ptr,
                                                   size, &async_info);
  if (rc != OFFLOAD_SUCCESS)
    return OFFLOAD_FAIL;

  return __tgt_rtl_synchronize(device_id, &async_info);
}

int32_t __tgt_rtl_data_retrieve_async(int32_t device_id, void *hst_ptr,
                                      void *tgt_ptr, int64_t size,
                                      __tgt_async_info *async_info_ptr) {
  assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
  assert(async_info_ptr && "async_info_ptr is nullptr");

  return DeviceRTL.dataRetrieve(device_id, hst_ptr, tgt_ptr, size,
                                async_info_ptr);
}

int32_t __tgt_rtl_data_exchange_async(int32_t src_dev_id, void *src_ptr,
                                      int dst_dev_id, void *dst_ptr,
                                      int64_t size,
                                      __tgt_async_info *async_info_ptr) {
  assert(DeviceRTL.isValidDeviceId(src_dev_id) && "src_dev_id is invalid");
  assert(DeviceRTL.isValidDeviceId(dst_dev_id) && "dst_dev_id is invalid");
  assert(async_info_ptr && "async_info_ptr is nullptr");

  return DeviceRTL.dataExchange(src_dev_id, src_ptr, dst_dev_id, dst_ptr, size,
                                async_info_ptr);
}

int32_t __tgt_rtl_data_exchange(int32_t src_dev_id, void *src_ptr,
                                int32_t dst_dev_id, void *dst_ptr,
                                int64_t size) {
  assert(DeviceRTL.isValidDeviceId(src_dev_id) && "src_dev_id is invalid");
  assert(DeviceRTL.isValidDeviceId(dst_dev_id) && "dst_dev_id is invalid");

  __tgt_async_info async_info;
  const int32_t rc = __tgt_rtl_data_exchange_async(
      src_dev_id, src_ptr, dst_dev_id, dst_ptr, size, &async_info);
  if (rc != OFFLOAD_SUCCESS)
    return OFFLOAD_FAIL;

  return __tgt_rtl_synchronize(src_dev_id, &async_info);
}

int32_t __tgt_rtl_data_delete(int32_t device_id, void *tgt_ptr) {
  assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");

  return DeviceRTL.dataDelete(device_id, tgt_ptr);
}

int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr,
                                         void **tgt_args,
                                         ptrdiff_t *tgt_offsets,
                                         int32_t arg_num, int32_t team_num,
                                         int32_t thread_limit,
                                         uint64_t loop_tripcount) {
  assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");

  __tgt_async_info async_info;
  const int32_t rc = __tgt_rtl_run_target_team_region_async(
      device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, team_num,
      thread_limit, loop_tripcount, &async_info);
  if (rc != OFFLOAD_SUCCESS)
    return OFFLOAD_FAIL;

  return __tgt_rtl_synchronize(device_id, &async_info);
}

int32_t __tgt_rtl_run_target_team_region_async(
    int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
    ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t team_num,
    int32_t thread_limit, uint64_t loop_tripcount,
    __tgt_async_info *async_info_ptr) {
  assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");

  return DeviceRTL.runTargetTeamRegion(
      device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, team_num,
      thread_limit, loop_tripcount, async_info_ptr);
}

int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr,
                                    void **tgt_args, ptrdiff_t *tgt_offsets,
                                    int32_t arg_num) {
  assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");

  __tgt_async_info async_info;
  const int32_t rc = __tgt_rtl_run_target_region_async(
      device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, &async_info);
  if (rc != OFFLOAD_SUCCESS)
    return OFFLOAD_FAIL;

  return __tgt_rtl_synchronize(device_id, &async_info);
}

int32_t __tgt_rtl_run_target_region_async(int32_t device_id,
                                          void *tgt_entry_ptr, void **tgt_args,
                                          ptrdiff_t *tgt_offsets,
                                          int32_t arg_num,
                                          __tgt_async_info *async_info_ptr) {
  assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");

  return __tgt_rtl_run_target_team_region_async(
      device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num,
      /* team num*/ 1, /* thread_limit */ 1, /* loop_tripcount */ 0,
      async_info_ptr);
}

int32_t __tgt_rtl_synchronize(int32_t device_id,
                              __tgt_async_info *async_info_ptr) {
  assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
  assert(async_info_ptr && "async_info_ptr is nullptr");
  assert(async_info_ptr->Queue && "async_info_ptr->Queue is nullptr");

  return DeviceRTL.synchronize(device_id, async_info_ptr);
}

#ifdef __cplusplus
}
#endif