affine.mlir 8.44 KB
// RUN: mlir-opt %s -convert-linalg-to-affine-loops | FileCheck %s

// Test that we can lower all the way to LLVM without crashing, don't check results here.
// RUN: mlir-opt %s -convert-linalg-to-affine-loops -convert-linalg-to-llvm -o=/dev/null 2>&1

// CHECK-DAG: #[[$strided3D:.*]] = affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0 * s1 + s0 + d1 * s2 + d2)>

// CHECK-DAG: #[[$stride2Dilation1:.*]] = affine_map<(d0, d1) -> (d0 * 2 + d1)>

// CHECK-DAG: #[[$clampMinMap:.*]] = affine_map<(d0) -> (d0, 0)>

func @matmul(%arg0: memref<?xi8>, %M: index, %N: index, %K: index) {
  %c0 = constant 0 : index
  %c1 = constant 1 : index
  %A = view %arg0[%c0][%M, %K] : memref<?xi8> to memref<?x?xf32>
  %B = view %arg0[%c0][%K, %N] : memref<?xi8> to memref<?x?xf32>
  %C = view %arg0[%c0][%M, %N] : memref<?xi8> to memref<?x?xf32>
  linalg.matmul ins(%A, %B: memref<?x?xf32>, memref<?x?xf32>)
               outs(%C: memref<?x?xf32>)
  return
}

// CHECK-LABEL: func @matmul(%{{.*}}: memref<?xi8>,
// CHECK-SAME: [[M:arg[0-9]+]]: index
// CHECK-SAME: [[N:arg[0-9]+]]: index
// CHECK-SAME: [[K:arg[0-9]+]]: index
//       CHECK: %[[A:.*]] = std.view %{{.*}}[{{.*}}] : memref<?xi8> to memref<?x?xf32>
//       CHECK: %[[B:.*]] = std.view %{{.*}}[{{.*}}] : memref<?xi8> to memref<?x?xf32>
//       CHECK: %[[C:.*]] = std.view %{{.*}}[{{.*}}] : memref<?xi8> to memref<?x?xf32>
//       CHECK: affine.for %{{.*}}  = 0 to %{{.*}} {
//       CHECK:   affine.for %{{.*}} = 0 to %{{.*}} {
//       CHECK:     affine.for %{{.*}} = 0 to %{{.*}} {
//   CHECK-DAG:       %[[a:.*]] = affine.load %[[A]][%{{.*}}, %{{.*}}] : memref<?x?xf32>
//   CHECK-DAG:       %[[b:.*]] = affine.load %[[B]][%{{.*}}, %{{.*}}] : memref<?x?xf32>
//   CHECK-DAG:       %[[inc:.*]] = mulf %[[a]], %[[b]] : f32
//   CHECK-DAG:       %[[c:.*]] = affine.load %[[C]][%{{.*}}, %{{.*}}] : memref<?x?xf32>
//   CHECK-DAG:       %[[res:.*]] = addf %[[c]], %[[inc]] : f32
//       CHECK:       affine.store %[[res]], %[[C]][%{{.*}}, %{{.*}}] : memref<?x?xf32>

func @conv_view3(%arg0: memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>, %arg1: memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>, %arg2: memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>) {
  linalg.conv(%arg0, %arg1, %arg2) {strides = [2]}: memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>, memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>, memref<?x?x?xf32, offset: ?, strides: [?, ?, 1]>
  return
}

// CHECK-LABEL: func @conv_view3(
//  CHECK: %{{.*}}: memref<?x?x?xf32, #[[$strided3D]]>, %{{.*}}: memref<?x?x?xf32, #[[$strided3D]]>, %{{.*}}: memref<?x?x?xf32, #[[$strided3D]]>) {
//       CHECK:   %[[Z0:.*]] = dim %arg0, %c0 : memref<?x?x?xf32, #[[$strided3D]]>
//       CHECK:   %[[Q:.*]] = dim %arg0, %c1 : memref<?x?x?xf32, #[[$strided3D]]>
//       CHECK:   %[[K:.*]] = dim %arg0, %c2 : memref<?x?x?xf32, #[[$strided3D]]>
//       CHECK:   %[[B:.*]] = dim %arg1, %c0 : memref<?x?x?xf32, #[[$strided3D]]>
//       CHECK:   %[[X0:.*]] = dim %arg2, %c1 : memref<?x?x?xf32, #[[$strided3D]]>
//       CHECK:   affine.for %{{.*}} = 0 to %[[B]] {
//       CHECK:     affine.for %{{.*}} = 0 to %[[X0]] {
//       CHECK:       affine.for %{{.*}} = 0 to %[[Z0]] {
//       CHECK:         affine.for %{{.*}} = 0 to %[[Q]] {
//       CHECK:           affine.for %{{.*}} = 0 to %[[K]] {
//       CHECK:            %[[SUM:.*]] = affine.apply #[[$stride2Dilation1]](%{{.*}}, %{{.*}})
//       No padding needed here; only affine loads.
//       CHECK-NEXT:       affine.load
//       CHECK-NEXT:       affine.load

func @conv_padding(%arg0: memref<?x?x?x?xf32>,
                   %arg1: memref<?x?x?x?xf32>,
                   %arg2: memref<?x?x?x?xf32>) {
  linalg.conv(%arg0, %arg1, %arg2) {dilations = [1, 1],
                                    padding = dense<[[0, 1], [1, 1]]> : tensor<2x2xi64>,
                                    strides = [1, 1]} :
    memref<?x?x?x?xf32>, memref<?x?x?x?xf32>, memref<?x?x?x?xf32>
  return
}
// CHECK-LABEL: func @conv_padding
//       CHECK: %{{.*}}: memref<?x?x?x?xf32>, %{{.*}}: memref<?x?x?x?xf32>, %{{.*}}: memref<?x?x?x?xf32>) {
//       CHECK:   %[[ZERO:.*]] = constant 0.000000e+00 : f32
//       CHECK:   %[[Z0:.*]] = dim %arg0, %c0 : memref<?x?x?x?xf32>
//       CHECK:   %[[Z1:.*]] = dim %arg0, %c1 : memref<?x?x?x?xf32>
//       CHECK:   %[[Q:.*]] =  dim %arg0, %c2 : memref<?x?x?x?xf32>
//       CHECK:   %[[K:.*]] =  dim %arg0, %c3 : memref<?x?x?x?xf32>
//       CHECK:   %[[B:.*]] =  dim %arg1, %c0 : memref<?x?x?x?xf32>
//       CHECK:   %[[X0:.*]] = dim %arg2, %c1 : memref<?x?x?x?xf32>
//       CHECK:   %[[X1:.*]] = dim %arg2, %c2 : memref<?x?x?x?xf32>
//       CHECK:   affine.for %{{.*}} = 0 to %[[B]] {
//       CHECK:     affine.for %{{.*}} = 0 to %[[X0]] {
//       CHECK:       affine.for %{{.*}} = 0 to %[[X1]] {
//       CHECK:         affine.for %{{.*}} = 0 to %[[Z0]] {
//       CHECK:           affine.for %{{.*}} = 0 to %[[Z1]] {
//       CHECK:             affine.for %{{.*}} = 0 to %[[Q]] {
//       CHECK:               affine.for %{{.*}} = 0 to %[[K]] {
//       CHECK:                 %[[SUM0:.*]] = affine.apply #{{.*}}(%{{.*}}, %{{.*}})
//       CHECK:                 %[[SUM1:.*]] = affine.apply #{{.*}}(%{{.*}}, %{{.*}})
//       CHECK:                 %[[IDX:.*]] = affine.max #[[$clampMinMap]](%[[SUM0]])
//       CHECK:                 %[[IDY:.*]] = affine.max #[[$clampMinMap]](%[[SUM1]])
// Padded conv involves an affine.max in the memory access and this is not
// allowed by affine.load. Use std.load in such cases.
//       CHECK:                 %{{.*}} = load %{{.*}}[%{{.*}}, %[[IDX]], %[[IDY]], %{{.*}}] : memref<?x?x?x?xf32>
//       CHECK:                 %{{.*}} = select %{{.*}}, %{{.*}}, %{{.*}} : f32
//       CHECK:                 %{{.*}} = affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?x?xf32>
//       CHECK:                 %{{.*}} = mulf %{{.*}}, %{{.*}} : f32
//       CHECK:                 %{{.*}} = affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?x?xf32>
//       CHECK:                 %{{.*}} = addf %{{.*}}, %{{.*}} : f32
//       CHECK:                 affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?x?xf32>

//----------------------------------------------------------------------------//
// Named ops to loops.
//----------------------------------------------------------------------------//
func @named_batch_matmul(%A: memref<?x?x?xf32>, %B: memref<?x?x?xf32>, %C: memref<?x?x?xf32>) {
  linalg.batch_matmul ins(%A, %B: memref<?x?x?xf32>, memref<?x?x?xf32>)
                     outs(%C : memref<?x?x?xf32>)
  return
}
// CHECK-LABEL: @named_batch_matmul
//  CHECK-SAME: %[[mA:[a-zA-Z0-9]+]]: memref<?x?x?xf32>
//  CHECK-SAME: %[[mB:[a-zA-Z0-9]+]]: memref<?x?x?xf32>
//  CHECK-SAME: %[[mC:[a-zA-Z0-9]+]]: memref<?x?x?xf32>
//       CHECK: %[[B:.*]] = dim %[[mA]], %c0 : memref<?x?x?xf32>
//       CHECK: %[[M:.*]] = dim %[[mA]], %c1 : memref<?x?x?xf32>
//       CHECK: %[[K:.*]] = dim %[[mA]], %c2 : memref<?x?x?xf32>
//       CHECK: %[[N:.*]] = dim %[[mB]], %c2 : memref<?x?x?xf32>
//       CHECK: affine.for %[[b:.*]] = 0 to %[[B]] {
//       CHECK:   affine.for %[[m:.*]] = 0 to %[[M]] {
//       CHECK:     affine.for %[[n:.*]] = 0 to %[[N]] {
//       CHECK:       affine.for %[[k:.*]] = 0 to %[[K]] {
//       CHECK:       %[[va:.*]] = affine.load %[[mA]][%[[b]], %[[m]], %[[k]]] : memref<?x?x?xf32>
//       CHECK:       %[[vb:.*]] = affine.load %[[mB]][%[[b]], %[[k]], %[[n]]] : memref<?x?x?xf32>
//       CHECK:       %[[vc:.*]] = affine.load %[[mC]][%[[b]], %[[m]], %[[n]]] : memref<?x?x?xf32>
//       CHECK:       %[[inc:.*]] = mulf %[[va]], %[[vb]] : f32
//       CHECK:       %[[res:.*]] = addf %[[vc]], %[[inc]] : f32
//       CHECK:       affine.store %[[res]], %[[mC]][%[[b]], %[[m]], %[[n]]] : memref<?x?x?xf32>

// CHECK-LABEL: func @pooling_max_min
func @pooling_max_min(%arg0: memref<?x?xf32>,
                      %arg1: memref<?x?xi32>,
                      %arg2: memref<?x?xf32>) {
  linalg.pooling_max(%arg0, %arg1, %arg2) { strides = [2, 1] }:
    memref<?x?xf32>, memref<?x?xi32>, memref<?x?xf32>
  linalg.pooling_min(%arg0, %arg1, %arg2) { strides = [2, 1] }:
    memref<?x?xf32>, memref<?x?xi32>, memref<?x?xf32>
  return
}
// This is a basic check to make sure the right load/stores are used. loops.mlir
// checks for the rest.
// CHECK:      affine.load
// CHECK-NEXT: affine.load
// CHECK-NEXT: cmpf
// CHECK-NEXT: select
// CHECK-NEXT: affine.store
// The min pooling body.
// CHECK:      affine.load
// CHECK-NEXT: affine.load
// CHECK-NEXT: cmpf
// CHECK-NEXT: select
// CHECK-NEXT: affine.store