rtl.cpp
42.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
//===----RTLs/cuda/src/rtl.cpp - Target RTLs Implementation ------- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// RTL for CUDA machine
//
//===----------------------------------------------------------------------===//
#include <cassert>
#include <cstddef>
#include <cuda.h>
#include <list>
#include <memory>
#include <mutex>
#include <string>
#include <vector>
#include "Debug.h"
#include "omptargetplugin.h"
#define TARGET_NAME CUDA
#define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL"
// Utility for retrieving and printing CUDA error string.
#ifdef OMPTARGET_DEBUG
#define CUDA_ERR_STRING(err) \
do { \
if (getDebugLevel() > 0) { \
const char *errStr = nullptr; \
CUresult errStr_status = cuGetErrorString(err, &errStr); \
if (errStr_status == CUDA_ERROR_INVALID_VALUE) \
DP("Unrecognized CUDA error code: %d\n", err); \
else if (errStr_status == CUDA_SUCCESS) \
DP("CUDA error is: %s\n", errStr); \
else { \
DP("Unresolved CUDA error code: %d\n", err); \
DP("Unsuccessful cuGetErrorString return status: %d\n", \
errStr_status); \
} \
} \
} while (false)
#else // OMPTARGET_DEBUG
#define CUDA_ERR_STRING(err) {}
#endif // OMPTARGET_DEBUG
#include "../../common/elf_common.c"
/// Keep entries table per device.
struct FuncOrGblEntryTy {
__tgt_target_table Table;
std::vector<__tgt_offload_entry> Entries;
};
enum ExecutionModeType {
SPMD, // constructors, destructors,
// combined constructs (`teams distribute parallel for [simd]`)
GENERIC, // everything else
NONE
};
/// Use a single entity to encode a kernel and a set of flags.
struct KernelTy {
CUfunction Func;
// execution mode of kernel
// 0 - SPMD mode (without master warp)
// 1 - Generic mode (with master warp)
int8_t ExecutionMode;
/// Maximal number of threads per block for this kernel.
int MaxThreadsPerBlock = 0;
KernelTy(CUfunction _Func, int8_t _ExecutionMode)
: Func(_Func), ExecutionMode(_ExecutionMode) {}
};
/// Device environment data
/// Manually sync with the deviceRTL side for now, move to a dedicated header
/// file later.
struct omptarget_device_environmentTy {
int32_t debug_level;
};
namespace {
bool checkResult(CUresult Err, const char *ErrMsg) {
if (Err == CUDA_SUCCESS)
return true;
DP("%s", ErrMsg);
CUDA_ERR_STRING(Err);
return false;
}
int memcpyDtoD(const void *SrcPtr, void *DstPtr, int64_t Size,
CUstream Stream) {
CUresult Err =
cuMemcpyDtoDAsync((CUdeviceptr)DstPtr, (CUdeviceptr)SrcPtr, Size, Stream);
if (Err != CUDA_SUCCESS) {
DP("Error when copying data from device to device. Pointers: src "
"= " DPxMOD ", dst = " DPxMOD ", size = %" PRId64 "\n",
DPxPTR(SrcPtr), DPxPTR(DstPtr), Size);
CUDA_ERR_STRING(Err);
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
// Structure contains per-device data
struct DeviceDataTy {
/// List that contains all the kernels.
std::list<KernelTy> KernelsList;
std::list<FuncOrGblEntryTy> FuncGblEntries;
CUcontext Context = nullptr;
// Device properties
int ThreadsPerBlock = 0;
int BlocksPerGrid = 0;
int WarpSize = 0;
// OpenMP properties
int NumTeams = 0;
int NumThreads = 0;
};
class StreamManagerTy {
int NumberOfDevices;
// The initial size of stream pool
int EnvNumInitialStreams;
// Per-device stream mutex
std::vector<std::unique_ptr<std::mutex>> StreamMtx;
// Per-device stream Id indicates the next available stream in the pool
std::vector<int> NextStreamId;
// Per-device stream pool
std::vector<std::vector<CUstream>> StreamPool;
// Reference to per-device data
std::vector<DeviceDataTy> &DeviceData;
// If there is no CUstream left in the pool, we will resize the pool to
// allocate more CUstream. This function should be called with device mutex,
// and we do not resize to smaller one.
void resizeStreamPool(const int DeviceId, const size_t NewSize) {
std::vector<CUstream> &Pool = StreamPool[DeviceId];
const size_t CurrentSize = Pool.size();
assert(NewSize > CurrentSize && "new size is not larger than current size");
CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n")) {
// We will return if cannot switch to the right context in case of
// creating bunch of streams that are not corresponding to the right
// device. The offloading will fail later because selected CUstream is
// nullptr.
return;
}
Pool.resize(NewSize, nullptr);
for (size_t I = CurrentSize; I < NewSize; ++I) {
checkResult(cuStreamCreate(&Pool[I], CU_STREAM_NON_BLOCKING),
"Error returned from cuStreamCreate\n");
}
}
public:
StreamManagerTy(const int NumberOfDevices,
std::vector<DeviceDataTy> &DeviceData)
: NumberOfDevices(NumberOfDevices), EnvNumInitialStreams(32),
DeviceData(DeviceData) {
StreamPool.resize(NumberOfDevices);
NextStreamId.resize(NumberOfDevices);
StreamMtx.resize(NumberOfDevices);
if (const char *EnvStr = getenv("LIBOMPTARGET_NUM_INITIAL_STREAMS"))
EnvNumInitialStreams = std::stoi(EnvStr);
// Initialize the next stream id
std::fill(NextStreamId.begin(), NextStreamId.end(), 0);
// Initialize stream mutex
for (std::unique_ptr<std::mutex> &Ptr : StreamMtx)
Ptr = std::make_unique<std::mutex>();
}
~StreamManagerTy() {
// Destroy streams
for (int I = 0; I < NumberOfDevices; ++I) {
checkResult(cuCtxSetCurrent(DeviceData[I].Context),
"Error returned from cuCtxSetCurrent\n");
for (CUstream &S : StreamPool[I]) {
if (S)
checkResult(cuStreamDestroy(S),
"Error returned from cuStreamDestroy\n");
}
}
}
// Get a CUstream from pool. Per-device next stream id always points to the
// next available CUstream. That means, CUstreams [0, id-1] have been
// assigned, and [id,] are still available. If there is no CUstream left, we
// will ask more CUstreams from CUDA RT. Each time a CUstream is assigned,
// the id will increase one.
// xxxxxs+++++++++
// ^
// id
// After assignment, the pool becomes the following and s is assigned.
// xxxxxs+++++++++
// ^
// id
CUstream getStream(const int DeviceId) {
const std::lock_guard<std::mutex> Lock(*StreamMtx[DeviceId]);
int &Id = NextStreamId[DeviceId];
// No CUstream left in the pool, we need to request from CUDA RT
if (Id == StreamPool[DeviceId].size()) {
// By default we double the stream pool every time
resizeStreamPool(DeviceId, Id * 2);
}
return StreamPool[DeviceId][Id++];
}
// Return a CUstream back to pool. As mentioned above, per-device next
// stream is always points to the next available CUstream, so when we return
// a CUstream, we need to first decrease the id, and then copy the CUstream
// back.
// It is worth noting that, the order of streams return might be different
// from that they're assigned, that saying, at some point, there might be
// two identical CUstreams.
// xxax+a+++++
// ^
// id
// However, it doesn't matter, because they're always on the two sides of
// id. The left one will in the end be overwritten by another CUstream.
// Therefore, after several execution, the order of pool might be different
// from its initial state.
void returnStream(const int DeviceId, CUstream Stream) {
const std::lock_guard<std::mutex> Lock(*StreamMtx[DeviceId]);
int &Id = NextStreamId[DeviceId];
assert(Id > 0 && "Wrong stream ID");
StreamPool[DeviceId][--Id] = Stream;
}
bool initializeDeviceStreamPool(const int DeviceId) {
assert(StreamPool[DeviceId].empty() && "stream pool has been initialized");
resizeStreamPool(DeviceId, EnvNumInitialStreams);
// Check the size of stream pool
if (StreamPool[DeviceId].size() != EnvNumInitialStreams)
return false;
// Check whether each stream is valid
for (CUstream &S : StreamPool[DeviceId])
if (!S)
return false;
return true;
}
};
class DeviceRTLTy {
int NumberOfDevices;
// OpenMP environment properties
int EnvNumTeams;
int EnvTeamLimit;
// OpenMP requires flags
int64_t RequiresFlags;
static constexpr const int HardTeamLimit = 1U << 16U; // 64k
static constexpr const int HardThreadLimit = 1024;
static constexpr const int DefaultNumTeams = 128;
static constexpr const int DefaultNumThreads = 128;
std::unique_ptr<StreamManagerTy> StreamManager;
std::vector<DeviceDataTy> DeviceData;
std::vector<CUmodule> Modules;
// Record entry point associated with device
void addOffloadEntry(const int DeviceId, const __tgt_offload_entry entry) {
FuncOrGblEntryTy &E = DeviceData[DeviceId].FuncGblEntries.back();
E.Entries.push_back(entry);
}
// Return a pointer to the entry associated with the pointer
const __tgt_offload_entry *getOffloadEntry(const int DeviceId,
const void *Addr) const {
for (const __tgt_offload_entry &Itr :
DeviceData[DeviceId].FuncGblEntries.back().Entries)
if (Itr.addr == Addr)
return &Itr;
return nullptr;
}
// Return the pointer to the target entries table
__tgt_target_table *getOffloadEntriesTable(const int DeviceId) {
FuncOrGblEntryTy &E = DeviceData[DeviceId].FuncGblEntries.back();
if (E.Entries.empty())
return nullptr;
// Update table info according to the entries and return the pointer
E.Table.EntriesBegin = E.Entries.data();
E.Table.EntriesEnd = E.Entries.data() + E.Entries.size();
return &E.Table;
}
// Clear entries table for a device
void clearOffloadEntriesTable(const int DeviceId) {
DeviceData[DeviceId].FuncGblEntries.emplace_back();
FuncOrGblEntryTy &E = DeviceData[DeviceId].FuncGblEntries.back();
E.Entries.clear();
E.Table.EntriesBegin = E.Table.EntriesEnd = nullptr;
}
CUstream getStream(const int DeviceId, __tgt_async_info *AsyncInfoPtr) const {
assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr");
if (!AsyncInfoPtr->Queue)
AsyncInfoPtr->Queue = StreamManager->getStream(DeviceId);
return reinterpret_cast<CUstream>(AsyncInfoPtr->Queue);
}
public:
// This class should not be copied
DeviceRTLTy(const DeviceRTLTy &) = delete;
DeviceRTLTy(DeviceRTLTy &&) = delete;
DeviceRTLTy()
: NumberOfDevices(0), EnvNumTeams(-1), EnvTeamLimit(-1),
RequiresFlags(OMP_REQ_UNDEFINED) {
DP("Start initializing CUDA\n");
CUresult Err = cuInit(0);
if (!checkResult(Err, "Error returned from cuInit\n")) {
return;
}
Err = cuDeviceGetCount(&NumberOfDevices);
if (!checkResult(Err, "Error returned from cuDeviceGetCount\n"))
return;
if (NumberOfDevices == 0) {
DP("There are no devices supporting CUDA.\n");
return;
}
DeviceData.resize(NumberOfDevices);
// Get environment variables regarding teams
if (const char *EnvStr = getenv("OMP_TEAM_LIMIT")) {
// OMP_TEAM_LIMIT has been set
EnvTeamLimit = std::stoi(EnvStr);
DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit);
}
if (const char *EnvStr = getenv("OMP_NUM_TEAMS")) {
// OMP_NUM_TEAMS has been set
EnvNumTeams = std::stoi(EnvStr);
DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams);
}
StreamManager =
std::make_unique<StreamManagerTy>(NumberOfDevices, DeviceData);
}
~DeviceRTLTy() {
// First destruct stream manager in case of Contexts is destructed before it
StreamManager = nullptr;
for (CUmodule &M : Modules)
// Close module
if (M)
checkResult(cuModuleUnload(M), "Error returned from cuModuleUnload\n");
for (DeviceDataTy &D : DeviceData) {
// Destroy context
if (D.Context) {
checkResult(cuCtxSetCurrent(D.Context),
"Error returned from cuCtxSetCurrent\n");
CUdevice Device;
checkResult(cuCtxGetDevice(&Device),
"Error returned from cuCtxGetDevice\n");
checkResult(cuDevicePrimaryCtxRelease(Device),
"Error returned from cuDevicePrimaryCtxRelease\n");
}
}
}
// Check whether a given DeviceId is valid
bool isValidDeviceId(const int DeviceId) const {
return DeviceId >= 0 && DeviceId < NumberOfDevices;
}
int getNumOfDevices() const { return NumberOfDevices; }
void setRequiresFlag(const int64_t Flags) { this->RequiresFlags = Flags; }
int initDevice(const int DeviceId) {
CUdevice Device;
DP("Getting device %d\n", DeviceId);
CUresult Err = cuDeviceGet(&Device, DeviceId);
if (!checkResult(Err, "Error returned from cuDeviceGet\n"))
return OFFLOAD_FAIL;
// Query the current flags of the primary context and set its flags if
// it is inactive
unsigned int FormerPrimaryCtxFlags = 0;
int FormerPrimaryCtxIsActive = 0;
Err = cuDevicePrimaryCtxGetState(Device, &FormerPrimaryCtxFlags,
&FormerPrimaryCtxIsActive);
if (!checkResult(Err, "Error returned from cuDevicePrimaryCtxGetState\n"))
return OFFLOAD_FAIL;
if (FormerPrimaryCtxIsActive) {
DP("The primary context is active, no change to its flags\n");
if ((FormerPrimaryCtxFlags & CU_CTX_SCHED_MASK) !=
CU_CTX_SCHED_BLOCKING_SYNC)
DP("Warning the current flags are not CU_CTX_SCHED_BLOCKING_SYNC\n");
} else {
DP("The primary context is inactive, set its flags to "
"CU_CTX_SCHED_BLOCKING_SYNC\n");
Err = cuDevicePrimaryCtxSetFlags(Device, CU_CTX_SCHED_BLOCKING_SYNC);
if (!checkResult(Err, "Error returned from cuDevicePrimaryCtxSetFlags\n"))
return OFFLOAD_FAIL;
}
// Retain the per device primary context and save it to use whenever this
// device is selected.
Err = cuDevicePrimaryCtxRetain(&DeviceData[DeviceId].Context, Device);
if (!checkResult(Err, "Error returned from cuDevicePrimaryCtxRetain\n"))
return OFFLOAD_FAIL;
Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
return OFFLOAD_FAIL;
// Initialize stream pool
if (!StreamManager->initializeDeviceStreamPool(DeviceId))
return OFFLOAD_FAIL;
// Query attributes to determine number of threads/block and blocks/grid.
int MaxGridDimX;
Err = cuDeviceGetAttribute(&MaxGridDimX, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X,
Device);
if (Err != CUDA_SUCCESS) {
DP("Error getting max grid dimension, use default value %d\n",
DeviceRTLTy::DefaultNumTeams);
DeviceData[DeviceId].BlocksPerGrid = DeviceRTLTy::DefaultNumTeams;
} else if (MaxGridDimX <= DeviceRTLTy::HardTeamLimit) {
DP("Using %d CUDA blocks per grid\n", MaxGridDimX);
DeviceData[DeviceId].BlocksPerGrid = MaxGridDimX;
} else {
DP("Max CUDA blocks per grid %d exceeds the hard team limit %d, capping "
"at the hard limit\n",
MaxGridDimX, DeviceRTLTy::HardTeamLimit);
DeviceData[DeviceId].BlocksPerGrid = DeviceRTLTy::HardTeamLimit;
}
// We are only exploiting threads along the x axis.
int MaxBlockDimX;
Err = cuDeviceGetAttribute(&MaxBlockDimX,
CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, Device);
if (Err != CUDA_SUCCESS) {
DP("Error getting max block dimension, use default value %d\n",
DeviceRTLTy::DefaultNumThreads);
DeviceData[DeviceId].ThreadsPerBlock = DeviceRTLTy::DefaultNumThreads;
} else if (MaxBlockDimX <= DeviceRTLTy::HardThreadLimit) {
DP("Using %d CUDA threads per block\n", MaxBlockDimX);
DeviceData[DeviceId].ThreadsPerBlock = MaxBlockDimX;
} else {
DP("Max CUDA threads per block %d exceeds the hard thread limit %d, "
"capping at the hard limit\n",
MaxBlockDimX, DeviceRTLTy::HardThreadLimit);
DeviceData[DeviceId].ThreadsPerBlock = DeviceRTLTy::HardThreadLimit;
}
// Get and set warp size
int WarpSize;
Err =
cuDeviceGetAttribute(&WarpSize, CU_DEVICE_ATTRIBUTE_WARP_SIZE, Device);
if (Err != CUDA_SUCCESS) {
DP("Error getting warp size, assume default value 32\n");
DeviceData[DeviceId].WarpSize = 32;
} else {
DP("Using warp size %d\n", WarpSize);
DeviceData[DeviceId].WarpSize = WarpSize;
}
// Adjust teams to the env variables
if (EnvTeamLimit > 0 && DeviceData[DeviceId].BlocksPerGrid > EnvTeamLimit) {
DP("Capping max CUDA blocks per grid to OMP_TEAM_LIMIT=%d\n",
EnvTeamLimit);
DeviceData[DeviceId].BlocksPerGrid = EnvTeamLimit;
}
INFO(DeviceId,
"Device supports up to %d CUDA blocks and %d threads with a "
"warp size of %d\n",
DeviceData[DeviceId].BlocksPerGrid,
DeviceData[DeviceId].ThreadsPerBlock, DeviceData[DeviceId].WarpSize);
// Set default number of teams
if (EnvNumTeams > 0) {
DP("Default number of teams set according to environment %d\n",
EnvNumTeams);
DeviceData[DeviceId].NumTeams = EnvNumTeams;
} else {
DeviceData[DeviceId].NumTeams = DeviceRTLTy::DefaultNumTeams;
DP("Default number of teams set according to library's default %d\n",
DeviceRTLTy::DefaultNumTeams);
}
if (DeviceData[DeviceId].NumTeams > DeviceData[DeviceId].BlocksPerGrid) {
DP("Default number of teams exceeds device limit, capping at %d\n",
DeviceData[DeviceId].BlocksPerGrid);
DeviceData[DeviceId].NumTeams = DeviceData[DeviceId].BlocksPerGrid;
}
// Set default number of threads
DeviceData[DeviceId].NumThreads = DeviceRTLTy::DefaultNumThreads;
DP("Default number of threads set according to library's default %d\n",
DeviceRTLTy::DefaultNumThreads);
if (DeviceData[DeviceId].NumThreads >
DeviceData[DeviceId].ThreadsPerBlock) {
DP("Default number of threads exceeds device limit, capping at %d\n",
DeviceData[DeviceId].ThreadsPerBlock);
DeviceData[DeviceId].NumTeams = DeviceData[DeviceId].ThreadsPerBlock;
}
return OFFLOAD_SUCCESS;
}
__tgt_target_table *loadBinary(const int DeviceId,
const __tgt_device_image *Image) {
// Set the context we are using
CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
return nullptr;
// Clear the offload table as we are going to create a new one.
clearOffloadEntriesTable(DeviceId);
// Create the module and extract the function pointers.
CUmodule Module;
DP("Load data from image " DPxMOD "\n", DPxPTR(Image->ImageStart));
Err = cuModuleLoadDataEx(&Module, Image->ImageStart, 0, nullptr, nullptr);
if (!checkResult(Err, "Error returned from cuModuleLoadDataEx\n"))
return nullptr;
DP("CUDA module successfully loaded!\n");
Modules.push_back(Module);
// Find the symbols in the module by name.
const __tgt_offload_entry *HostBegin = Image->EntriesBegin;
const __tgt_offload_entry *HostEnd = Image->EntriesEnd;
std::list<KernelTy> &KernelsList = DeviceData[DeviceId].KernelsList;
for (const __tgt_offload_entry *E = HostBegin; E != HostEnd; ++E) {
if (!E->addr) {
// We return nullptr when something like this happens, the host should
// have always something in the address to uniquely identify the target
// region.
DP("Invalid binary: host entry '<null>' (size = %zd)...\n", E->size);
return nullptr;
}
if (E->size) {
__tgt_offload_entry Entry = *E;
CUdeviceptr CUPtr;
size_t CUSize;
Err = cuModuleGetGlobal(&CUPtr, &CUSize, Module, E->name);
// We keep this style here because we need the name
if (Err != CUDA_SUCCESS) {
DP("Loading global '%s' (Failed)\n", E->name);
CUDA_ERR_STRING(Err);
return nullptr;
}
if (CUSize != E->size) {
DP("Loading global '%s' - size mismatch (%zd != %zd)\n", E->name,
CUSize, E->size);
return nullptr;
}
DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n",
DPxPTR(E - HostBegin), E->name, DPxPTR(CUPtr));
Entry.addr = (void *)(CUPtr);
// Note: In the current implementation declare target variables
// can either be link or to. This means that once unified
// memory is activated via the requires directive, the variable
// can be used directly from the host in both cases.
// TODO: when variables types other than to or link are added,
// the below condition should be changed to explicitly
// check for to and link variables types:
// (RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && (e->flags &
// OMP_DECLARE_TARGET_LINK || e->flags == OMP_DECLARE_TARGET_TO))
if (RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY) {
// If unified memory is present any target link or to variables
// can access host addresses directly. There is no longer a
// need for device copies.
cuMemcpyHtoD(CUPtr, E->addr, sizeof(void *));
DP("Copy linked variable host address (" DPxMOD
") to device address (" DPxMOD ")\n",
DPxPTR(*((void **)E->addr)), DPxPTR(CUPtr));
}
addOffloadEntry(DeviceId, Entry);
continue;
}
CUfunction Func;
Err = cuModuleGetFunction(&Func, Module, E->name);
// We keep this style here because we need the name
if (Err != CUDA_SUCCESS) {
DP("Loading '%s' (Failed)\n", E->name);
CUDA_ERR_STRING(Err);
return nullptr;
}
DP("Entry point " DPxMOD " maps to %s (" DPxMOD ")\n",
DPxPTR(E - HostBegin), E->name, DPxPTR(Func));
// default value GENERIC (in case symbol is missing from cubin file)
int8_t ExecModeVal = ExecutionModeType::GENERIC;
std::string ExecModeNameStr(E->name);
ExecModeNameStr += "_exec_mode";
const char *ExecModeName = ExecModeNameStr.c_str();
CUdeviceptr ExecModePtr;
size_t CUSize;
Err = cuModuleGetGlobal(&ExecModePtr, &CUSize, Module, ExecModeName);
if (Err == CUDA_SUCCESS) {
if (CUSize != sizeof(int8_t)) {
DP("Loading global exec_mode '%s' - size mismatch (%zd != %zd)\n",
ExecModeName, CUSize, sizeof(int8_t));
return nullptr;
}
Err = cuMemcpyDtoH(&ExecModeVal, ExecModePtr, CUSize);
if (Err != CUDA_SUCCESS) {
DP("Error when copying data from device to host. Pointers: "
"host = " DPxMOD ", device = " DPxMOD ", size = %zd\n",
DPxPTR(&ExecModeVal), DPxPTR(ExecModePtr), CUSize);
CUDA_ERR_STRING(Err);
return nullptr;
}
if (ExecModeVal < 0 || ExecModeVal > 1) {
DP("Error wrong exec_mode value specified in cubin file: %d\n",
ExecModeVal);
return nullptr;
}
} else {
DP("Loading global exec_mode '%s' - symbol missing, using default "
"value GENERIC (1)\n",
ExecModeName);
CUDA_ERR_STRING(Err);
}
KernelsList.emplace_back(Func, ExecModeVal);
__tgt_offload_entry Entry = *E;
Entry.addr = &KernelsList.back();
addOffloadEntry(DeviceId, Entry);
}
// send device environment data to the device
{
omptarget_device_environmentTy DeviceEnv{0};
#ifdef OMPTARGET_DEBUG
if (const char *EnvStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG"))
DeviceEnv.debug_level = std::stoi(EnvStr);
#endif
const char *DeviceEnvName = "omptarget_device_environment";
CUdeviceptr DeviceEnvPtr;
size_t CUSize;
Err = cuModuleGetGlobal(&DeviceEnvPtr, &CUSize, Module, DeviceEnvName);
if (Err == CUDA_SUCCESS) {
if (CUSize != sizeof(DeviceEnv)) {
DP("Global device_environment '%s' - size mismatch (%zu != %zu)\n",
DeviceEnvName, CUSize, sizeof(int32_t));
CUDA_ERR_STRING(Err);
return nullptr;
}
Err = cuMemcpyHtoD(DeviceEnvPtr, &DeviceEnv, CUSize);
if (Err != CUDA_SUCCESS) {
DP("Error when copying data from host to device. Pointers: "
"host = " DPxMOD ", device = " DPxMOD ", size = %zu\n",
DPxPTR(&DeviceEnv), DPxPTR(DeviceEnvPtr), CUSize);
CUDA_ERR_STRING(Err);
return nullptr;
}
DP("Sending global device environment data %zu bytes\n", CUSize);
} else {
DP("Finding global device environment '%s' - symbol missing.\n",
DeviceEnvName);
DP("Continue, considering this is a device RTL which does not accept "
"environment setting.\n");
}
}
return getOffloadEntriesTable(DeviceId);
}
void *dataAlloc(const int DeviceId, const int64_t Size) const {
if (Size == 0)
return nullptr;
CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
return nullptr;
CUdeviceptr DevicePtr;
Err = cuMemAlloc(&DevicePtr, Size);
if (!checkResult(Err, "Error returned from cuMemAlloc\n"))
return nullptr;
return (void *)DevicePtr;
}
int dataSubmit(const int DeviceId, const void *TgtPtr, const void *HstPtr,
const int64_t Size, __tgt_async_info *AsyncInfoPtr) const {
assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr");
CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
return OFFLOAD_FAIL;
CUstream Stream = getStream(DeviceId, AsyncInfoPtr);
Err = cuMemcpyHtoDAsync((CUdeviceptr)TgtPtr, HstPtr, Size, Stream);
if (Err != CUDA_SUCCESS) {
DP("Error when copying data from host to device. Pointers: host = " DPxMOD
", device = " DPxMOD ", size = %" PRId64 "\n",
DPxPTR(HstPtr), DPxPTR(TgtPtr), Size);
CUDA_ERR_STRING(Err);
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int dataRetrieve(const int DeviceId, void *HstPtr, const void *TgtPtr,
const int64_t Size, __tgt_async_info *AsyncInfoPtr) const {
assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr");
CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
return OFFLOAD_FAIL;
CUstream Stream = getStream(DeviceId, AsyncInfoPtr);
Err = cuMemcpyDtoHAsync(HstPtr, (CUdeviceptr)TgtPtr, Size, Stream);
if (Err != CUDA_SUCCESS) {
DP("Error when copying data from device to host. Pointers: host = " DPxMOD
", device = " DPxMOD ", size = %" PRId64 "\n",
DPxPTR(HstPtr), DPxPTR(TgtPtr), Size);
CUDA_ERR_STRING(Err);
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int dataExchange(int SrcDevId, const void *SrcPtr, int DstDevId, void *DstPtr,
int64_t Size, __tgt_async_info *AsyncInfoPtr) const {
assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr");
CUresult Err = cuCtxSetCurrent(DeviceData[SrcDevId].Context);
if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
return OFFLOAD_FAIL;
CUstream Stream = getStream(SrcDevId, AsyncInfoPtr);
// If they are two devices, we try peer to peer copy first
if (SrcDevId != DstDevId) {
int CanAccessPeer = 0;
Err = cuDeviceCanAccessPeer(&CanAccessPeer, SrcDevId, DstDevId);
if (Err != CUDA_SUCCESS) {
DP("Error returned from cuDeviceCanAccessPeer. src = %" PRId32
", dst = %" PRId32 "\n",
SrcDevId, DstDevId);
CUDA_ERR_STRING(Err);
return memcpyDtoD(SrcPtr, DstPtr, Size, Stream);
}
if (!CanAccessPeer) {
DP("P2P memcpy not supported so fall back to D2D memcpy");
return memcpyDtoD(SrcPtr, DstPtr, Size, Stream);
}
Err = cuCtxEnablePeerAccess(DeviceData[DstDevId].Context, 0);
if (Err != CUDA_SUCCESS) {
DP("Error returned from cuCtxEnablePeerAccess. src = %" PRId32
", dst = %" PRId32 "\n",
SrcDevId, DstDevId);
CUDA_ERR_STRING(Err);
return memcpyDtoD(SrcPtr, DstPtr, Size, Stream);
}
Err = cuMemcpyPeerAsync((CUdeviceptr)DstPtr, DeviceData[DstDevId].Context,
(CUdeviceptr)SrcPtr, DeviceData[SrcDevId].Context,
Size, Stream);
if (Err == CUDA_SUCCESS)
return OFFLOAD_SUCCESS;
DP("Error returned from cuMemcpyPeerAsync. src_ptr = " DPxMOD
", src_id =%" PRId32 ", dst_ptr = " DPxMOD ", dst_id =%" PRId32 "\n",
DPxPTR(SrcPtr), SrcDevId, DPxPTR(DstPtr), DstDevId);
CUDA_ERR_STRING(Err);
}
return memcpyDtoD(SrcPtr, DstPtr, Size, Stream);
}
int dataDelete(const int DeviceId, void *TgtPtr) const {
CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
return OFFLOAD_FAIL;
Err = cuMemFree((CUdeviceptr)TgtPtr);
if (!checkResult(Err, "Error returned from cuMemFree\n"))
return OFFLOAD_FAIL;
return OFFLOAD_SUCCESS;
}
int runTargetTeamRegion(const int DeviceId, void *TgtEntryPtr, void **TgtArgs,
ptrdiff_t *TgtOffsets, const int ArgNum,
const int TeamNum, const int ThreadLimit,
const unsigned int LoopTripCount,
__tgt_async_info *AsyncInfo) const {
CUresult Err = cuCtxSetCurrent(DeviceData[DeviceId].Context);
if (!checkResult(Err, "Error returned from cuCtxSetCurrent\n"))
return OFFLOAD_FAIL;
// All args are references.
std::vector<void *> Args(ArgNum);
std::vector<void *> Ptrs(ArgNum);
for (int I = 0; I < ArgNum; ++I) {
Ptrs[I] = (void *)((intptr_t)TgtArgs[I] + TgtOffsets[I]);
Args[I] = &Ptrs[I];
}
KernelTy *KernelInfo = reinterpret_cast<KernelTy *>(TgtEntryPtr);
int CudaThreadsPerBlock;
if (ThreadLimit > 0) {
DP("Setting CUDA threads per block to requested %d\n", ThreadLimit);
CudaThreadsPerBlock = ThreadLimit;
// Add master warp if necessary
if (KernelInfo->ExecutionMode == GENERIC) {
DP("Adding master warp: +%d threads\n", DeviceData[DeviceId].WarpSize);
CudaThreadsPerBlock += DeviceData[DeviceId].WarpSize;
}
} else {
DP("Setting CUDA threads per block to default %d\n",
DeviceData[DeviceId].NumThreads);
CudaThreadsPerBlock = DeviceData[DeviceId].NumThreads;
}
if (CudaThreadsPerBlock > DeviceData[DeviceId].ThreadsPerBlock) {
DP("Threads per block capped at device limit %d\n",
DeviceData[DeviceId].ThreadsPerBlock);
CudaThreadsPerBlock = DeviceData[DeviceId].ThreadsPerBlock;
}
if (!KernelInfo->MaxThreadsPerBlock) {
Err = cuFuncGetAttribute(&KernelInfo->MaxThreadsPerBlock,
CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK,
KernelInfo->Func);
if (!checkResult(Err, "Error returned from cuFuncGetAttribute\n"))
return OFFLOAD_FAIL;
}
if (KernelInfo->MaxThreadsPerBlock < CudaThreadsPerBlock) {
DP("Threads per block capped at kernel limit %d\n",
KernelInfo->MaxThreadsPerBlock);
CudaThreadsPerBlock = KernelInfo->MaxThreadsPerBlock;
}
unsigned int CudaBlocksPerGrid;
if (TeamNum <= 0) {
if (LoopTripCount > 0 && EnvNumTeams < 0) {
if (KernelInfo->ExecutionMode == SPMD) {
// We have a combined construct, i.e. `target teams distribute
// parallel for [simd]`. We launch so many teams so that each thread
// will execute one iteration of the loop. round up to the nearest
// integer
CudaBlocksPerGrid = ((LoopTripCount - 1) / CudaThreadsPerBlock) + 1;
} else {
// If we reach this point, then we have a non-combined construct, i.e.
// `teams distribute` with a nested `parallel for` and each team is
// assigned one iteration of the `distribute` loop. E.g.:
//
// #pragma omp target teams distribute
// for(...loop_tripcount...) {
// #pragma omp parallel for
// for(...) {}
// }
//
// Threads within a team will execute the iterations of the `parallel`
// loop.
CudaBlocksPerGrid = LoopTripCount;
}
DP("Using %d teams due to loop trip count %" PRIu32
" and number of threads per block %d\n",
CudaBlocksPerGrid, LoopTripCount, CudaThreadsPerBlock);
} else {
DP("Using default number of teams %d\n", DeviceData[DeviceId].NumTeams);
CudaBlocksPerGrid = DeviceData[DeviceId].NumTeams;
}
} else if (TeamNum > DeviceData[DeviceId].BlocksPerGrid) {
DP("Capping number of teams to team limit %d\n",
DeviceData[DeviceId].BlocksPerGrid);
CudaBlocksPerGrid = DeviceData[DeviceId].BlocksPerGrid;
} else {
DP("Using requested number of teams %d\n", TeamNum);
CudaBlocksPerGrid = TeamNum;
}
INFO(DeviceId,
"Launching kernel %s with %d blocks and %d threads in %s "
"mode\n",
(getOffloadEntry(DeviceId, TgtEntryPtr))
? getOffloadEntry(DeviceId, TgtEntryPtr)->name
: "(null)",
CudaBlocksPerGrid, CudaThreadsPerBlock,
(KernelInfo->ExecutionMode == SPMD) ? "SPMD" : "Generic");
CUstream Stream = getStream(DeviceId, AsyncInfo);
Err = cuLaunchKernel(KernelInfo->Func, CudaBlocksPerGrid, /* gridDimY */ 1,
/* gridDimZ */ 1, CudaThreadsPerBlock,
/* blockDimY */ 1, /* blockDimZ */ 1,
/* sharedMemBytes */ 0, Stream, &Args[0], nullptr);
if (!checkResult(Err, "Error returned from cuLaunchKernel\n"))
return OFFLOAD_FAIL;
DP("Launch of entry point at " DPxMOD " successful!\n",
DPxPTR(TgtEntryPtr));
return OFFLOAD_SUCCESS;
}
int synchronize(const int DeviceId, __tgt_async_info *AsyncInfoPtr) const {
CUstream Stream = reinterpret_cast<CUstream>(AsyncInfoPtr->Queue);
CUresult Err = cuStreamSynchronize(Stream);
if (Err != CUDA_SUCCESS) {
DP("Error when synchronizing stream. stream = " DPxMOD
", async info ptr = " DPxMOD "\n",
DPxPTR(Stream), DPxPTR(AsyncInfoPtr));
CUDA_ERR_STRING(Err);
return OFFLOAD_FAIL;
}
// Once the stream is synchronized, return it to stream pool and reset
// async_info. This is to make sure the synchronization only works for its
// own tasks.
StreamManager->returnStream(
DeviceId, reinterpret_cast<CUstream>(AsyncInfoPtr->Queue));
AsyncInfoPtr->Queue = nullptr;
return OFFLOAD_SUCCESS;
}
};
DeviceRTLTy DeviceRTL;
} // namespace
// Exposed library API function
#ifdef __cplusplus
extern "C" {
#endif
int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) {
return elf_check_machine(image, /* EM_CUDA */ 190);
}
int32_t __tgt_rtl_number_of_devices() { return DeviceRTL.getNumOfDevices(); }
int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) {
DP("Init requires flags to %" PRId64 "\n", RequiresFlags);
DeviceRTL.setRequiresFlag(RequiresFlags);
return RequiresFlags;
}
int32_t __tgt_rtl_is_data_exchangable(int32_t src_dev_id, int dst_dev_id) {
if (DeviceRTL.isValidDeviceId(src_dev_id) &&
DeviceRTL.isValidDeviceId(dst_dev_id))
return 1;
return 0;
}
int32_t __tgt_rtl_init_device(int32_t device_id) {
assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
return DeviceRTL.initDevice(device_id);
}
__tgt_target_table *__tgt_rtl_load_binary(int32_t device_id,
__tgt_device_image *image) {
assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
return DeviceRTL.loadBinary(device_id, image);
}
void *__tgt_rtl_data_alloc(int32_t device_id, int64_t size, void *) {
assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
return DeviceRTL.dataAlloc(device_id, size);
}
int32_t __tgt_rtl_data_submit(int32_t device_id, void *tgt_ptr, void *hst_ptr,
int64_t size) {
assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
__tgt_async_info async_info;
const int32_t rc = __tgt_rtl_data_submit_async(device_id, tgt_ptr, hst_ptr,
size, &async_info);
if (rc != OFFLOAD_SUCCESS)
return OFFLOAD_FAIL;
return __tgt_rtl_synchronize(device_id, &async_info);
}
int32_t __tgt_rtl_data_submit_async(int32_t device_id, void *tgt_ptr,
void *hst_ptr, int64_t size,
__tgt_async_info *async_info_ptr) {
assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
assert(async_info_ptr && "async_info_ptr is nullptr");
return DeviceRTL.dataSubmit(device_id, tgt_ptr, hst_ptr, size,
async_info_ptr);
}
int32_t __tgt_rtl_data_retrieve(int32_t device_id, void *hst_ptr, void *tgt_ptr,
int64_t size) {
assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
__tgt_async_info async_info;
const int32_t rc = __tgt_rtl_data_retrieve_async(device_id, hst_ptr, tgt_ptr,
size, &async_info);
if (rc != OFFLOAD_SUCCESS)
return OFFLOAD_FAIL;
return __tgt_rtl_synchronize(device_id, &async_info);
}
int32_t __tgt_rtl_data_retrieve_async(int32_t device_id, void *hst_ptr,
void *tgt_ptr, int64_t size,
__tgt_async_info *async_info_ptr) {
assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
assert(async_info_ptr && "async_info_ptr is nullptr");
return DeviceRTL.dataRetrieve(device_id, hst_ptr, tgt_ptr, size,
async_info_ptr);
}
int32_t __tgt_rtl_data_exchange_async(int32_t src_dev_id, void *src_ptr,
int dst_dev_id, void *dst_ptr,
int64_t size,
__tgt_async_info *async_info_ptr) {
assert(DeviceRTL.isValidDeviceId(src_dev_id) && "src_dev_id is invalid");
assert(DeviceRTL.isValidDeviceId(dst_dev_id) && "dst_dev_id is invalid");
assert(async_info_ptr && "async_info_ptr is nullptr");
return DeviceRTL.dataExchange(src_dev_id, src_ptr, dst_dev_id, dst_ptr, size,
async_info_ptr);
}
int32_t __tgt_rtl_data_exchange(int32_t src_dev_id, void *src_ptr,
int32_t dst_dev_id, void *dst_ptr,
int64_t size) {
assert(DeviceRTL.isValidDeviceId(src_dev_id) && "src_dev_id is invalid");
assert(DeviceRTL.isValidDeviceId(dst_dev_id) && "dst_dev_id is invalid");
__tgt_async_info async_info;
const int32_t rc = __tgt_rtl_data_exchange_async(
src_dev_id, src_ptr, dst_dev_id, dst_ptr, size, &async_info);
if (rc != OFFLOAD_SUCCESS)
return OFFLOAD_FAIL;
return __tgt_rtl_synchronize(src_dev_id, &async_info);
}
int32_t __tgt_rtl_data_delete(int32_t device_id, void *tgt_ptr) {
assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
return DeviceRTL.dataDelete(device_id, tgt_ptr);
}
int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr,
void **tgt_args,
ptrdiff_t *tgt_offsets,
int32_t arg_num, int32_t team_num,
int32_t thread_limit,
uint64_t loop_tripcount) {
assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
__tgt_async_info async_info;
const int32_t rc = __tgt_rtl_run_target_team_region_async(
device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, team_num,
thread_limit, loop_tripcount, &async_info);
if (rc != OFFLOAD_SUCCESS)
return OFFLOAD_FAIL;
return __tgt_rtl_synchronize(device_id, &async_info);
}
int32_t __tgt_rtl_run_target_team_region_async(
int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t team_num,
int32_t thread_limit, uint64_t loop_tripcount,
__tgt_async_info *async_info_ptr) {
assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
return DeviceRTL.runTargetTeamRegion(
device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, team_num,
thread_limit, loop_tripcount, async_info_ptr);
}
int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr,
void **tgt_args, ptrdiff_t *tgt_offsets,
int32_t arg_num) {
assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
__tgt_async_info async_info;
const int32_t rc = __tgt_rtl_run_target_region_async(
device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, &async_info);
if (rc != OFFLOAD_SUCCESS)
return OFFLOAD_FAIL;
return __tgt_rtl_synchronize(device_id, &async_info);
}
int32_t __tgt_rtl_run_target_region_async(int32_t device_id,
void *tgt_entry_ptr, void **tgt_args,
ptrdiff_t *tgt_offsets,
int32_t arg_num,
__tgt_async_info *async_info_ptr) {
assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
return __tgt_rtl_run_target_team_region_async(
device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num,
/* team num*/ 1, /* thread_limit */ 1, /* loop_tripcount */ 0,
async_info_ptr);
}
int32_t __tgt_rtl_synchronize(int32_t device_id,
__tgt_async_info *async_info_ptr) {
assert(DeviceRTL.isValidDeviceId(device_id) && "device_id is invalid");
assert(async_info_ptr && "async_info_ptr is nullptr");
assert(async_info_ptr->Queue && "async_info_ptr->Queue is nullptr");
return DeviceRTL.synchronize(device_id, async_info_ptr);
}
#ifdef __cplusplus
}
#endif