TestPatterns.cpp
38.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
//===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TestDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/FoldUtils.h"
using namespace mlir;
// Native function for testing NativeCodeCall
static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
return choice.getValue() ? input1 : input2;
}
static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
rewriter.create<OpI>(loc, input);
}
static void handleNoResultOp(PatternRewriter &rewriter,
OpSymbolBindingNoResult op) {
// Turn the no result op to a one-result op.
rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(),
op.operand());
}
// Test that natives calls are only called once during rewrites.
// OpM_Test will return Pi, increased by 1 for each subsequent calls.
// This let us check the number of times OpM_Test was called by inspecting
// the returned value in the MLIR output.
static int64_t opMIncreasingValue = 314159265;
static Attribute OpMTest(PatternRewriter &rewriter, Value val) {
int64_t i = opMIncreasingValue++;
return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
}
namespace {
#include "TestPatterns.inc"
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Canonicalizer Driver.
//===----------------------------------------------------------------------===//
namespace {
struct FoldingPattern : public RewritePattern {
public:
FoldingPattern(MLIRContext *context)
: RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
/*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
// Exercice OperationFolder API for a single-result operation that is folded
// upon construction. The operation being created through the folder has an
// in-place folder, and it should be still present in the output.
// Furthermore, the folder should not crash when attempting to recover the
// (unchanged) operation result.
OperationFolder folder(op->getContext());
Value result = folder.create<TestOpInPlaceFold>(
rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0),
rewriter.getI32IntegerAttr(0));
assert(result);
rewriter.replaceOp(op, result);
return success();
}
};
struct TestPatternDriver : public PassWrapper<TestPatternDriver, FunctionPass> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
// Verify named pattern is generated with expected name.
patterns.insert<FoldingPattern, TestNamedPatternRule>(&getContext());
applyPatternsAndFoldGreedily(getFunction(), patterns);
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// ReturnType Driver.
//===----------------------------------------------------------------------===//
namespace {
// Generate ops for each instance where the type can be successfully inferred.
template <typename OpTy>
static void invokeCreateWithInferredReturnType(Operation *op) {
auto *context = op->getContext();
auto fop = op->getParentOfType<FuncOp>();
auto location = UnknownLoc::get(context);
OpBuilder b(op);
b.setInsertionPointAfter(op);
// Use permutations of 2 args as operands.
assert(fop.getNumArguments() >= 2);
for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
for (int j = 0; j < e; ++j) {
std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
SmallVector<Type, 2> inferredReturnTypes;
if (succeeded(OpTy::inferReturnTypes(
context, llvm::None, values, op->getAttrDictionary(),
op->getRegions(), inferredReturnTypes))) {
OperationState state(location, OpTy::getOperationName());
// TODO: Expand to regions.
OpTy::build(b, state, values, op->getAttrs());
(void)b.createOperation(state);
}
}
}
}
static void reifyReturnShape(Operation *op) {
OpBuilder b(op);
// Use permutations of 2 args as operands.
auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
SmallVector<Value, 2> shapes;
if (failed(shapedOp.reifyReturnTypeShapes(b, shapes)))
return;
for (auto it : llvm::enumerate(shapes))
op->emitRemark() << "value " << it.index() << ": "
<< it.value().getDefiningOp();
}
struct TestReturnTypeDriver
: public PassWrapper<TestReturnTypeDriver, FunctionPass> {
void runOnFunction() override {
if (getFunction().getName() == "testCreateFunctions") {
std::vector<Operation *> ops;
// Collect ops to avoid triggering on inserted ops.
for (auto &op : getFunction().getBody().front())
ops.push_back(&op);
// Generate test patterns for each, but skip terminator.
for (auto *op : llvm::makeArrayRef(ops).drop_back()) {
// Test create method of each of the Op classes below. The resultant
// output would be in reverse order underneath `op` from which
// the attributes and regions are used.
invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
invokeCreateWithInferredReturnType<
OpWithShapedTypeInferTypeInterfaceOp>(op);
};
return;
}
if (getFunction().getName() == "testReifyFunctions") {
std::vector<Operation *> ops;
// Collect ops to avoid triggering on inserted ops.
for (auto &op : getFunction().getBody().front())
if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
ops.push_back(&op);
// Generate test patterns for each, but skip terminator.
for (auto *op : ops)
reifyReturnShape(op);
}
}
};
} // end anonymous namespace
namespace {
struct TestDerivedAttributeDriver
: public PassWrapper<TestDerivedAttributeDriver, FunctionPass> {
void runOnFunction() override;
};
} // end anonymous namespace
void TestDerivedAttributeDriver::runOnFunction() {
getFunction().walk([](DerivedAttributeOpInterface dOp) {
auto dAttr = dOp.materializeDerivedAttributes();
if (!dAttr)
return;
for (auto d : dAttr)
dOp.emitRemark() << d.first << " = " << d.second;
});
}
//===----------------------------------------------------------------------===//
// Legalization Driver.
//===----------------------------------------------------------------------===//
namespace {
//===----------------------------------------------------------------------===//
// Region-Block Rewrite Testing
/// This pattern is a simple pattern that inlines the first region of a given
/// operation into the parent region.
struct TestRegionRewriteBlockMovement : public ConversionPattern {
TestRegionRewriteBlockMovement(MLIRContext *ctx)
: ConversionPattern("test.region", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Inline this region into the parent region.
auto &parentRegion = *op->getParentRegion();
if (op->getAttr("legalizer.should_clone"))
rewriter.cloneRegionBefore(op->getRegion(0), parentRegion,
parentRegion.end());
else
rewriter.inlineRegionBefore(op->getRegion(0), parentRegion,
parentRegion.end());
// Drop this operation.
rewriter.eraseOp(op);
return success();
}
};
/// This pattern is a simple pattern that generates a region containing an
/// illegal operation.
struct TestRegionRewriteUndo : public RewritePattern {
TestRegionRewriteUndo(MLIRContext *ctx)
: RewritePattern("test.region_builder", 1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
// Create the region operation with an entry block containing arguments.
OperationState newRegion(op->getLoc(), "test.region");
newRegion.addRegion();
auto *regionOp = rewriter.createOperation(newRegion);
auto *entryBlock = rewriter.createBlock(®ionOp->getRegion(0));
entryBlock->addArgument(rewriter.getIntegerType(64));
// Add an explicitly illegal operation to ensure the conversion fails.
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
// Drop this operation.
rewriter.eraseOp(op);
return success();
}
};
/// A simple pattern that creates a block at the end of the parent region of the
/// matched operation.
struct TestCreateBlock : public RewritePattern {
TestCreateBlock(MLIRContext *ctx)
: RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
Region ®ion = *op->getParentRegion();
Type i32Type = rewriter.getIntegerType(32);
rewriter.createBlock(®ion, region.end(), {i32Type, i32Type});
rewriter.create<TerminatorOp>(op->getLoc());
rewriter.replaceOp(op, {});
return success();
}
};
/// A simple pattern that creates a block containing an invalid operation in
/// order to trigger the block creation undo mechanism.
struct TestCreateIllegalBlock : public RewritePattern {
TestCreateIllegalBlock(MLIRContext *ctx)
: RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
Region ®ion = *op->getParentRegion();
Type i32Type = rewriter.getIntegerType(32);
rewriter.createBlock(®ion, region.end(), {i32Type, i32Type});
// Create an illegal op to ensure the conversion fails.
rewriter.create<ILLegalOpF>(op->getLoc(), i32Type);
rewriter.create<TerminatorOp>(op->getLoc());
rewriter.replaceOp(op, {});
return success();
}
};
/// A simple pattern that tests the undo mechanism when replacing the uses of a
/// block argument.
struct TestUndoBlockArgReplace : public ConversionPattern {
TestUndoBlockArgReplace(MLIRContext *ctx)
: ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
auto illegalOp =
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
illegalOp);
rewriter.updateRootInPlace(op, [] {});
return success();
}
};
/// A rewrite pattern that tests the undo mechanism when erasing a block.
struct TestUndoBlockErase : public ConversionPattern {
TestUndoBlockErase(MLIRContext *ctx)
: ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
Block *secondBlock = &*std::next(op->getRegion(0).begin());
rewriter.setInsertionPointToStart(secondBlock);
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
rewriter.eraseBlock(secondBlock);
rewriter.updateRootInPlace(op, [] {});
return success();
}
};
//===----------------------------------------------------------------------===//
// Type-Conversion Rewrite Testing
/// This patterns erases a region operation that has had a type conversion.
struct TestDropOpSignatureConversion : public ConversionPattern {
TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
: ConversionPattern("test.drop_region_op", 1, converter, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Region ®ion = op->getRegion(0);
Block *entry = ®ion.front();
// Convert the original entry arguments.
TypeConverter &converter = *getTypeConverter();
TypeConverter::SignatureConversion result(entry->getNumArguments());
if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
result)) ||
failed(rewriter.convertRegionTypes(®ion, converter, &result)))
return failure();
// Convert the region signature and just drop the operation.
rewriter.eraseOp(op);
return success();
}
};
/// This pattern simply updates the operands of the given operation.
struct TestPassthroughInvalidOp : public ConversionPattern {
TestPassthroughInvalidOp(MLIRContext *ctx)
: ConversionPattern("test.invalid", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
llvm::None);
return success();
}
};
/// This pattern handles the case of a split return value.
struct TestSplitReturnType : public ConversionPattern {
TestSplitReturnType(MLIRContext *ctx)
: ConversionPattern("test.return", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Check for a return of F32.
if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
return failure();
// Check if the first operation is a cast operation, if it is we use the
// results directly.
auto *defOp = operands[0].getDefiningOp();
if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
return success();
}
// Otherwise, fail to match.
return failure();
}
};
//===----------------------------------------------------------------------===//
// Multi-Level Type-Conversion Rewrite Testing
struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is I32, change the type to F32.
if (!Type(*op->result_type_begin()).isSignlessInteger(32))
return failure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
return success();
}
};
struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is F32, change the type to F64.
if (!Type(*op->result_type_begin()).isF32())
return rewriter.notifyMatchFailure(op, "expected single f32 operand");
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
return success();
}
};
struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 10, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Always convert to B16, even though it is not a legal type. This tests
// that values are unmapped correctly.
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
return success();
}
};
struct TestUpdateConsumerType : public ConversionPattern {
TestUpdateConsumerType(MLIRContext *ctx)
: ConversionPattern("test.type_consumer", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Verify that the incoming operand has been successfully remapped to F64.
if (!operands[0].getType().isF64())
return failure();
rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
return success();
}
};
//===----------------------------------------------------------------------===//
// Non-Root Replacement Rewrite Testing
/// This pattern generates an invalid operation, but replaces it before the
/// pattern is finished. This checks that we don't need to legalize the
/// temporary op.
struct TestNonRootReplacement : public RewritePattern {
TestNonRootReplacement(MLIRContext *ctx)
: RewritePattern("test.replace_non_root", 1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
auto resultType = *op->result_type_begin();
auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
rewriter.replaceOp(illegalOp, {legalOp});
rewriter.replaceOp(op, {illegalOp});
return success();
}
};
//===----------------------------------------------------------------------===//
// Recursive Rewrite Testing
/// This pattern is applied to the same operation multiple times, but has a
/// bounded recursion.
struct TestBoundedRecursiveRewrite
: public OpRewritePattern<TestRecursiveRewriteOp> {
using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
PatternRewriter &rewriter) const final {
// Decrement the depth of the op in-place.
rewriter.updateRootInPlace(op, [&] {
op.setAttr("depth", rewriter.getI64IntegerAttr(op.depth() - 1));
});
return success();
}
/// The conversion target handles bounding the recursion of this pattern.
bool hasBoundedRewriteRecursion() const final { return true; }
};
struct TestNestedOpCreationUndoRewrite
: public OpRewritePattern<IllegalOpWithRegionAnchor> {
using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
PatternRewriter &rewriter) const final {
// rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
return success();
};
};
} // namespace
namespace {
struct TestTypeConverter : public TypeConverter {
using TypeConverter::TypeConverter;
TestTypeConverter() {
addConversion(convertType);
addArgumentMaterialization(materializeCast);
addArgumentMaterialization(materializeOneToOneCast);
addSourceMaterialization(materializeCast);
}
static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
// Drop I16 types.
if (t.isSignlessInteger(16))
return success();
// Convert I64 to F64.
if (t.isSignlessInteger(64)) {
results.push_back(FloatType::getF64(t.getContext()));
return success();
}
// Convert I42 to I43.
if (t.isInteger(42)) {
results.push_back(IntegerType::get(43, t.getContext()));
return success();
}
// Split F32 into F16,F16.
if (t.isF32()) {
results.assign(2, FloatType::getF16(t.getContext()));
return success();
}
// Otherwise, convert the type directly.
results.push_back(t);
return success();
}
/// Hook for materializing a conversion. This is necessary because we generate
/// 1->N type mappings.
static Optional<Value> materializeCast(OpBuilder &builder, Type resultType,
ValueRange inputs, Location loc) {
if (inputs.size() == 1)
return inputs[0];
return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
}
/// Materialize the cast for one-to-one conversion from i64 to f64.
static Optional<Value> materializeOneToOneCast(OpBuilder &builder,
IntegerType resultType,
ValueRange inputs,
Location loc) {
if (resultType.getWidth() == 42 && inputs.size() == 1)
return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
return llvm::None;
}
};
struct TestLegalizePatternDriver
: public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> {
/// The mode of conversion to use with the driver.
enum class ConversionMode { Analysis, Full, Partial };
TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
void runOnOperation() override {
TestTypeConverter converter;
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
patterns.insert<
TestRegionRewriteBlockMovement, TestRegionRewriteUndo, TestCreateBlock,
TestCreateIllegalBlock, TestUndoBlockArgReplace, TestUndoBlockErase,
TestPassthroughInvalidOp, TestSplitReturnType,
TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
TestNonRootReplacement, TestBoundedRecursiveRewrite,
TestNestedOpCreationUndoRewrite>(&getContext());
patterns.insert<TestDropOpSignatureConversion>(&getContext(), converter);
mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(),
converter);
mlir::populateCallOpTypeConversionPattern(patterns, &getContext(),
converter);
// Define the conversion target used for the test.
ConversionTarget target(getContext());
target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp,
TerminatorOp>();
target
.addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
// Don't allow F32 operands.
return llvm::none_of(op.getOperandTypes(),
[](Type type) { return type.isF32(); });
});
target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
return converter.isSignatureLegal(op.getType()) &&
converter.isLegal(&op.getBody());
});
// Expect the type_producer/type_consumer operations to only operate on f64.
target.addDynamicallyLegalOp<TestTypeProducerOp>(
[](TestTypeProducerOp op) { return op.getType().isF64(); });
target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
return op.getOperand().getType().isF64();
});
// Check support for marking certain operations as recursively legal.
target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
return static_cast<bool>(
op->getAttrOfType<UnitAttr>("test.recursively_legal"));
});
// Mark the bound recursion operation as dynamically legal.
target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
[](TestRecursiveRewriteOp op) { return op.depth() == 0; });
// Handle a partial conversion.
if (mode == ConversionMode::Partial) {
DenseSet<Operation *> unlegalizedOps;
(void)applyPartialConversion(getOperation(), target, patterns,
&unlegalizedOps);
// Emit remarks for each legalizable operation.
for (auto *op : unlegalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
return;
}
// Handle a full conversion.
if (mode == ConversionMode::Full) {
// Check support for marking unknown operations as dynamically legal.
target.markUnknownOpDynamicallyLegal([](Operation *op) {
return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
});
(void)applyFullConversion(getOperation(), target, patterns);
return;
}
// Otherwise, handle an analysis conversion.
assert(mode == ConversionMode::Analysis);
// Analyze the convertible operations.
DenseSet<Operation *> legalizedOps;
if (failed(applyAnalysisConversion(getOperation(), target, patterns,
legalizedOps)))
return signalPassFailure();
// Emit remarks for each legalizable operation.
for (auto *op : legalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is legalizable";
}
/// The mode of conversion to use.
ConversionMode mode;
};
} // end anonymous namespace
static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
legalizerConversionMode(
"test-legalize-mode",
llvm::cl::desc("The legalization mode to use with the test driver"),
llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
llvm::cl::values(
clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
"analysis", "Perform an analysis conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
"Perform a full conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
"partial", "Perform a partial conversion")));
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter::getRemappedValue testing. This method is used
// to get the remapped value of an original value that was replaced using
// ConversionPatternRewriter.
namespace {
/// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
/// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
/// operand twice.
///
/// Example:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0)
/// is replaced with:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
struct OneVResOneVOperandOp1Converter
: public OpConversionPattern<OneVResOneVOperandOp1> {
using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
LogicalResult
matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto origOps = op.getOperands();
assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
"One operand expected");
Value origOp = *origOps.begin();
SmallVector<Value, 2> remappedOperands;
// Replicate the remapped original operand twice. Note that we don't used
// the remapped 'operand' since the goal is testing 'getRemappedValue'.
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
remappedOperands);
return success();
}
};
struct TestRemappedValue
: public mlir::PassWrapper<TestRemappedValue, FunctionPass> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
patterns.insert<OneVResOneVOperandOp1Converter>(&getContext());
mlir::ConversionTarget target(getContext());
target.addLegalOp<ModuleOp, ModuleTerminatorOp, FuncOp, TestReturnOp>();
// We make OneVResOneVOperandOp1 legal only when it has more that one
// operand. This will trigger the conversion that will replace one-operand
// OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
[](Operation *op) -> bool {
return std::distance(op->operand_begin(), op->operand_end()) > 1;
});
if (failed(mlir::applyFullConversion(getFunction(), target, patterns))) {
signalPassFailure();
}
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Test patterns without a specific root operation kind
//===----------------------------------------------------------------------===//
namespace {
/// This pattern matches and removes any operation in the test dialect.
struct RemoveTestDialectOps : public RewritePattern {
RemoveTestDialectOps() : RewritePattern(/*benefit=*/1, MatchAnyOpTypeTag()) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (!isa<TestDialect>(op->getDialect()))
return failure();
rewriter.eraseOp(op);
return success();
}
};
struct TestUnknownRootOpDriver
: public mlir::PassWrapper<TestUnknownRootOpDriver, FunctionPass> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
patterns.insert<RemoveTestDialectOps>();
mlir::ConversionTarget target(getContext());
target.addIllegalDialect<TestDialect>();
if (failed(applyPartialConversion(getFunction(), target, patterns)))
signalPassFailure();
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Test type conversions
//===----------------------------------------------------------------------===//
namespace {
struct TestTypeConversionProducer
: public OpConversionPattern<TestTypeProducerOp> {
using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestTypeProducerOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
Type resultType = op.getType();
if (resultType.isa<FloatType>())
resultType = rewriter.getF64Type();
else if (resultType.isInteger(16))
resultType = rewriter.getIntegerType(64);
else
return failure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
return success();
}
};
struct TestTypeConversionDriver
: public PassWrapper<TestTypeConversionDriver, OperationPass<ModuleOp>> {
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<TestDialect>();
}
void runOnOperation() override {
// Initialize the type converter.
TypeConverter converter;
/// Add the legal set of type conversions.
converter.addConversion([](Type type) -> Type {
// Treat F64 as legal.
if (type.isF64())
return type;
// Allow converting BF16/F16/F32 to F64.
if (type.isBF16() || type.isF16() || type.isF32())
return FloatType::getF64(type.getContext());
// Otherwise, the type is illegal.
return nullptr;
});
converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
// Drop all integer types.
return success();
});
/// Add the legal set of type materializations.
converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
ValueRange inputs,
Location loc) -> Value {
// Allow casting from F64 back to F32.
if (!resultType.isF16() && inputs.size() == 1 &&
inputs[0].getType().isF64())
return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
// Allow producing an i32 or i64 from nothing.
if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
inputs.empty())
return builder.create<TestTypeProducerOp>(loc, resultType);
// Allow producing an i64 from an integer.
if (resultType.isa<IntegerType>() && inputs.size() == 1 &&
inputs[0].getType().isa<IntegerType>())
return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
// Otherwise, fail.
return nullptr;
});
// Initialize the conversion target.
mlir::ConversionTarget target(getContext());
target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
return op.getType().isF64() || op.getType().isInteger(64);
});
target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
return converter.isSignatureLegal(op.getType()) &&
converter.isLegal(&op.getBody());
});
target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
// Allow casts from F64 to F32.
return (*op.operand_type_begin()).isF64() && op.getType().isF32();
});
// Initialize the set of rewrite patterns.
OwningRewritePatternList patterns;
patterns.insert<TestTypeConversionProducer>(converter, &getContext());
mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(),
converter);
if (failed(applyPartialConversion(getOperation(), target, patterns)))
signalPassFailure();
}
};
} // end anonymous namespace
namespace {
/// A rewriter pattern that tests that blocks can be merged.
struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(TestMergeBlocksOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
Block &firstBlock = op.body().front();
Operation *branchOp = firstBlock.getTerminator();
Block *secondBlock = &*(std::next(op.body().begin()));
auto succOperands = branchOp->getOperands();
SmallVector<Value, 2> replacements(succOperands);
rewriter.eraseOp(branchOp);
rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
rewriter.updateRootInPlace(op, [] {});
return success();
}
};
/// A rewrite pattern to tests the undo mechanism of blocks being merged.
struct TestUndoBlocksMerge : public ConversionPattern {
TestUndoBlocksMerge(MLIRContext *ctx)
: ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
Block &firstBlock = op->getRegion(0).front();
Operation *branchOp = firstBlock.getTerminator();
Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
rewriter.setInsertionPointToStart(secondBlock);
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
auto succOperands = branchOp->getOperands();
SmallVector<Value, 2> replacements(succOperands);
rewriter.eraseOp(branchOp);
rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
rewriter.updateRootInPlace(op, [] {});
return success();
}
};
/// A rewrite mechanism to inline the body of the op into its parent, when both
/// ops can have a single block.
struct TestMergeSingleBlockOps
: public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
using OpConversionPattern<
SingleBlockImplicitTerminatorOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(SingleBlockImplicitTerminatorOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
SingleBlockImplicitTerminatorOp parentOp =
op.getParentOfType<SingleBlockImplicitTerminatorOp>();
if (!parentOp)
return failure();
Block &innerBlock = op.region().front();
TerminatorOp innerTerminator =
cast<TerminatorOp>(innerBlock.getTerminator());
rewriter.mergeBlockBefore(&innerBlock, op);
rewriter.eraseOp(innerTerminator);
rewriter.eraseOp(op);
rewriter.updateRootInPlace(op, [] {});
return success();
}
};
struct TestMergeBlocksPatternDriver
: public PassWrapper<TestMergeBlocksPatternDriver,
OperationPass<ModuleOp>> {
void runOnOperation() override {
mlir::OwningRewritePatternList patterns;
MLIRContext *context = &getContext();
patterns
.insert<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
context);
ConversionTarget target(*context);
target.addLegalOp<FuncOp, ModuleOp, ModuleTerminatorOp, TerminatorOp,
TestBranchOp, TestTypeConsumerOp, TestTypeProducerOp,
TestReturnOp>();
target.addIllegalOp<ILLegalOpF>();
/// Expect the op to have a single block after legalization.
target.addDynamicallyLegalOp<TestMergeBlocksOp>(
[&](TestMergeBlocksOp op) -> bool {
return llvm::hasSingleElement(op.body());
});
/// Only allow `test.br` within test.merge_blocks op.
target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
return op.getParentOfType<TestMergeBlocksOp>();
});
/// Expect that all nested test.SingleBlockImplicitTerminator ops are
/// inlined.
target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
[&](SingleBlockImplicitTerminatorOp op) -> bool {
return !op.getParentOfType<SingleBlockImplicitTerminatorOp>();
});
DenseSet<Operation *> unlegalizedOps;
(void)applyPartialConversion(getOperation(), target, patterns,
&unlegalizedOps);
for (auto *op : unlegalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
}
};
} // namespace
//===----------------------------------------------------------------------===//
// PassRegistration
//===----------------------------------------------------------------------===//
namespace mlir {
void registerPatternsTestPass() {
PassRegistration<TestReturnTypeDriver>("test-return-type",
"Run return type functions");
PassRegistration<TestDerivedAttributeDriver>("test-derived-attr",
"Run test derived attributes");
PassRegistration<TestPatternDriver>("test-patterns",
"Run test dialect patterns");
PassRegistration<TestLegalizePatternDriver>(
"test-legalize-patterns", "Run test dialect legalization patterns", [] {
return std::make_unique<TestLegalizePatternDriver>(
legalizerConversionMode);
});
PassRegistration<TestRemappedValue>(
"test-remapped-value",
"Test public remapped value mechanism in ConversionPatternRewriter");
PassRegistration<TestUnknownRootOpDriver>(
"test-legalize-unknown-root-patterns",
"Test public remapped value mechanism in ConversionPatternRewriter");
PassRegistration<TestTypeConversionDriver>(
"test-legalize-type-conversion",
"Test various type conversion functionalities in DialectConversion");
PassRegistration<TestMergeBlocksPatternDriver>{
"test-merge-blocks",
"Test Merging operation in ConversionPatternRewriter"};
}
} // namespace mlir