TestBufferPlacement.cpp
9.73 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
//===- TestBufferPlacement.cpp - Test for buffer placement ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements logic for testing buffer placement including its
// utility converters.
//
//===----------------------------------------------------------------------===//
#include "TestDialect.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Operation.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/BufferPlacement.h"
using namespace mlir;
namespace {
/// This pass tests the computeAllocPosition helper method and buffer assignment
/// operation converters. Furthermore, this pass converts linalg operations on
/// tensors to linalg operations on buffers to prepare them for the
/// BufferPlacement pass that can be applied afterwards.
/// `allowMemrefFunctionResults` informs the buffer placement to allow functions
/// that have memref typed results. Buffer assignment operation converters will
/// be adapted respectively. It will also allow memref typed results to escape
/// from the deallocation.
template <bool allowMemrefFunctionResults>
struct TestBufferPlacementPreparationPass
: mlir::PassWrapper<
TestBufferPlacementPreparationPass<allowMemrefFunctionResults>,
OperationPass<ModuleOp>> {
/// Converts tensor-type generic linalg operations to memref ones using
/// buffer assignment.
/// TODO: Avoid the copy-pasta by exposing the pattern from BufferPlacement.h
/// This is limited by not wanting BufferPlacement to depend on Linalg. Fixing
/// this probably requires an OpConversionPattern over generic Operation*. For
/// now only RewritePattern but not ConversionPattern allow this.
class GenericOpConverter
: public BufferAssignmentOpConversionPattern<linalg::GenericOp> {
public:
using BufferAssignmentOpConversionPattern<
linalg::GenericOp>::BufferAssignmentOpConversionPattern;
LogicalResult
matchAndRewrite(linalg::GenericOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
linalg::GenericOpAdaptor adaptor(operands,
op.getOperation()->getAttrDictionary());
// TODO: support ops with reduction.
if (!op.init_tensors().empty())
return failure();
// All inputs need to be turned into buffers first. Until then, bail out.
if (llvm::any_of(adaptor.inputs(), [](Value in) {
return !in.getType().isa<MemRefType>();
}))
return failure();
Location loc = op.getLoc();
SmallVector<Value, 2> outputBuffers, newOutputBuffers;
outputBuffers.assign(adaptor.output_buffers().begin(),
adaptor.output_buffers().end());
newOutputBuffers.reserve(op.getNumOutputs());
newOutputBuffers.append(adaptor.output_buffers().begin(),
adaptor.output_buffers().end());
// Update all types to memref types.
for (Type t : op.getResultTypes()) {
auto type = t.cast<ShapedType>();
if (!type.hasStaticShape())
return rewriter.notifyMatchFailure(
op, "dynamic shapes not currently supported");
auto memrefType =
MemRefType::get(type.getShape(), type.getElementType());
auto alloc = rewriter.create<AllocOp>(loc, memrefType);
newOutputBuffers.push_back(alloc);
}
// Generate a new linalg operation that works on buffers.
auto linalgOp = rewriter.create<linalg::GenericOp>(
loc,
/*resultTensorTypes=*/ArrayRef<Type>{},
/*inputs=*/adaptor.inputs(),
/*outputBuffers=*/newOutputBuffers,
/*initTensors=*/ValueRange{}, op.indexing_maps(), op.iterator_types(),
op.docAttr(), op.library_callAttr(), op.symbol_sourceAttr());
// Create a new block in the region of the new Generic Op.
Block &oldBlock = op.getRegion().front();
Region &newRegion = linalgOp.region();
Block *newBlock = rewriter.createBlock(&newRegion, newRegion.begin(),
oldBlock.getArgumentTypes());
// Add the result arguments to the new block.
for (Value v : newOutputBuffers)
newBlock->addArgument(v.getType().cast<MemRefType>().getElementType());
// Clone the body of the old block to the new block.
BlockAndValueMapping mapping;
for (unsigned i = 0; i < oldBlock.getNumArguments(); i++)
mapping.map(oldBlock.getArgument(i), newBlock->getArgument(i));
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToEnd(newBlock);
for (auto &op : oldBlock.getOperations()) {
Operation *clonedOp = rewriter.clone(op, mapping);
mapping.map(op.getResults(), clonedOp->getResults());
}
// Replace the results of the old op with the new output buffers.
rewriter.replaceOp(op, newOutputBuffers);
return success();
}
};
void populateTensorLinalgToBufferLinalgConversionPattern(
MLIRContext *context, BufferAssignmentTypeConverter *converter,
OwningRewritePatternList *patterns) {
populateWithBufferAssignmentOpConversionPatterns<
mlir::ReturnOp, mlir::ReturnOp, linalg::CopyOp>(context, converter,
patterns);
patterns->insert<GenericOpConverter>(context, converter);
}
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<TestDialect>();
registry.insert<linalg::LinalgDialect>();
}
void runOnOperation() override {
MLIRContext &context = this->getContext();
ConversionTarget target(context);
BufferAssignmentTypeConverter converter;
// Mark all Standard operations legal.
target.addLegalDialect<StandardOpsDialect>();
target.addLegalOp<MakeTupleOp>();
target.addLegalOp<GetTupleElementOp>();
target.addLegalOp<ModuleOp>();
target.addLegalOp<ModuleTerminatorOp>();
// Mark all Linalg operations illegal as long as they work on tensors.
auto isLegalOperation = [&](Operation *op) {
return converter.isLegal(op);
};
target.addDynamicallyLegalDialect<linalg::LinalgDialect>(isLegalOperation);
// Mark Standard Return operations illegal as long as one operand is tensor.
target.addDynamicallyLegalOp<mlir::ReturnOp>([&](mlir::ReturnOp returnOp) {
return converter.isLegal(returnOp.getOperandTypes());
});
// Mark Standard Call Operation illegal as long as it operates on tensor.
target.addDynamicallyLegalOp<mlir::CallOp>(
[&](mlir::CallOp callOp) { return converter.isLegal(callOp); });
// Mark the function whose arguments are in tensor-type illegal.
target.addDynamicallyLegalOp<FuncOp>([&](FuncOp funcOp) {
return converter.isSignatureLegal(funcOp.getType()) &&
converter.isLegal(&funcOp.getBody());
});
auto kind = allowMemrefFunctionResults
? BufferAssignmentTypeConverter::KeepAsFunctionResult
: BufferAssignmentTypeConverter::AppendToArgumentsList;
converter.setResultConversionKind<RankedTensorType, MemRefType>(kind);
converter.setResultConversionKind<UnrankedTensorType, UnrankedMemRefType>(
kind);
converter.addDecomposeTypeConversion(
[](TupleType tupleType, SmallVectorImpl<Type> &types) {
tupleType.getFlattenedTypes(types);
return success();
});
converter.addArgumentMaterialization(
[](OpBuilder &builder, TupleType resultType, ValueRange inputs,
Location loc) -> Optional<Value> {
if (inputs.size() == 1)
return llvm::None;
TypeRange TypeRange = inputs.getTypes();
SmallVector<Type, 2> types(TypeRange.begin(), TypeRange.end());
TupleType tuple = TupleType::get(types, builder.getContext());
mlir::Value value = builder.create<MakeTupleOp>(loc, tuple, inputs);
return value;
});
converter.addDecomposeValueConversion([](OpBuilder &builder, Location loc,
TupleType resultType, Value value,
SmallVectorImpl<Value> &values) {
for (unsigned i = 0, e = resultType.size(); i < e; ++i) {
Value res = builder.create<GetTupleElementOp>(
loc, resultType.getType(i), value, builder.getI32IntegerAttr(i));
values.push_back(res);
}
return success();
});
OwningRewritePatternList patterns;
populateTensorLinalgToBufferLinalgConversionPattern(&context, &converter,
&patterns);
if (failed(applyFullConversion(this->getOperation(), target, patterns)))
this->signalPassFailure();
};
};
} // end anonymous namespace
namespace mlir {
void registerTestBufferPlacementPreparationPass() {
PassRegistration<
TestBufferPlacementPreparationPass</*allowMemrefFunctionResults=*/false>>(
"test-buffer-placement-preparation",
"Tests buffer placement helper methods including its "
"operation-conversion patterns");
}
void registerTestPreparationPassWithAllowedMemrefResults() {
PassRegistration<
TestBufferPlacementPreparationPass</*allowMemrefFunctionResults=*/true>>(
"test-buffer-placement-preparation-with-allowed-memref-results",
"Tests the helper operation converters of buffer placement for allowing "
"functions to have memref typed results.");
}
} // end namespace mlir