mlir-linalg-ods-gen.cpp
60 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
//===- mlir-linalg-ods-gen.cpp - Linalg ODS generation from math form -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation for the Tensor Comprehension-inspired
// parser and ODS pretty-printer for specifying Linalg "named ops" from a
// mathematical form.
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/Support/FileUtilities.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ToolOutputFile.h"
#define DEBUG_TYPE "linalg-ods-gen"
static llvm::cl::OptionCategory ODSGenCat("Linalg ODS Gen");
// Commandline options
static llvm::cl::opt<std::string>
inputFilename(llvm::cl::Positional, llvm::cl::desc("<input file>"),
llvm::cl::init("-"), llvm::cl::value_desc("filename"));
static llvm::cl::opt<std::string>
outputFilename("o", llvm::cl::desc("Output filename"),
llvm::cl::value_desc("filename"), llvm::cl::init("-"));
static llvm::cl::opt<bool>
genODSDecl("gen-ods-decl", llvm::cl::desc("Emit the ODS ops declarations."),
llvm::cl::cat(ODSGenCat));
static llvm::cl::opt<bool>
genODSImpl("gen-impl", llvm::cl::desc("Emit the ops implementations"),
llvm::cl::init(false), llvm::cl::cat(ODSGenCat));
static llvm::cl::opt<bool> testEmitIncludeTdHeader(
"test-emit-include-td-header",
llvm::cl::desc("Include LinalgStructuredOps.td for end-to-end "
"tblgen testing."),
llvm::cl::init(false), llvm::cl::cat(ODSGenCat));
using llvm::SetVector;
using llvm::SMLoc;
using llvm::StringRef;
using llvm::Twine;
using namespace mlir;
//===----------------------------------------------------------------------===//
// Lexer
//===----------------------------------------------------------------------===//
namespace {
/// This class represents a specific token in the input format.
class Token {
public:
enum class Kind {
// Markers.
eof,
error,
// Tokens with no info.
colon,
comma,
equal,
gt,
l_brace,
l_paren,
lt,
minus,
plus,
r_brace,
r_paren,
semicolon,
star,
// Keywords.
kw_def,
FIRST_KEYWORD = kw_def,
kw_ods_def,
kw_floordiv,
kw_ceildiv,
kw_mod,
LAST_KEYWORD = kw_mod,
// String valued tokens.
id,
integer,
};
Token(Kind kind, StringRef spelling) : kind(kind), spelling(spelling) {}
/// Return the bytes that make up this token.
StringRef getSpelling() const { return spelling; }
/// Return the kind of this token.
Kind getKind() const { return kind; }
/// Return a location for this token.
llvm::SMLoc getLoc() const {
return llvm::SMLoc::getFromPointer(spelling.data());
}
/// Return if this token is a keyword.
bool isKeyword() const {
return kind >= Kind::FIRST_KEYWORD && kind <= Kind::LAST_KEYWORD;
}
bool is(Kind k) const { return kind == k; }
bool isNot(Kind k) const { return kind != k; }
Optional<uint64_t> getUInt64IntegerValue() const {
bool isHex = spelling.size() > 1 && spelling[1] == 'x';
uint64_t result = 0;
if (spelling.getAsInteger(isHex ? 0 : 10, result))
return None;
return result;
}
private:
/// Discriminator that indicates the kind of token this is.
Kind kind;
/// A reference to the entire token contents; this is always a pointer into
/// a memory buffer owned by the source manager.
StringRef spelling;
};
/// This class implements a simple lexer.
class Lexer {
public:
Lexer(llvm::SourceMgr &mgr);
/// Lex the next token and return it.
Token lexToken();
/// Emit an error to the lexer with the given location and message.
Token emitError(llvm::SMLoc loc, const Twine &msg);
Token emitError(const char *loc, const Twine &msg);
private:
Token formToken(Token::Kind kind, const char *tokStart) {
return Token(kind, StringRef(tokStart, curPtr - tokStart));
}
/// Return the next character in the stream.
int getNextChar();
/// Lex an identifier.
Token lexIdentifier(const char *tokStart);
// Lex an integer.
Token lexInteger(const char *tokStart);
// Skip a comment line, starting with a '//'.
void skipComment();
llvm::SourceMgr &srcMgr;
StringRef curBuffer;
const char *curPtr;
};
} // end anonymous namespace
Lexer::Lexer(llvm::SourceMgr &mgr) : srcMgr(mgr) {
curBuffer = srcMgr.getMemoryBuffer(mgr.getMainFileID())->getBuffer();
curPtr = curBuffer.begin();
}
Token Lexer::emitError(llvm::SMLoc loc, const Twine &msg) {
srcMgr.PrintMessage(loc, llvm::SourceMgr::DK_Error, msg);
return formToken(Token::Kind::error, loc.getPointer());
}
Token Lexer::emitError(const char *loc, const Twine &msg) {
return emitError(llvm::SMLoc::getFromPointer(loc), msg);
}
int Lexer::getNextChar() {
char curChar = *curPtr++;
switch (curChar) {
default:
return (unsigned char)curChar;
case 0: {
// A nul character in the stream is either the end of the current buffer
// or a random nul in the file. Disambiguate that here.
if (curPtr - 1 != curBuffer.end())
return 0;
// Otherwise, return end of file.
--curPtr;
return EOF;
}
case '\n':
case '\r':
// Handle the newline character by ignoring it and incrementing the line
// count. However, be careful about 'dos style' files with \n\r in them.
// Only treat a \n\r or \r\n as a single line.
if ((*curPtr == '\n' || (*curPtr == '\r')) && *curPtr != curChar)
++curPtr;
return '\n';
}
}
Token Lexer::lexToken() {
while (true) {
const char *tokStart = curPtr;
// This always consumes at least one character.
int curChar = getNextChar();
switch (curChar) {
default:
// Handle identifiers: [a-zA-Z_]
if (isalpha(curChar) || curChar == '_')
return lexIdentifier(tokStart);
// Handle integers: [0-9]
if (isdigit(curChar))
return lexInteger(tokStart);
// Unknown character, emit an error.
return emitError(tokStart, "unexpected character");
case EOF:
// Return EOF denoting the end of lexing.
return formToken(Token::Kind::eof, tokStart);
// Lex punctuation.
case ':':
return formToken(Token::Kind::colon, tokStart);
case ',':
return formToken(Token::Kind::comma, tokStart);
case '=':
return formToken(Token::Kind::equal, tokStart);
case '{':
return formToken(Token::Kind::l_brace, tokStart);
case '(':
return formToken(Token::Kind::l_paren, tokStart);
case '}':
return formToken(Token::Kind::r_brace, tokStart);
case ')':
return formToken(Token::Kind::r_paren, tokStart);
case '<':
return formToken(Token::Kind::lt, tokStart);
case '>':
return formToken(Token::Kind::gt, tokStart);
case '+':
return formToken(Token::Kind::plus, tokStart);
case '-':
return formToken(Token::Kind::minus, tokStart);
case ';':
return formToken(Token::Kind::semicolon, tokStart);
case '*':
return formToken(Token::Kind::star, tokStart);
case '/':
if (*curPtr == '/') {
skipComment();
continue;
}
// Unknown character, emit an error.
return emitError(tokStart, "unexpected character: not a comment");
// Ignore whitespace characters.
case 0:
case ' ':
case '\t':
case '\n':
return lexToken();
}
}
}
Token Lexer::lexIdentifier(const char *tokStart) {
// Match the rest of the identifier regex: [0-9a-zA-Z_\-]*
while (isalnum(*curPtr) || *curPtr == '_' || *curPtr == '-')
++curPtr;
// Check to see if this identifier is a keyword.
StringRef str(tokStart, curPtr - tokStart);
Token::Kind kind = llvm::StringSwitch<Token::Kind>(str)
.Case("def", Token::Kind::kw_def)
.Case("ods_def", Token::Kind::kw_ods_def)
.Case("floordiv", Token::Kind::kw_floordiv)
.Case("ceildiv", Token::Kind::kw_ceildiv)
.Case("mod", Token::Kind::kw_mod)
.Default(Token::Kind::id);
return Token(kind, str);
}
Token Lexer::lexInteger(const char *tokStart) {
// Match the rest of the identifier regex: [0-9a-zA-Z_\-]*
while (isdigit(*curPtr))
++curPtr;
StringRef str(tokStart, curPtr - tokStart);
return Token(Token::Kind::integer, str);
}
/// Skip a comment line, starting with a '//'.
void Lexer::skipComment() {
// Advance over the second '/' in a '//' comment.
assert(*curPtr == '/');
++curPtr;
while (true) {
switch (*curPtr++) {
case '\n':
case '\r':
// Newline is end of comment.
return;
case 0:
// If this is the end of the buffer, end the comment.
if (curPtr - 1 == curBuffer.end()) {
--curPtr;
return;
}
LLVM_FALLTHROUGH;
default:
// Skip over other characters.
break;
}
}
}
namespace {
class Parser {
public:
Parser(llvm::SourceMgr &mgr, MLIRContext *ctx)
: lexer(mgr), curToken(lexer.lexToken()), context(ctx) {}
//===--------------------------------------------------------------------===//
// Lexer Utilities
//===--------------------------------------------------------------------===//
/// Advance the current lexer onto the next token.
void consumeToken() {
assert(curToken.getKind() != Token::Kind::eof &&
curToken.getKind() != Token::Kind::error &&
"shouldn't advance past EOF or errors");
curToken = lexer.lexToken();
}
void consumeToken(Token::Kind kind) {
assert(curToken.getKind() == kind && "unexpected token");
curToken = lexer.lexToken();
}
LogicalResult parseToken(Token::Kind kind, const Twine &msg) {
if (curToken.getKind() != kind)
return emitError(curToken.getLoc(), msg);
consumeToken();
return success();
}
LogicalResult emitError(llvm::SMLoc loc, const Twine &msg) {
lexer.emitError(loc, msg);
return failure();
}
LogicalResult emitError(const Twine &msg) {
return emitError(curToken.getLoc(), msg);
}
bool consumeIf(Token::Kind kind) {
if (curToken.isNot(kind))
return false;
consumeToken(kind);
return true;
}
LogicalResult
parseCommaSeparatedList(llvm::function_ref<ParseResult()> parseElement) {
// Non-empty case starts with an element.
if (parseElement())
return failure();
// Otherwise we have a list of comma separated elements.
while (consumeIf(Token::Kind::comma)) {
if (parseElement())
return failure();
}
return success();
}
LogicalResult
parseCommaSeparatedListUntil(Token::Kind rightToken,
llvm::function_ref<ParseResult()> parseElement,
bool allowEmptyList) {
// Handle the empty case.
if (curToken.is(rightToken)) {
if (!allowEmptyList)
return emitError("expected list element");
consumeToken(rightToken);
return success();
}
if (failed(parseCommaSeparatedList(parseElement)) ||
failed(
parseToken(rightToken, "expected ',' or right-terminating token")))
return failure();
return success();
}
Lexer lexer;
Token curToken;
MLIRContext *context;
};
} // namespace
//===----------------------------------------------------------------------===//
// Affine parsing.
//===----------------------------------------------------------------------===//
namespace {
/// Lower precedence ops (all at the same precedence level). LNoOp is false in
/// the boolean sense.
enum AffineLowPrecOp {
/// Null value.
LNoOp,
Add,
Sub
};
/// Higher precedence ops - all at the same precedence level. HNoOp is false
/// in the boolean sense.
enum AffineHighPrecOp {
/// Null value.
HNoOp,
Mul,
FloorDiv,
CeilDiv,
Mod
};
using AffineDimList = SmallVector<std::pair<StringRef, AffineExpr>, 4>;
using AffineSymbolList = SmallVector<std::pair<StringRef, AffineExpr>, 4>;
/// This is a specialized parser for affine expressions.
class AffineParser {
public:
explicit AffineParser(Parser &p,
std::function<AffineExpr(StringRef)> bareIdParsingHook,
AffineDimList &dimList, AffineSymbolList &symbolList)
: parser(p), bareIdFallback(bareIdParsingHook), dims(dimList),
symbols(symbolList) {}
/// Parse a comma-separated list of affine exprs.
SmallVector<AffineExpr, 4>
parseAffineExprs(Token::Kind lDelim = Token::Kind::l_paren,
Token::Kind rDelim = Token::Kind::r_paren);
/// Parse a single affine expr.`.
AffineExpr parseAffineExpr();
private:
// Binary affine op parsing.
AffineLowPrecOp consumeIfLowPrecOp();
AffineHighPrecOp consumeIfHighPrecOp();
// AffineExpr parsing.
AffineExpr parseParentheticalExpr();
AffineExpr parseNegateExpression(AffineExpr lhs);
AffineExpr parseIntegerExpr();
AffineExpr parseBareIdExpr();
AffineExpr getAffineBinaryOpExpr(AffineHighPrecOp op, AffineExpr lhs,
AffineExpr rhs, SMLoc opLoc);
AffineExpr getAffineBinaryOpExpr(AffineLowPrecOp op, AffineExpr lhs,
AffineExpr rhs);
AffineExpr parseAffineOperandExpr(AffineExpr lhs);
AffineExpr parseAffineLowPrecOpExpr(AffineExpr llhs, AffineLowPrecOp llhsOp);
AffineExpr parseAffineHighPrecOpExpr(AffineExpr llhs, AffineHighPrecOp llhsOp,
SMLoc llhsOpLoc);
Parser &parser;
std::function<AffineExpr(StringRef)> bareIdFallback;
AffineDimList &dims;
AffineSymbolList &symbols;
};
} // end anonymous namespace
/// Create an affine binary high precedence op expression (mul's, div's, mod).
/// opLoc is the location of the op token to be used to report errors
/// for non-conforming expressions.
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineHighPrecOp op,
AffineExpr lhs, AffineExpr rhs,
SMLoc opLoc) {
switch (op) {
case Mul:
if (!lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant()) {
parser.emitError(opLoc,
"non-affine expression: at least one of the multiply "
"operands has to be either a constant or symbolic");
return nullptr;
}
return lhs * rhs;
case FloorDiv:
if (!rhs.isSymbolicOrConstant()) {
parser.emitError(opLoc,
"non-affine expression: right operand of floordiv "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs.floorDiv(rhs);
case CeilDiv:
if (!rhs.isSymbolicOrConstant()) {
parser.emitError(opLoc, "non-affine expression: right operand of ceildiv "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs.ceilDiv(rhs);
case Mod:
if (!rhs.isSymbolicOrConstant()) {
parser.emitError(opLoc, "non-affine expression: right operand of mod "
"has to be either a constant or symbolic");
return nullptr;
}
return lhs % rhs;
case HNoOp:
llvm_unreachable("can't create affine expression for null high prec op");
return nullptr;
}
llvm_unreachable("Unknown AffineHighPrecOp");
}
/// Create an affine binary low precedence op expression (add, sub).
AffineExpr AffineParser::getAffineBinaryOpExpr(AffineLowPrecOp op,
AffineExpr lhs, AffineExpr rhs) {
switch (op) {
case AffineLowPrecOp::Add:
return lhs + rhs;
case AffineLowPrecOp::Sub:
return lhs - rhs;
case AffineLowPrecOp::LNoOp:
llvm_unreachable("can't create affine expression for null low prec op");
return nullptr;
}
llvm_unreachable("Unknown AffineLowPrecOp");
}
/// Consume this token if it is a lower precedence affine op (there are only
/// two precedence levels).
AffineLowPrecOp AffineParser::consumeIfLowPrecOp() {
switch (parser.curToken.getKind()) {
case Token::Kind::plus:
parser.consumeToken();
return AffineLowPrecOp::Add;
case Token::Kind::minus:
parser.consumeToken();
return AffineLowPrecOp::Sub;
default:
return AffineLowPrecOp::LNoOp;
}
}
/// Consume this token if it is a higher precedence affine op (there are only
/// two precedence levels)
AffineHighPrecOp AffineParser::consumeIfHighPrecOp() {
switch (parser.curToken.getKind()) {
case Token::Kind::star:
parser.consumeToken(Token::Kind::star);
return Mul;
case Token::Kind::kw_floordiv:
parser.consumeToken(Token::Kind::kw_floordiv);
return FloorDiv;
case Token::Kind::kw_ceildiv:
parser.consumeToken(Token::Kind::kw_ceildiv);
return CeilDiv;
case Token::Kind::kw_mod:
parser.consumeToken(Token::Kind::kw_mod);
return Mod;
default:
return HNoOp;
}
}
/// Parse a high precedence op expression list: mul, div, and mod are high
/// precedence binary ops, i.e., parse a
/// expr_1 op_1 expr_2 op_2 ... expr_n
/// where op_1, op_2 are all a AffineHighPrecOp (mul, div, mod).
/// All affine binary ops are left associative.
/// Given llhs, returns (llhs llhsOp lhs) op rhs, or (lhs op rhs) if llhs is
/// null. If no rhs can be found, returns (llhs llhsOp lhs) or lhs if llhs is
/// null. llhsOpLoc is the location of the llhsOp token that will be used to
/// report an error for non-conforming expressions.
AffineExpr AffineParser::parseAffineHighPrecOpExpr(AffineExpr llhs,
AffineHighPrecOp llhsOp,
SMLoc llhsOpLoc) {
AffineExpr lhs = parseAffineOperandExpr(llhs);
if (!lhs)
return nullptr;
// Found an LHS. Parse the remaining expression.
auto opLoc = parser.curToken.getLoc();
if (AffineHighPrecOp op = consumeIfHighPrecOp()) {
if (llhs) {
AffineExpr expr = getAffineBinaryOpExpr(llhsOp, llhs, lhs, opLoc);
if (!expr)
return nullptr;
return parseAffineHighPrecOpExpr(expr, op, opLoc);
}
// No LLHS, get RHS
return parseAffineHighPrecOpExpr(lhs, op, opLoc);
}
// This is the last operand in this expression.
if (llhs)
return getAffineBinaryOpExpr(llhsOp, llhs, lhs, llhsOpLoc);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression inside parentheses.
///
/// affine-expr ::= `(` affine-expr `)`
AffineExpr AffineParser::parseParentheticalExpr() {
if (failed(parser.parseToken(Token::Kind::l_paren, "expected '('")))
return nullptr;
if (parser.curToken.is(Token::Kind::r_paren))
return (parser.emitError("no expression inside parentheses"), nullptr);
auto expr = parseAffineExpr();
if (!expr)
return nullptr;
if (failed(parser.parseToken(Token::Kind::r_paren, "expected ')'")))
return nullptr;
return expr;
}
/// Parse the negation expression.
///
/// affine-expr ::= `-` affine-expr
AffineExpr AffineParser::parseNegateExpression(AffineExpr lhs) {
if (failed(parser.parseToken(Token::Kind::minus, "expected '-'")))
return nullptr;
AffineExpr operand = parseAffineOperandExpr(lhs);
// Since negation has the highest precedence of all ops (including high
// precedence ops) but lower than parentheses, we are only going to use
// parseAffineOperandExpr instead of parseAffineExpr here.
if (!operand)
// Extra error message although parseAffineOperandExpr would have
// complained. Leads to a better diagnostic.
return (parser.emitError("missing operand of negation"), nullptr);
return (-1) * operand;
}
/// Parse a bare id that may appear in an affine expression.
///
/// affine-expr ::= bare-id
AffineExpr AffineParser::parseBareIdExpr() {
if (parser.curToken.isNot(Token::Kind::id))
return (parser.emitError("expected id"), nullptr);
StringRef sRef = parser.curToken.getSpelling();
for (auto &list : {dims, symbols}) {
for (auto entry : list) {
if (entry.first == sRef) {
parser.consumeToken(Token::Kind::id);
return entry.second;
}
}
}
// Not found, check fallback path.
AffineExpr expr = bareIdFallback(sRef);
if (expr) {
parser.consumeToken(Token::Kind::id);
return expr;
}
return (parser.emitError("use of undeclared id"), nullptr);
}
/// Parse a positive integral constant appearing in an affine expression.
///
/// affine-expr ::= integer-literal
AffineExpr AffineParser::parseIntegerExpr() {
auto val = parser.curToken.getUInt64IntegerValue();
if (!val.hasValue() || (int64_t)val.getValue() < 0)
return (parser.emitError("constant too large for index"), nullptr);
parser.consumeToken(Token::Kind::integer);
return getAffineConstantExpr((int64_t)val.getValue(), parser.context);
}
/// Parses an expression that can be a valid operand of an affine expression.
/// lhs: if non-null, lhs is an affine expression that is the lhs of a binary
/// operator, the rhs of which is being parsed. This is used to determine
/// whether an error should be emitted for a missing right operand.
// Eg: for an expression without parentheses (like i + j + k + l), each
// of the four identifiers is an operand. For i + j*k + l, j*k is not an
// operand expression, it's an op expression and will be parsed via
// parseAffineHighPrecOpExpression(). However, for i + (j*k) + -l, (j*k) and
// -l are valid operands that will be parsed by this function.
AffineExpr AffineParser::parseAffineOperandExpr(AffineExpr lhs) {
switch (parser.curToken.getKind()) {
case Token::Kind::id:
return parseBareIdExpr();
case Token::Kind::integer:
return parseIntegerExpr();
case Token::Kind::l_paren:
return parseParentheticalExpr();
case Token::Kind::minus:
return parseNegateExpression(lhs);
case Token::Kind::kw_ceildiv:
case Token::Kind::kw_floordiv:
case Token::Kind::kw_mod:
case Token::Kind::plus:
case Token::Kind::star:
if (lhs)
parser.emitError("missing right operand of binary operator");
else
parser.emitError("missing left operand of binary operator");
return nullptr;
default:
if (lhs)
parser.emitError("missing right operand of binary operator");
else
parser.emitError("expected affine expression");
return nullptr;
}
}
/// Parse affine expressions that are bare-id's, integer constants,
/// parenthetical affine expressions, and affine op expressions that are a
/// composition of those.
///
/// All binary op's associate from left to right.
///
/// {add, sub} have lower precedence than {mul, div, and mod}.
///
/// Add, sub'are themselves at the same precedence level. Mul, floordiv,
/// ceildiv, and mod are at the same higher precedence level. Negation has
/// higher precedence than any binary op.
///
/// llhs: the affine expression appearing on the left of the one being parsed.
/// This function will return ((llhs llhsOp lhs) op rhs) if llhs is non null,
/// and lhs op rhs otherwise; if there is no rhs, llhs llhsOp lhs is returned
/// if llhs is non-null; otherwise lhs is returned. This is to deal with left
/// associativity.
///
/// Eg: when the expression is e1 + e2*e3 + e4, with e1 as llhs, this function
/// will return the affine expr equivalent of (e1 + (e2*e3)) + e4, where
/// (e2*e3) will be parsed using parseAffineHighPrecOpExpr().
AffineExpr AffineParser::parseAffineLowPrecOpExpr(AffineExpr llhs,
AffineLowPrecOp llhsOp) {
AffineExpr lhs;
if (!(lhs = parseAffineOperandExpr(llhs)))
return nullptr;
// Found an LHS. Deal with the ops.
if (AffineLowPrecOp lOp = consumeIfLowPrecOp()) {
if (llhs) {
AffineExpr sum = getAffineBinaryOpExpr(llhsOp, llhs, lhs);
return parseAffineLowPrecOpExpr(sum, lOp);
}
// No LLHS, get RHS and form the expression.
return parseAffineLowPrecOpExpr(lhs, lOp);
}
auto opLoc = parser.curToken.getLoc();
if (AffineHighPrecOp hOp = consumeIfHighPrecOp()) {
// We have a higher precedence op here. Get the rhs operand for the llhs
// through parseAffineHighPrecOpExpr.
AffineExpr highRes = parseAffineHighPrecOpExpr(lhs, hOp, opLoc);
if (!highRes)
return nullptr;
// If llhs is null, the product forms the first operand of the yet to be
// found expression. If non-null, the op to associate with llhs is llhsOp.
AffineExpr expr =
llhs ? getAffineBinaryOpExpr(llhsOp, llhs, highRes) : highRes;
// Recurse for subsequent low prec op's after the affine high prec op
// expression.
if (AffineLowPrecOp nextOp = consumeIfLowPrecOp())
return parseAffineLowPrecOpExpr(expr, nextOp);
return expr;
}
// Last operand in the expression list.
if (llhs)
return getAffineBinaryOpExpr(llhsOp, llhs, lhs);
// No llhs, 'lhs' itself is the expression.
return lhs;
}
/// Parse an affine expression.
/// affine-expr ::= `(` affine-expr `)`
/// | `-` affine-expr
/// | affine-expr `+` affine-expr
/// | affine-expr `-` affine-expr
/// | affine-expr `*` affine-expr
/// | affine-expr `floordiv` affine-expr
/// | affine-expr `ceildiv` affine-expr
/// | affine-expr `mod` affine-expr
/// | bare-id
/// | integer-literal
///
/// Additional conditions are checked depending on the production. For eg.,
/// one of the operands for `*` has to be either constant/symbolic; the second
/// operand for floordiv, ceildiv, and mod has to be a positive integer.
AffineExpr AffineParser::parseAffineExpr() {
return parseAffineLowPrecOpExpr(nullptr, AffineLowPrecOp::LNoOp);
}
SmallVector<AffineExpr, 4> AffineParser::parseAffineExprs(Token::Kind lDelim,
Token::Kind rDelim) {
parser.parseToken(lDelim, "expected lDelim at start of affine expr list");
SmallVector<AffineExpr, 4> exprs;
auto parseElt = [&]() -> LogicalResult {
auto elt = parseAffineExpr();
exprs.push_back(elt);
return elt ? success() : failure();
};
if (failed(parser.parseCommaSeparatedListUntil(rDelim, parseElt,
/*allowEmptyList=*/true)))
llvm_unreachable("Failed AffineExpr parsing");
return exprs;
}
//===----------------------------------------------------------------------===//
// TC parsing.
//===----------------------------------------------------------------------===//
namespace {
/// Base class for expressions involved in TC parsing.
struct Expression {
enum class Kind {
Uninitialized = 0,
TensorExpr = 1,
TensorUse = 2,
};
explicit Expression(Kind k = Kind::Uninitialized) : kind(k) {}
virtual ~Expression() = default;
operator bool() const { return kind != Kind::Uninitialized; }
Kind kind;
};
/// Encodes a tensor use of the form:
///
/// affine-expr-list ::= affine-expr (`,` affine-expr)*
/// tensor-use ::= bare-id `(` `)`
/// | bare-id `(` affine-expr-list `)`
///
/// The affine-expr-list is stored as an AffineMap.
struct TensorUse : public Expression {
TensorUse() : TensorUse("", AffineMap()) {}
TensorUse(StringRef name, AffineMap map)
: Expression(Kind::TensorUse), tensorId(name), indexingMap(map) {}
TensorUse(const TensorUse &use) = default;
static bool classof(const Expression *e) {
return e->kind == Kind::TensorUse;
}
bool operator==(const TensorUse &other) const {
return tensorId == other.tensorId && indexingMap == other.indexingMap;
}
/// Visitation function. Performs preorder or postorder traversal depending on
/// `PreOrder` and applies `callback` on each node.
template <typename Lambda, bool PreOrder>
void visit(Lambda callback) const;
StringRef tensorId;
AffineMap indexingMap;
};
/// Encodes a tensor expression of the form:
///
/// op-spec ::= bare-id `<` reduction-dims-list `>`
/// | bare-id
/// op-arg ::= tensor-expr
/// | tensor-use
/// op-arg-list ::= op-arg (`,` op-arg)*
/// tensor-expr ::= op-spec `(` op-arg-list `)`
///
/// Underlying op-arg are stored by unique_ptr to base class.
struct TensorExpr : public Expression {
TensorExpr(StringRef name,
SmallVectorImpl<std::unique_ptr<Expression>> &&exprs,
ArrayRef<unsigned> reductionDims)
: Expression(Kind::TensorExpr), operationName(name),
expressions(std::move(exprs)),
reductionDimensions(reductionDims.begin(), reductionDims.end()) {}
static bool classof(const Expression *e) {
return e->kind == Kind::TensorExpr;
}
bool operator==(const TensorExpr &other) const {
if (operationName != other.operationName)
return false;
if (expressions.size() != other.expressions.size())
return false;
for (unsigned i = 0, e = expressions.size(); i < e; ++i)
if (*expressions[i] != *other.expressions[i])
return false;
for (unsigned i = 0, e = reductionDimensions.size(); i < e; ++i)
if (reductionDimensions[i] != other.reductionDimensions[i])
return false;
return true;
}
/// Visitation function. Performs preorder or postorder traversal depending on
/// `PreOrder` and applies `callback` on each node.
template <typename Lambda, bool PreOrder>
void visit(Lambda callback) const;
StringRef operationName;
SmallVector<std::unique_ptr<Expression>, 4> expressions;
SetVector<unsigned> reductionDimensions;
};
/// This is a specialized parser for a TCDef.
/// This maintains the dims it finds in an eager fashion.
class TCParser {
enum class EagerDiscoveryMode { None = 0, Symbols, Dimensions };
public:
explicit TCParser(Parser &p);
/// Uses the AffineParser to parse the affine exprs used in a tensor
/// definition. If `discoveryMode` is set to Symbols (resp. Dimensions), new
/// symbols (resp. dimensions) are added eagerly. Otherwise, an error is
/// emitted on new identifiers.
SmallVector<AffineExpr, 4>
parseAffineExprs(EagerDiscoveryMode discoveryMode, AffineDimList &dims,
Token::Kind lDelim = Token::Kind::l_paren,
Token::Kind rDelim = Token::Kind::r_paren);
/// Parse the information for a tensor def.
/// All the affine-expr must be dimensionless (i.e. contain only expressions
/// involving symbols and constants), but can otherwise contain arbitrary
/// affine expressions.
LogicalResult parseTensorDef(bool isOutput);
/// Parses a tensor use.
struct ComprehensionParsingState {
AffineDimList dims;
SmallVector<std::unique_ptr<Expression>, 4> expressions;
llvm::DenseMap<TensorUse, unsigned> orderedTensorArgs;
};
LogicalResult parseTensorUse(TensorUse &result,
ComprehensionParsingState &state);
/// Parses a tensor expression.
LogicalResult parseExpression(TensorUse currentDefinition,
std::unique_ptr<Expression> &result,
ComprehensionParsingState &state);
/// Parse a single comprehension.
LogicalResult parseOneComprehension(StringRef cppOpName,
StringRef linalgOpName,
ComprehensionParsingState &state);
/// Parse and print the information for a TC def.
/// When `gen-ods-decl` is used, this prints the ODS declaration for the TC.
/// When `gen-impl` is used, this prints the C++ implementation for the extra
/// methods defined in ODS (`iterator_types`, `indexing_maps` and
/// `regionBuilder`).
LogicalResult parseAndEmitODSDef(llvm::raw_ostream &os);
/// Print the ODS class that defines a new `cppOpName` for a `linalgOpName`.
void printODS(llvm::raw_ostream &os, StringRef cppOpName,
StringRef linalgOpName, ComprehensionParsingState &state);
/// Print the C++ StructuredOpsInterface impl of `iterator_types`.
void printReferenceIterators(llvm::raw_ostream &os, StringRef cppOpName,
ComprehensionParsingState &state);
/// Print the C++ StructuredOpsInterface impl of `indexing_maps`.
void printReferenceIndexingMaps(llvm::raw_ostream &os, StringRef cppOpName,
ComprehensionParsingState &state);
/// Print the C++ StructuredOpsInterface impl of `regionBuilder`.
void printRegionBuilder(llvm::raw_ostream &os, StringRef cppOpName,
ComprehensionParsingState &state);
private:
//===--------------------------------------------------------------------===//
// Internal bookkeeping of tensors.
//===--------------------------------------------------------------------===//
struct RegisteredTensor {
StringRef type;
AffineMap shape;
bool isOutput;
AffineMap indexingMap;
unsigned index;
};
//===--------------------------------------------------------------------===//
// Per-TC def state.
//===--------------------------------------------------------------------===//
/// Symbols are per TC def.
AffineSymbolList symbols;
/// Tensors are per TC def.
llvm::StringMap<RegisteredTensor> registeredTensors;
unsigned nextRegisteredTensorIndex;
Parser &parser;
};
} // namespace
namespace llvm {
template <>
struct DenseMapInfo<TensorUse> {
static TensorUse getEmptyKey() { return TensorUse("", AffineMap()); }
static TensorUse getTombstoneKey() {
return TensorUse(DenseMapInfo<StringRef>::getTombstoneKey(),
DenseMapInfo<AffineMap>::getTombstoneKey());
}
static unsigned getHashValue(const TensorUse &val) {
return ::llvm::hash_value(val.tensorId); // don't care about collisions.
}
static bool isEqual(const TensorUse &LHS, const TensorUse &RHS) {
return LHS == RHS;
}
};
} // namespace llvm
//===----------------------------------------------------------------------===//
// Visitation functions.
//===----------------------------------------------------------------------===//
template <typename Lambda, bool PreOrder>
void visit(const Expression &expr, Lambda callback) {
switch (expr.kind) {
default:
llvm_unreachable("Unexpected kind");
case Expression::Kind::TensorExpr:
static_cast<const TensorExpr &>(expr).visit<Lambda, PreOrder>(callback);
break;
case Expression::Kind::TensorUse:
static_cast<const TensorUse &>(expr).visit<Lambda, PreOrder>(callback);
break;
}
}
template <typename Lambda>
void visitPreorder(const Expression &expr, Lambda callback) {
visit<Lambda, false>(expr, callback);
}
template <typename Lambda>
void visitPostorder(Expression &expr, Lambda callback) {
visit<Lambda, true>(expr, callback);
}
template <typename Lambda, bool PreOrder>
void TensorExpr::visit(Lambda callback) const {
if (!PreOrder)
callback(*this);
for (auto &e : expressions)
::visit<Lambda, PreOrder>(*e, callback);
if (PreOrder)
callback(*this);
}
template <typename Lambda, bool PreOrder>
void TensorUse::visit(Lambda callback) const {
callback(*this);
}
//===----------------------------------------------------------------------===//
// TC parsing functions.
//===----------------------------------------------------------------------===//
TCParser::TCParser(Parser &p)
: symbols(), registeredTensors(), nextRegisteredTensorIndex(0), parser(p) {}
/// Uses the AffineParser to parse the affine exprs used in a tensor
/// definition. All identifiers are interpreted as symbols, new symbols are
/// added eagerly.
SmallVector<AffineExpr, 4>
TCParser::parseAffineExprs(EagerDiscoveryMode discoveryMode,
AffineDimList &dims, Token::Kind lDelim,
Token::Kind rDelim) {
AffineParser affineParser(
parser,
[&](StringRef sRef) {
AffineExpr expr;
if (discoveryMode == EagerDiscoveryMode::Symbols) {
expr = getAffineSymbolExpr(symbols.size(), parser.context);
symbols.emplace_back(sRef, expr);
} else if (discoveryMode == EagerDiscoveryMode::Dimensions) {
expr = getAffineDimExpr(dims.size(), parser.context);
dims.emplace_back(sRef, expr);
}
return expr;
},
dims, symbols);
return affineParser.parseAffineExprs(lDelim, rDelim);
}
/// Parse the information for a tensor def of the form:
///
/// affine-expr-list ::= affine-expr (`,` affine-expr )*
/// tensor-typedef ::= type `(` `)`
/// | type `(` affine-expr-list `)`
/// tensor-def ::= bare-id `:` tensor-typedef
LogicalResult TCParser::parseTensorDef(bool isOutput) {
StringRef tensorId = parser.curToken.getSpelling();
if (failed(parser.parseToken(Token::Kind::id, "expected an id")) ||
failed(parser.parseToken(Token::Kind::colon, "expected colon")))
return failure();
StringRef tensorType = parser.curToken.getSpelling();
if (failed(parser.parseToken(Token::Kind::id, "expected an id")))
return failure();
AffineDimList emptyDims;
auto exprs = parseAffineExprs(EagerDiscoveryMode::Symbols, emptyDims);
assert(emptyDims.empty() && "Unexpected dimension in tensor def");
AffineMap map =
AffineMap::get(/*dimCount=*/0, symbols.size(), exprs, parser.context);
auto iterBoolPair = registeredTensors.try_emplace(
tensorId, RegisteredTensor{tensorType, map, isOutput, AffineMap(),
nextRegisteredTensorIndex++});
(void)iterBoolPair;
assert(iterBoolPair.second && "Could not emplace tensor registration");
LLVM_DEBUG(llvm::dbgs() << "Recorded: " << tensorId << " "
<< "with typeString: " << tensorType << " "
<< "and shape: " << map << "\n");
return success();
}
/// Parses a tensor use of the form:
///
/// affine-expr-list ::= affine-expr (`,` affine-expr)*
/// tensor-use ::= bare-id `(` `)`
/// | bare-id `(` affine-expr-list `)`
LogicalResult TCParser::parseTensorUse(TensorUse &result,
ComprehensionParsingState &state) {
StringRef tensorId = parser.curToken.getSpelling();
if (failed(parser.parseToken(Token::Kind::id, "expected an id")))
return failure();
auto exprs = parseAffineExprs(EagerDiscoveryMode::Dimensions, state.dims);
AffineMap map =
AffineMap::get(state.dims.size(), symbols.size(), exprs, parser.context);
LLVM_DEBUG(llvm::dbgs() << "Use of tensor: " << tensorId << " map: " << map
<< "\n");
result = TensorUse(tensorId, map);
return success();
}
/// Parses a tensor expression of the form:
///
/// op-spec ::= bare-id `<` reduction-dims-list `>`
/// | bare-id
/// op-arg ::= tensor-expr
/// | tensor-use
/// op-arg-list ::= op-arg (`,` op-arg)*
/// tensor-expr ::= op-spec `(` op-arg-list `)`
LogicalResult TCParser::parseExpression(TensorUse currentDefinition,
std::unique_ptr<Expression> &result,
ComprehensionParsingState &state) {
StringRef opOrTensor = parser.curToken.getSpelling();
if (registeredTensors.count(opOrTensor) > 0) {
TensorUse use;
auto res = parseTensorUse(use, state);
if (failed(res))
return res;
result = std::make_unique<TensorUse>(use);
return success();
}
if (failed(parser.parseToken(Token::Kind::id, "expected an operation")))
return failure();
// This is an op.
SmallVector<unsigned, 4> reductionDims;
SmallVector<std::unique_ptr<Expression>, 4> expressions;
// Check if it has a reduction set, discover dimensions eagerly.
if (parser.curToken.is(Token::Kind::lt)) {
auto iters = parseAffineExprs(EagerDiscoveryMode::Dimensions, state.dims,
Token::Kind::lt, Token::Kind::gt);
for (auto iter : iters)
reductionDims.push_back(iter.cast<AffineDimExpr>().getPosition());
}
// If this op is a reduction, it's first argument is the `currentDefinition`
// tensor use.
if (!reductionDims.empty())
expressions.push_back(std::make_unique<TensorUse>(currentDefinition));
LLVM_DEBUG(llvm::dbgs() << "op: " << opOrTensor << "\n");
auto parseExpr = [&]() -> LogicalResult {
std::unique_ptr<Expression> e;
if (failed(parseExpression(currentDefinition, e, state)))
return failure();
expressions.push_back(std::move(e));
return success();
};
if (failed(parser.parseToken(Token::Kind::l_paren, "expected '('")) ||
failed(parser.parseCommaSeparatedListUntil(
Token::Kind::r_paren, parseExpr, /*allowEmptyList=*/true)))
return failure();
result = std::make_unique<TensorExpr>(opOrTensor, std::move(expressions),
reductionDims);
return success();
}
//===----------------------------------------------------------------------===//
// Parse and Emit functions.
//===----------------------------------------------------------------------===//
/// Parse the information for a single comprehension.
///
/// tensor-def-list ::= tensor-def (`,` tensor-def)*
/// tensor-expr-list ::= tensor-expr (`,` tensor-expr)*
/// comprehension ::= tensor-def-list `=` tensor-expr-list `;`
LogicalResult
TCParser::parseOneComprehension(StringRef cppOpName, StringRef linalgOpName,
ComprehensionParsingState &state) {
// 1. Parse LHS of `=`, these become the definitions that appear as the output
// tensors or read/write buffers.
SmallVector<TensorUse, 4> definitions;
auto parseUse = [&]() -> LogicalResult {
TensorUse use;
if (failed(parseTensorUse(use, state)))
return failure();
definitions.push_back(use);
return success();
};
if (failed(parser.parseCommaSeparatedListUntil(Token::Kind::equal, parseUse,
/*allowEmptyList=*/true)))
return failure();
// 2. Parse RHS of `=`, this becomes the expressions from which we emit
// computations.
unsigned idx = 0;
auto parseExpr = [&]() -> LogicalResult {
std::unique_ptr<Expression> expr;
if (idx >= definitions.size()) {
parser.emitError("Fewer LHS definitions than RHS expressions");
return failure();
}
if (failed(parseExpression(definitions[idx++], expr, state)))
return failure();
state.expressions.push_back(std::move(expr));
return success();
};
if (failed(parser.parseCommaSeparatedListUntil(
Token::Kind::semicolon, parseExpr, /*allowEmptyList=*/true)))
return failure();
if (idx != definitions.size()) {
parser.emitError("Fewer RHS expressions than LHS definitions");
return failure();
}
// 3. Postprocess.
// 3.a. Normalize all maps to the proper state.dims and symbols counts.
SmallVector<TensorUse, 4> allUses;
allUses.reserve(registeredTensors.size());
for (auto &def : definitions)
allUses.push_back(def);
for (auto &pExpr : state.expressions)
visitPostorder(*pExpr, [&](const Expression &e) {
if (auto *use = dyn_cast<TensorUse>(&e))
allUses.push_back(*use);
});
for (auto &use : allUses)
use.indexingMap =
AffineMap::get(state.dims.size(), symbols.size(),
use.indexingMap.getResults(), parser.context);
// 3.b. Traverse definitions
llvm::DenseSet<StringRef> seenDefs;
for (auto &def : definitions) {
if (seenDefs.count(def.tensorId) > 0) {
parser.emitError("Unexpected multi-write to a single tensor");
return failure();
}
seenDefs.insert(def.tensorId);
auto tensorIter = registeredTensors.find(def.tensorId);
assert(tensorIter != registeredTensors.end() && "unregistered tensor");
auto &tensor = tensorIter->getValue();
tensor.indexingMap = def.indexingMap;
state.orderedTensorArgs[def] = tensor.index;
}
bool failed = false;
for (auto &pExpr : state.expressions)
visitPostorder(*pExpr, [&](const Expression &e) {
auto *pUse = dyn_cast<TensorUse>(&e);
if (failed || !pUse)
return;
auto &use = *pUse;
LLVM_DEBUG(llvm::dbgs()
<< "\nuse: " << use.tensorId << " map: " << use.indexingMap);
auto tensorIter = registeredTensors.find(use.tensorId);
assert(tensorIter != registeredTensors.end() && "unregistered tensor");
auto &tensor = tensorIter->getValue();
if (tensor.indexingMap && state.orderedTensorArgs.count(use) == 0) {
LLVM_DEBUG(llvm::dbgs() << "\nexisting: " << tensor.indexingMap);
parser.emitError(
"Unexpected multi-read of a tensor with different accesses");
failed = true;
return;
}
seenDefs.insert(use.tensorId);
tensor.indexingMap = use.indexingMap;
state.orderedTensorArgs[use] = tensor.index;
});
if (failed)
return failure();
return success();
}
/// Parse and print the information for a ODS def.
///
/// tensor-def-list ::= tensor-def (`,` tensor-def )*
///
/// comprehension-list ::= comprehension comprehension*
///
/// tc-def ::= `def` bare-id `(`tensor-def-list`)` `->` `(` tensor-def-list`)`
/// `{` comprehension-list `}`
///
/// ods-def ::= `ods_def` `<` bare-id `>` `:` tc-def
///
/// All the affine-expr in a `tensor-typedef` must be dimensionless (i.e.
/// contain only expressions involving symbols and constants), but can
/// otherwise contain arbitrary affine expressions.
LogicalResult TCParser::parseAndEmitODSDef(llvm::raw_ostream &os) {
if (failed(parser.parseToken(Token::Kind::kw_ods_def,
"expected 'ods_def' to define a TC ODS")) ||
failed(parser.parseToken(Token::Kind::lt, "expected '<'")))
return failure();
StringRef cppOpName = parser.curToken.getSpelling();
LLVM_DEBUG(llvm::dbgs() << "\n\nStart parsing ODS: " << cppOpName << "\n");
if (failed(parser.parseToken(Token::Kind::id, "expected id")) ||
failed(parser.parseToken(Token::Kind::gt, "expected '>'")) ||
failed(parser.parseToken(Token::Kind::colon, "expected ':'")))
return failure();
if (failed(parser.parseToken(Token::Kind::kw_def,
"expected 'def' to define a TC")))
return failure();
StringRef tcName = parser.curToken.getSpelling();
LLVM_DEBUG(llvm::dbgs() << "\n\nStart parsing TC: " << tcName << "\n");
if (failed(parser.parseToken(Token::Kind::id, "expected id")) ||
failed(parser.parseToken(Token::Kind::l_paren, "expected '('")))
return failure();
auto parseInputDef = [&]() -> LogicalResult {
return parseTensorDef(/*isOutput=*/false);
};
if (failed(parser.parseCommaSeparatedListUntil(
Token::Kind::r_paren, parseInputDef, /*allowEmptyList=*/false)))
return failure();
if (failed(parser.parseToken(Token::Kind::minus, "expected '-'")) ||
failed(parser.parseToken(Token::Kind::gt, "expected '>'")) ||
failed(parser.parseToken(Token::Kind::l_paren, "expected '('")))
return failure();
auto parseOutputDef = [&]() -> LogicalResult {
return parseTensorDef(/*isOutput=*/true);
};
if (failed(parser.parseCommaSeparatedListUntil(
Token::Kind::r_paren, parseOutputDef, /*allowEmptyList=*/false)))
return failure();
// Since we don't declare symbols separately, we discover them eagerly: each
// newly encountered id in a tensor shape expression is treated as a new
// symbolic. At this point, all tensors have been parsed and all the symbols
// that could be discovered eagerly are now known. Resize all AffineMaps to
// normalize the number of eagerly discovered symbols.
for (auto &tensor : registeredTensors) {
auto &map = tensor.getValue().shape;
map = AffineMap::get(/*dimCount=*/0, symbols.size(), map.getResults(),
parser.context);
}
if (failed(parser.parseToken(Token::Kind::l_brace, "expected '{'")))
return failure();
SmallVector<ComprehensionParsingState, 4> perComprehensionStates;
while (parser.curToken.isNot(Token::Kind::r_brace)) {
perComprehensionStates.push_back(ComprehensionParsingState());
if (failed(parseOneComprehension(cppOpName, tcName,
perComprehensionStates.back())))
return failure();
};
parser.parseToken(Token::Kind::r_brace, "expected '}'");
// Print.
auto nComprehensions = perComprehensionStates.size();
if (nComprehensions != 1) {
parser.emitError("only 1 comprehension supported for now, got: " +
llvm::Twine(nComprehensions));
return failure();
}
if (genODSDecl) {
auto &state = perComprehensionStates.back();
printODS(os, cppOpName, tcName, state);
os << "\n";
}
if (genODSImpl) {
auto &state = perComprehensionStates.back();
std::string extraMethods;
llvm::raw_string_ostream ss(extraMethods);
printReferenceIterators(ss, cppOpName, state);
printReferenceIndexingMaps(ss, cppOpName, state);
printRegionBuilder(ss, cppOpName, state);
ss.flush();
os << extraMethods << "\n";
}
return success();
}
//===----------------------------------------------------------------------===//
// Printing functions
//===----------------------------------------------------------------------===//
/// Print the ODS class that defines a new `cppOpName` for a `linalgOpName`.
void TCParser::printODS(llvm::raw_ostream &os, StringRef cppOpName,
StringRef linalgOpName,
ComprehensionParsingState &state) {
const char *header = R"FMT( def {0} : LinalgStructuredBase_Op<"{1}", [
NamedStructuredOpTrait,
AttrSizedOperandSegments,
SingleBlockImplicitTerminator<"YieldOp">]> {
let arguments = (ins Variadic<AnyShaped>:$inputs,
Variadic<AnyMemRef>:$output_buffers,
Variadic<AnyRankedTensor>:$init_tensors);
let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
let regions = (region AnyRegion:$region);
let skipDefaultBuilders = 1;
let builders = [ OpBuilder<
"OpBuilder &b, OperationState &result, "
"ValueRange inputs, ValueRange outputBuffers",
[{{
result.addOperands(inputs);
result.addOperands(outputBuffers);
result.addAttribute(
"operand_segment_sizes",
b.getI32VectorAttr({{static_cast<int32_t>(inputs.size()),
static_cast<int32_t>(outputBuffers.size()),
static_cast<int32_t>(0)}));
buildNamedStructuredOpRegionAndAttributes<{0}>(
b,
result,
TypeRange(inputs),
TypeRange(outputBuffers),
TypeRange(),
TypeRange());
}]>, OpBuilder<
"OpBuilder &b, OperationState &result, TypeRange resultTensorTypes,"
"ValueRange inputs, ValueRange outputBuffers, ValueRange initTensors",
[{{
result.addOperands(inputs);
result.addOperands(outputBuffers);
result.addOperands(initTensors);
result.addTypes(resultTensorTypes);
result.addAttribute(
"operand_segment_sizes",
b.getI32VectorAttr({{static_cast<int32_t>(inputs.size()),
static_cast<int32_t>(outputBuffers.size()),
static_cast<int32_t>(initTensors.size())}));
buildNamedStructuredOpRegionAndAttributes<{0}>(
b,
result,
TypeRange(inputs),
TypeRange(outputBuffers),
TypeRange(initTensors),
resultTensorTypes);
}]>, OpBuilder<
"OpBuilder &b, OperationState &result, TypeRange resultTensorTypes,"
"ValueRange operands, ArrayRef<NamedAttribute> attributes = {{}",
[{{
result.addOperands(operands);
result.addAttributes(attributes);
result.addTypes(resultTensorTypes);
(void)result.addRegion();
}]>
];
let printer = [{{ return ::printNamedStructuredOp(p, *this); }];
let parser = [{{ return ::parseNamedStructuredOp<{0}>(parser, result); }];
let verifier = [{{ return ::verifyNamedStructuredOp(*this); }];
let hasFolder = 1;
let hasCanonicalizer = 1;
let extraClassDeclaration = [{{
// Auto-generated.
ArrayAttr iterator_types();
ArrayAttr indexing_maps();
static void regionBuilder(Block &block);
// Generic methods.
static unsigned getNumRegionArgs() {{ return {4}; }
std::string getLibraryCallName() {{
return generateLibraryCallName(getOperation());
}
}];
})FMT";
unsigned nInputs = 0, nOutputs = 0;
for (auto &t : registeredTensors) {
if (t.getValue().isOutput)
nOutputs++;
else
nInputs++;
}
os << llvm::formatv(header, cppOpName, linalgOpName, nInputs, nOutputs,
state.orderedTensorArgs.size());
}
/// Print the C++ StructuredOpsInterface impl of `iterator_types`.
void TCParser::printReferenceIterators(llvm::raw_ostream &os,
StringRef cppOpName,
ComprehensionParsingState &state) {
const char *referenceReferenceIteratorsFmt =
R"FMT(
ArrayAttr {0}::iterator_types() {
return Builder(getContext()).getStrArrayAttr(SmallVector<StringRef, 8>{{ {1} });
})FMT";
std::string iteratorsStr;
llvm::raw_string_ostream ss(iteratorsStr);
unsigned pos = 0;
llvm::interleaveComma(
state.dims, ss, [&](std::pair<StringRef, AffineExpr> p) {
bool reduction = false;
for (auto &expr : state.expressions) {
visitPostorder(*expr, [&](const Expression &e) {
if (auto *pTensorExpr = dyn_cast<TensorExpr>(&e)) {
if (pTensorExpr->reductionDimensions.count(pos) > 0)
reduction = true;
}
});
if (reduction)
break;
}
ss << (reduction ? "getReductionIteratorTypeName()"
: "getParallelIteratorTypeName()");
pos++;
});
ss.flush();
os << llvm::formatv(referenceReferenceIteratorsFmt, cppOpName, iteratorsStr);
}
/// Print the C++ StructuredOpsInterface impl of `referenceIndexingMaps`.
void TCParser::printReferenceIndexingMaps(llvm::raw_ostream &os,
StringRef cppOpName,
ComprehensionParsingState &state) {
// 1. Generic string template for specifying reference indexing maps.
const char *referenceIndexingMapsFmt =
R"FMT(
// This is temporary until we transition out of manually specified ops that
// should be auto-generated with linalg-ods-gen.
ArrayAttr {0}::indexing_maps() {
MLIRContext *context = getContext();
AffineExpr {1};
bindDims(context, {1});
return Builder(context).getAffineMapArrayAttr({ {2} });
})FMT";
// 2. Print a comma-separated list of identifiers for the AffineExpr in
// `state.dims`. These will replace the `{1}` placeholder in both
// `AffineExpr {1}` and `bindDims(context, {1})` ensuring the AffineExpr
// identifiers are bound in the right order to the proper AffineDimExpr.
std::string dimsStr;
llvm::raw_string_ostream ss(dimsStr);
llvm::interleaveComma(
state.dims, ss,
[&](std::pair<StringRef, AffineExpr> p) { ss << p.second; });
ss.flush();
// 3. Print a comma-separated list of AffineMap constructors that use the
// identifiers from 1. The AffineExpr use the common arithmetic operators on
// AffineExpr. These AffineMap constructors will replace the `{2}` placeholder
// in return `SmallVector<AffineMap, 8>{{ {2} };`.
std::string mapsStr;
llvm::raw_string_ostream mapsStringStream(mapsStr);
SmallVector<TensorUse, 4> orderedUses(state.orderedTensorArgs.size());
for (const auto &it : state.orderedTensorArgs)
orderedUses[it.second] = it.first;
llvm::interleaveComma(orderedUses, mapsStringStream, [&](TensorUse u) {
assert(u.indexingMap);
const char *mapFmt = "\n\tAffineMap::get({0}, 0, {1}, context)";
if (u.indexingMap.isEmpty()) {
mapsStringStream << llvm::formatv(mapFmt, state.dims.size(), "context");
return;
}
std::string exprsStr;
llvm::raw_string_ostream exprsStringStream(exprsStr);
exprsStringStream << "{";
llvm::interleaveComma(u.indexingMap.getResults(), exprsStringStream);
exprsStringStream << "}";
exprsStringStream.flush();
mapsStringStream << llvm::formatv(mapFmt, state.dims.size(), exprsStr);
});
mapsStringStream.flush();
// 4. Apply format to 1. using 2. and 3.
os << llvm::formatv(referenceIndexingMapsFmt, cppOpName, dimsStr, mapsStr);
}
/// Print the C++ StructuredOpsInterface impl of `regionBuilder`.
void TCParser::printRegionBuilder(llvm::raw_ostream &os, StringRef cppOpName,
ComprehensionParsingState &state) {
unsigned count = state.orderedTensorArgs.size();
llvm::DenseMap<const TensorExpr *, unsigned> subExprsMap;
std::function<void(llvm::raw_ostream & os, const Expression &)> printExpr;
printExpr = [&](llvm::raw_ostream &os, const Expression &e) -> void {
if (auto *pUse = dyn_cast<TensorUse>(&e)) {
os << "_" << state.orderedTensorArgs.find(*pUse)->second;
return;
}
auto *pTensorExpr = cast<TensorExpr>(&e);
if (subExprsMap.count(pTensorExpr) > 0) {
os << "_" << subExprsMap[pTensorExpr];
} else {
std::string subExprs;
llvm::raw_string_ostream subExprsStringStream(subExprs);
llvm::interleaveComma(pTensorExpr->expressions, subExprsStringStream,
[&](const std::unique_ptr<Expression> &e) {
printExpr(subExprsStringStream, *e);
});
subExprsStringStream.flush();
const char *tensorExprFmt = "\n Value _{0} = {1}({2});";
os << llvm::formatv(tensorExprFmt, ++count, pTensorExpr->operationName,
subExprs);
subExprsMap[pTensorExpr] = count;
}
};
const char *regionBuilderFmt = R"FMT(
void {0}::regionBuilder(Block &block) {
using namespace edsc;
using namespace intrinsics;
auto args = block.getArguments();
Value {1};
{2}
(linalg_yield(ValueRange{ {3} }));
})FMT";
unsigned idx = 0;
std::string valueHandleStr;
llvm::raw_string_ostream valueHandleStringStream(valueHandleStr);
llvm::interleaveComma(
state.orderedTensorArgs, valueHandleStringStream, [&](auto) {
valueHandleStringStream << "_" << idx << "(args[" << idx << "])";
idx++;
});
std::string expressionsStr;
llvm::raw_string_ostream expressionStringStream(expressionsStr);
for (auto &expr : state.expressions)
visitPostorder(*expr, [&](const Expression &e) {
if (e.kind == Expression::Kind::TensorExpr)
printExpr(expressionStringStream, e);
});
std::string yieldStr;
llvm::raw_string_ostream yieldStringStream(yieldStr);
llvm::interleaveComma(state.expressions, yieldStringStream,
[&](const std::unique_ptr<Expression> &e) {
printExpr(yieldStringStream, *e);
});
valueHandleStringStream.flush();
expressionStringStream.flush();
yieldStringStream.flush();
os << llvm::formatv(regionBuilderFmt, cppOpName, valueHandleStr,
expressionsStr, yieldStr);
}
/// Iterate over each Tensor Comprehension def.
LogicalResult parseAndEmitAllTensorComprehensions(llvm::raw_ostream &os,
Parser &parser) {
while (parser.curToken.getKind() != Token::Kind::eof) {
TCParser tcParser(parser);
if (failed(tcParser.parseAndEmitODSDef(os)))
return failure();
}
return success();
}
int main(int argc, char **argv) {
llvm::cl::ParseCommandLineOptions(argc, argv, "Linalg ODS Gen");
// Set up the input file.
std::string errorMessage;
std::unique_ptr<llvm::MemoryBuffer> file =
mlir::openInputFile(inputFilename, &errorMessage);
if (!file) {
llvm::errs() << errorMessage << "\n";
return 1;
}
std::unique_ptr<llvm::ToolOutputFile> output =
openOutputFile(outputFilename, &errorMessage);
if (!output) {
llvm::errs() << errorMessage << "\n";
exit(1);
}
// Include the proper Linalg header for end-to-end tblgen testing without
// resorting to non-portable shell manipulations.
if (testEmitIncludeTdHeader)
output->os() << "include \"mlir/Dialect/Linalg/IR/LinalgStructuredOps.td\"";
MLIRContext context(/*loadAllDialects=*/false);
llvm::SourceMgr mgr;
mgr.AddNewSourceBuffer(std::move(file), llvm::SMLoc());
Parser parser(mgr, &context);
parseAndEmitAllTensorComprehensions(output->os(), parser);
output->keep();
return 0;
}