SCCP.cpp
34.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This transformation pass performs a sparse conditional constant propagation
// in MLIR. It identifies values known to be constant, propagates that
// information throughout the IR, and replaces them. This is done with an
// optimisitic dataflow analysis that assumes that all values are constant until
// proven otherwise.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Dialect.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/Passes.h"
using namespace mlir;
namespace {
/// This class represents a single lattice value. A lattive value corresponds to
/// the various different states that a value in the SCCP dataflow anaylsis can
/// take. See 'Kind' below for more details on the different states a value can
/// take.
class LatticeValue {
enum Kind {
/// A value with a yet to be determined value. This state may be changed to
/// anything.
Unknown,
/// A value that is known to be a constant. This state may be changed to
/// overdefined.
Constant,
/// A value that cannot statically be determined to be a constant. This
/// state cannot be changed.
Overdefined
};
public:
/// Initialize a lattice value with "Unknown".
LatticeValue()
: constantAndTag(nullptr, Kind::Unknown), constantDialect(nullptr) {}
/// Initialize a lattice value with a constant.
LatticeValue(Attribute attr, Dialect *dialect)
: constantAndTag(attr, Kind::Constant), constantDialect(dialect) {}
/// Returns true if this lattice value is unknown.
bool isUnknown() const { return constantAndTag.getInt() == Kind::Unknown; }
/// Mark the lattice value as overdefined.
void markOverdefined() {
constantAndTag.setPointerAndInt(nullptr, Kind::Overdefined);
constantDialect = nullptr;
}
/// Returns true if the lattice is overdefined.
bool isOverdefined() const {
return constantAndTag.getInt() == Kind::Overdefined;
}
/// Mark the lattice value as constant.
void markConstant(Attribute value, Dialect *dialect) {
constantAndTag.setPointerAndInt(value, Kind::Constant);
constantDialect = dialect;
}
/// If this lattice is constant, return the constant. Returns nullptr
/// otherwise.
Attribute getConstant() const { return constantAndTag.getPointer(); }
/// If this lattice is constant, return the dialect to use when materializing
/// the constant.
Dialect *getConstantDialect() const {
assert(getConstant() && "expected valid constant");
return constantDialect;
}
/// Merge in the value of the 'rhs' lattice into this one. Returns true if the
/// lattice value changed.
bool meet(const LatticeValue &rhs) {
// If we are already overdefined, or rhs is unknown, there is nothing to do.
if (isOverdefined() || rhs.isUnknown())
return false;
// If we are unknown, just take the value of rhs.
if (isUnknown()) {
constantAndTag = rhs.constantAndTag;
constantDialect = rhs.constantDialect;
return true;
}
// Otherwise, if this value doesn't match rhs go straight to overdefined.
if (constantAndTag != rhs.constantAndTag) {
markOverdefined();
return true;
}
return false;
}
private:
/// The attribute value if this is a constant and the tag for the element
/// kind.
llvm::PointerIntPair<Attribute, 2, Kind> constantAndTag;
/// The dialect the constant originated from. This is only valid if the
/// lattice is a constant. This is not used as part of the key, and is only
/// needed to materialize the held constant if necessary.
Dialect *constantDialect;
};
/// This class contains various state used when computing the lattice of a
/// callable operation.
class CallableLatticeState {
public:
/// Build a lattice state with a given callable region, and a specified number
/// of results to be initialized to the default lattice value (Unknown).
CallableLatticeState(Region *callableRegion, unsigned numResults)
: callableArguments(callableRegion->getArguments()),
resultLatticeValues(numResults) {}
/// Returns the arguments to the callable region.
Block::BlockArgListType getCallableArguments() const {
return callableArguments;
}
/// Returns the lattice value for the results of the callable region.
MutableArrayRef<LatticeValue> getResultLatticeValues() {
return resultLatticeValues;
}
/// Add a call to this callable. This is only used if the callable defines a
/// symbol.
void addSymbolCall(Operation *op) { symbolCalls.push_back(op); }
/// Return the calls that reference this callable. This is only used
/// if the callable defines a symbol.
ArrayRef<Operation *> getSymbolCalls() const { return symbolCalls; }
private:
/// The arguments of the callable region.
Block::BlockArgListType callableArguments;
/// The lattice state for each of the results of this region. The return
/// values of the callable aren't SSA values, so we need to track them
/// separately.
SmallVector<LatticeValue, 4> resultLatticeValues;
/// The calls referencing this callable if this callable defines a symbol.
/// This removes the need to recompute symbol references during propagation.
/// Value based references are trivial to resolve, so they can be done
/// in-place.
SmallVector<Operation *, 4> symbolCalls;
};
/// This class represents the solver for the SCCP analysis. This class acts as
/// the propagation engine for computing which values form constants.
class SCCPSolver {
public:
/// Initialize the solver with the given top-level operation.
SCCPSolver(Operation *op);
/// Run the solver until it converges.
void solve();
/// Rewrite the given regions using the computing analysis. This replaces the
/// uses of all values that have been computed to be constant, and erases as
/// many newly dead operations.
void rewrite(MLIRContext *context, MutableArrayRef<Region> regions);
private:
/// Initialize the set of symbol defining callables that can have their
/// arguments and results tracked. 'op' is the top-level operation that SCCP
/// is operating on.
void initializeSymbolCallables(Operation *op);
/// Replace the given value with a constant if the corresponding lattice
/// represents a constant. Returns success if the value was replaced, failure
/// otherwise.
LogicalResult replaceWithConstant(OpBuilder &builder, OperationFolder &folder,
Value value);
/// Visit the users of the given IR that reside within executable blocks.
template <typename T>
void visitUsers(T &value) {
for (Operation *user : value.getUsers())
if (isBlockExecutable(user->getBlock()))
visitOperation(user);
}
/// Visit the given operation and compute any necessary lattice state.
void visitOperation(Operation *op);
/// Visit the given call operation and compute any necessary lattice state.
void visitCallOperation(CallOpInterface op);
/// Visit the given callable operation and compute any necessary lattice
/// state.
void visitCallableOperation(Operation *op);
/// Visit the given operation, which defines regions, and compute any
/// necessary lattice state. This also resolves the lattice state of both the
/// operation results and any nested regions.
void visitRegionOperation(Operation *op,
ArrayRef<Attribute> constantOperands);
/// Visit the given set of region successors, computing any necessary lattice
/// state. The provided function returns the input operands to the region at
/// the given index. If the index is 'None', the input operands correspond to
/// the parent operation results.
void visitRegionSuccessors(
Operation *parentOp, ArrayRef<RegionSuccessor> regionSuccessors,
function_ref<OperandRange(Optional<unsigned>)> getInputsForRegion);
/// Visit the given terminator operation and compute any necessary lattice
/// state.
void visitTerminatorOperation(Operation *op,
ArrayRef<Attribute> constantOperands);
/// Visit the given terminator operation that exits a callable region. These
/// are terminators with no CFG successors.
void visitCallableTerminatorOperation(Operation *callable,
Operation *terminator);
/// Visit the given block and compute any necessary lattice state.
void visitBlock(Block *block);
/// Visit argument #'i' of the given block and compute any necessary lattice
/// state.
void visitBlockArgument(Block *block, int i);
/// Mark the given block as executable. Returns false if the block was already
/// marked executable.
bool markBlockExecutable(Block *block);
/// Returns true if the given block is executable.
bool isBlockExecutable(Block *block) const;
/// Mark the edge between 'from' and 'to' as executable.
void markEdgeExecutable(Block *from, Block *to);
/// Return true if the edge between 'from' and 'to' is executable.
bool isEdgeExecutable(Block *from, Block *to) const;
/// Mark the given value as overdefined. This means that we cannot refine a
/// specific constant for this value.
void markOverdefined(Value value);
/// Mark all of the given values as overdefined.
template <typename ValuesT>
void markAllOverdefined(ValuesT values) {
for (auto value : values)
markOverdefined(value);
}
template <typename ValuesT>
void markAllOverdefined(Operation *op, ValuesT values) {
markAllOverdefined(values);
opWorklist.push_back(op);
}
template <typename ValuesT>
void markAllOverdefinedAndVisitUsers(ValuesT values) {
for (auto value : values) {
auto &lattice = latticeValues[value];
if (!lattice.isOverdefined()) {
lattice.markOverdefined();
visitUsers(value);
}
}
}
/// Returns true if the given value was marked as overdefined.
bool isOverdefined(Value value) const;
/// Merge in the given lattice 'from' into the lattice 'to'. 'owner'
/// corresponds to the parent operation of 'to'.
void meet(Operation *owner, LatticeValue &to, const LatticeValue &from);
/// The lattice for each SSA value.
DenseMap<Value, LatticeValue> latticeValues;
/// The set of blocks that are known to execute, or are intrinsically live.
SmallPtrSet<Block *, 16> executableBlocks;
/// The set of control flow edges that are known to execute.
DenseSet<std::pair<Block *, Block *>> executableEdges;
/// A worklist containing blocks that need to be processed.
SmallVector<Block *, 64> blockWorklist;
/// A worklist of operations that need to be processed.
SmallVector<Operation *, 64> opWorklist;
/// The callable operations that have their argument/result state tracked.
DenseMap<Operation *, CallableLatticeState> callableLatticeState;
/// A map between a call operation and the resolved symbol callable. This
/// avoids re-resolving symbol references during propagation. Value based
/// callables are trivial to resolve, so they can be done in-place.
DenseMap<Operation *, Operation *> callToSymbolCallable;
};
} // end anonymous namespace
SCCPSolver::SCCPSolver(Operation *op) {
/// Initialize the solver with the regions within this operation.
for (Region ®ion : op->getRegions()) {
if (region.empty())
continue;
Block *entryBlock = ®ion.front();
// Mark the entry block as executable.
markBlockExecutable(entryBlock);
// The values passed to these regions are invisible, so mark any arguments
// as overdefined.
markAllOverdefined(entryBlock->getArguments());
}
initializeSymbolCallables(op);
}
void SCCPSolver::solve() {
while (!blockWorklist.empty() || !opWorklist.empty()) {
// Process any operations in the op worklist.
while (!opWorklist.empty())
visitUsers(*opWorklist.pop_back_val());
// Process any blocks in the block worklist.
while (!blockWorklist.empty())
visitBlock(blockWorklist.pop_back_val());
}
}
void SCCPSolver::rewrite(MLIRContext *context,
MutableArrayRef<Region> initialRegions) {
SmallVector<Block *, 8> worklist;
auto addToWorklist = [&](MutableArrayRef<Region> regions) {
for (Region ®ion : regions)
for (Block &block : region)
if (isBlockExecutable(&block))
worklist.push_back(&block);
};
// An operation folder used to create and unique constants.
OperationFolder folder(context);
OpBuilder builder(context);
addToWorklist(initialRegions);
while (!worklist.empty()) {
Block *block = worklist.pop_back_val();
// Replace any block arguments with constants.
builder.setInsertionPointToStart(block);
for (BlockArgument arg : block->getArguments())
replaceWithConstant(builder, folder, arg);
for (Operation &op : llvm::make_early_inc_range(*block)) {
builder.setInsertionPoint(&op);
// Replace any result with constants.
bool replacedAll = op.getNumResults() != 0;
for (Value res : op.getResults())
replacedAll &= succeeded(replaceWithConstant(builder, folder, res));
// If all of the results of the operation were replaced, try to erase
// the operation completely.
if (replacedAll && wouldOpBeTriviallyDead(&op)) {
assert(op.use_empty() && "expected all uses to be replaced");
op.erase();
continue;
}
// Add any the regions of this operation to the worklist.
addToWorklist(op.getRegions());
}
}
}
void SCCPSolver::initializeSymbolCallables(Operation *op) {
// Initialize the set of symbol callables that can have their state tracked.
// This tracks which symbol callable operations we can propagate within and
// out of.
auto walkFn = [&](Operation *symTable, bool allUsesVisible) {
Region &symbolTableRegion = symTable->getRegion(0);
Block *symbolTableBlock = &symbolTableRegion.front();
for (auto callable : symbolTableBlock->getOps<CallableOpInterface>()) {
// We won't be able to track external callables.
Region *callableRegion = callable.getCallableRegion();
if (!callableRegion)
continue;
// We only care about symbol defining callables here.
auto symbol = dyn_cast<SymbolOpInterface>(callable.getOperation());
if (!symbol)
continue;
callableLatticeState.try_emplace(callable, callableRegion,
callable.getCallableResults().size());
// If not all of the uses of this symbol are visible, we can't track the
// state of the arguments.
if (symbol.isPublic() || (!allUsesVisible && symbol.isNested()))
markAllOverdefined(callableRegion->getArguments());
}
if (callableLatticeState.empty())
return;
// After computing the valid callables, walk any symbol uses to check
// for non-call references. We won't be able to track the lattice state
// for arguments to these callables, as we can't guarantee that we can see
// all of its calls.
Optional<SymbolTable::UseRange> uses =
SymbolTable::getSymbolUses(&symbolTableRegion);
if (!uses) {
// If we couldn't gather the symbol uses, conservatively assume that
// we can't track information for any nested symbols.
op->walk([&](CallableOpInterface op) { callableLatticeState.erase(op); });
return;
}
for (const SymbolTable::SymbolUse &use : *uses) {
// If the use is a call, track it to avoid the need to recompute the
// reference later.
if (auto callOp = dyn_cast<CallOpInterface>(use.getUser())) {
Operation *symCallable = callOp.resolveCallable();
auto callableLatticeIt = callableLatticeState.find(symCallable);
if (callableLatticeIt != callableLatticeState.end()) {
callToSymbolCallable.try_emplace(callOp, symCallable);
// We only need to record the call in the lattice if it produces any
// values.
if (callOp.getOperation()->getNumResults())
callableLatticeIt->second.addSymbolCall(callOp);
}
continue;
}
// This use isn't a call, so don't we know all of the callers.
auto *symbol = SymbolTable::lookupSymbolIn(op, use.getSymbolRef());
auto it = callableLatticeState.find(symbol);
if (it != callableLatticeState.end())
markAllOverdefined(it->second.getCallableArguments());
}
};
SymbolTable::walkSymbolTables(op, /*allSymUsesVisible=*/!op->getBlock(),
walkFn);
}
LogicalResult SCCPSolver::replaceWithConstant(OpBuilder &builder,
OperationFolder &folder,
Value value) {
auto it = latticeValues.find(value);
auto attr = it == latticeValues.end() ? nullptr : it->second.getConstant();
if (!attr)
return failure();
// Attempt to materialize a constant for the given value.
Dialect *dialect = it->second.getConstantDialect();
Value constant = folder.getOrCreateConstant(builder, dialect, attr,
value.getType(), value.getLoc());
if (!constant)
return failure();
value.replaceAllUsesWith(constant);
latticeValues.erase(it);
return success();
}
void SCCPSolver::visitOperation(Operation *op) {
// Collect all of the constant operands feeding into this operation. If any
// are not ready to be resolved, bail out and wait for them to resolve.
SmallVector<Attribute, 8> operandConstants;
operandConstants.reserve(op->getNumOperands());
for (Value operand : op->getOperands()) {
// Make sure all of the operands are resolved first.
auto &operandLattice = latticeValues[operand];
if (operandLattice.isUnknown())
return;
operandConstants.push_back(operandLattice.getConstant());
}
// If this is a terminator operation, process any control flow lattice state.
if (op->isKnownTerminator())
visitTerminatorOperation(op, operandConstants);
// Process call operations. The call visitor processes result values, so we
// can exit afterwards.
if (CallOpInterface call = dyn_cast<CallOpInterface>(op))
return visitCallOperation(call);
// Process callable operations. These are specially handled region operations
// that track dataflow via calls.
if (isa<CallableOpInterface>(op))
return visitCallableOperation(op);
// Process region holding operations. The region visitor processes result
// values, so we can exit afterwards.
if (op->getNumRegions())
return visitRegionOperation(op, operandConstants);
// If this op produces no results, it can't produce any constants.
if (op->getNumResults() == 0)
return;
// If all of the results of this operation are already overdefined, bail out
// early.
auto isOverdefinedFn = [&](Value value) { return isOverdefined(value); };
if (llvm::all_of(op->getResults(), isOverdefinedFn))
return;
// Save the original operands and attributes just in case the operation folds
// in-place. The constant passed in may not correspond to the real runtime
// value, so in-place updates are not allowed.
SmallVector<Value, 8> originalOperands(op->getOperands());
MutableDictionaryAttr originalAttrs = op->getMutableAttrDict();
// Simulate the result of folding this operation to a constant. If folding
// fails or was an in-place fold, mark the results as overdefined.
SmallVector<OpFoldResult, 8> foldResults;
foldResults.reserve(op->getNumResults());
if (failed(op->fold(operandConstants, foldResults)))
return markAllOverdefined(op, op->getResults());
// If the folding was in-place, mark the results as overdefined and reset the
// operation. We don't allow in-place folds as the desire here is for
// simulated execution, and not general folding.
if (foldResults.empty()) {
op->setOperands(originalOperands);
op->setAttrs(originalAttrs);
return markAllOverdefined(op, op->getResults());
}
// Merge the fold results into the lattice for this operation.
assert(foldResults.size() == op->getNumResults() && "invalid result size");
Dialect *opDialect = op->getDialect();
for (unsigned i = 0, e = foldResults.size(); i != e; ++i) {
LatticeValue &resultLattice = latticeValues[op->getResult(i)];
// Merge in the result of the fold, either a constant or a value.
OpFoldResult foldResult = foldResults[i];
if (Attribute foldAttr = foldResult.dyn_cast<Attribute>())
meet(op, resultLattice, LatticeValue(foldAttr, opDialect));
else
meet(op, resultLattice, latticeValues[foldResult.get<Value>()]);
}
}
void SCCPSolver::visitCallableOperation(Operation *op) {
// Mark the regions as executable.
bool isTrackingLatticeState = callableLatticeState.count(op);
for (Region ®ion : op->getRegions()) {
if (region.empty())
continue;
Block *entryBlock = ®ion.front();
markBlockExecutable(entryBlock);
// If we aren't tracking lattice state for this callable, mark all of the
// region arguments as overdefined.
if (!isTrackingLatticeState)
markAllOverdefined(entryBlock->getArguments());
}
// TODO: Add support for non-symbol callables when necessary. If the callable
// has non-call uses we would mark overdefined, otherwise allow for
// propagating the return values out.
markAllOverdefined(op, op->getResults());
}
void SCCPSolver::visitCallOperation(CallOpInterface op) {
ResultRange callResults = op.getOperation()->getResults();
// Resolve the callable operation for this call.
Operation *callableOp = nullptr;
if (Value callableValue = op.getCallableForCallee().dyn_cast<Value>())
callableOp = callableValue.getDefiningOp();
else
callableOp = callToSymbolCallable.lookup(op);
// The callable of this call can't be resolved, mark any results overdefined.
if (!callableOp)
return markAllOverdefined(op, callResults);
// If this callable is tracking state, merge the argument operands with the
// arguments of the callable.
auto callableLatticeIt = callableLatticeState.find(callableOp);
if (callableLatticeIt == callableLatticeState.end())
return markAllOverdefined(op, callResults);
OperandRange callOperands = op.getArgOperands();
auto callableArgs = callableLatticeIt->second.getCallableArguments();
for (auto it : llvm::zip(callOperands, callableArgs)) {
BlockArgument callableArg = std::get<1>(it);
if (latticeValues[callableArg].meet(latticeValues[std::get<0>(it)]))
visitUsers(callableArg);
}
// Merge in the lattice state for the callable results as well.
auto callableResults = callableLatticeIt->second.getResultLatticeValues();
for (auto it : llvm::zip(callResults, callableResults))
meet(/*owner=*/op, /*to=*/latticeValues[std::get<0>(it)],
/*from=*/std::get<1>(it));
}
void SCCPSolver::visitRegionOperation(Operation *op,
ArrayRef<Attribute> constantOperands) {
// Check to see if we can reason about the internal control flow of this
// region operation.
auto regionInterface = dyn_cast<RegionBranchOpInterface>(op);
if (!regionInterface) {
// If we can't, conservatively mark all regions as executable.
for (Region ®ion : op->getRegions()) {
if (region.empty())
continue;
Block *entryBlock = ®ion.front();
markBlockExecutable(entryBlock);
markAllOverdefined(entryBlock->getArguments());
}
// Don't try to simulate the results of a region operation as we can't
// guarantee that folding will be out-of-place. We don't allow in-place
// folds as the desire here is for simulated execution, and not general
// folding.
return markAllOverdefined(op, op->getResults());
}
// Check to see which regions are executable.
SmallVector<RegionSuccessor, 1> successors;
regionInterface.getSuccessorRegions(/*index=*/llvm::None, constantOperands,
successors);
// If the interface identified that no region will be executed. Mark
// any results of this operation as overdefined, as we can't reason about
// them.
// TODO: If we had an interface to detect pass through operands, we could
// resolve some results based on the lattice state of the operands. We could
// also allow for the parent operation to have itself as a region successor.
if (successors.empty())
return markAllOverdefined(op, op->getResults());
return visitRegionSuccessors(op, successors, [&](Optional<unsigned> index) {
assert(index && "expected valid region index");
return regionInterface.getSuccessorEntryOperands(*index);
});
}
void SCCPSolver::visitRegionSuccessors(
Operation *parentOp, ArrayRef<RegionSuccessor> regionSuccessors,
function_ref<OperandRange(Optional<unsigned>)> getInputsForRegion) {
for (const RegionSuccessor &it : regionSuccessors) {
Region *region = it.getSuccessor();
ValueRange succArgs = it.getSuccessorInputs();
// Check to see if this is the parent operation.
if (!region) {
ResultRange results = parentOp->getResults();
if (llvm::all_of(results, [&](Value res) { return isOverdefined(res); }))
continue;
// Mark the results outside of the input range as overdefined.
if (succArgs.size() != results.size()) {
opWorklist.push_back(parentOp);
if (succArgs.empty())
return markAllOverdefined(results);
unsigned firstResIdx = succArgs[0].cast<OpResult>().getResultNumber();
markAllOverdefined(results.take_front(firstResIdx));
markAllOverdefined(results.drop_front(firstResIdx + succArgs.size()));
}
// Update the lattice for any operation results.
OperandRange operands = getInputsForRegion(/*index=*/llvm::None);
for (auto it : llvm::zip(succArgs, operands))
meet(parentOp, latticeValues[std::get<0>(it)],
latticeValues[std::get<1>(it)]);
return;
}
assert(!region->empty() && "expected region to be non-empty");
Block *entryBlock = ®ion->front();
markBlockExecutable(entryBlock);
// If all of the arguments are already overdefined, the arguments have
// already been fully resolved.
auto arguments = entryBlock->getArguments();
if (llvm::all_of(arguments, [&](Value arg) { return isOverdefined(arg); }))
continue;
// Mark any arguments that do not receive inputs as overdefined, we won't be
// able to discern if they are constant.
if (succArgs.size() != arguments.size()) {
if (succArgs.empty()) {
markAllOverdefined(arguments);
continue;
}
unsigned firstArgIdx = succArgs[0].cast<BlockArgument>().getArgNumber();
markAllOverdefinedAndVisitUsers(arguments.take_front(firstArgIdx));
markAllOverdefinedAndVisitUsers(
arguments.drop_front(firstArgIdx + succArgs.size()));
}
// Update the lattice for arguments that have inputs from the predecessor.
OperandRange succOperands = getInputsForRegion(region->getRegionNumber());
for (auto it : llvm::zip(succArgs, succOperands)) {
LatticeValue &argLattice = latticeValues[std::get<0>(it)];
if (argLattice.meet(latticeValues[std::get<1>(it)]))
visitUsers(std::get<0>(it));
}
}
}
void SCCPSolver::visitTerminatorOperation(
Operation *op, ArrayRef<Attribute> constantOperands) {
// If this operation has no successors, we treat it as an exiting terminator.
if (op->getNumSuccessors() == 0) {
Region *parentRegion = op->getParentRegion();
Operation *parentOp = parentRegion->getParentOp();
// Check to see if this is a terminator for a callable region.
if (isa<CallableOpInterface>(parentOp))
return visitCallableTerminatorOperation(parentOp, op);
// Otherwise, check to see if the parent tracks region control flow.
auto regionInterface = dyn_cast<RegionBranchOpInterface>(parentOp);
if (!regionInterface || !isBlockExecutable(parentOp->getBlock()))
return;
// Query the set of successors from the current region.
SmallVector<RegionSuccessor, 1> regionSuccessors;
regionInterface.getSuccessorRegions(parentRegion->getRegionNumber(),
constantOperands, regionSuccessors);
if (regionSuccessors.empty())
return;
// If this terminator is not "region-like", conservatively mark all of the
// successor values as overdefined.
if (!op->hasTrait<OpTrait::ReturnLike>()) {
for (auto &it : regionSuccessors)
markAllOverdefinedAndVisitUsers(it.getSuccessorInputs());
return;
}
// Otherwise, propagate the operand lattice states to each of the
// successors.
OperandRange operands = op->getOperands();
return visitRegionSuccessors(parentOp, regionSuccessors,
[&](Optional<unsigned>) { return operands; });
}
// Try to resolve to a specific successor with the constant operands.
if (auto branch = dyn_cast<BranchOpInterface>(op)) {
if (Block *singleSucc = branch.getSuccessorForOperands(constantOperands)) {
markEdgeExecutable(op->getBlock(), singleSucc);
return;
}
}
// Otherwise, conservatively treat all edges as executable.
Block *block = op->getBlock();
for (Block *succ : op->getSuccessors())
markEdgeExecutable(block, succ);
}
void SCCPSolver::visitCallableTerminatorOperation(Operation *callable,
Operation *terminator) {
// If there are no exiting values, we have nothing to track.
if (terminator->getNumOperands() == 0)
return;
// If this callable isn't tracking any lattice state there is nothing to do.
auto latticeIt = callableLatticeState.find(callable);
if (latticeIt == callableLatticeState.end())
return;
assert(callable->getNumResults() == 0 && "expected symbol callable");
// If this terminator is not "return-like", conservatively mark all of the
// call-site results as overdefined.
auto callableResultLattices = latticeIt->second.getResultLatticeValues();
if (!terminator->hasTrait<OpTrait::ReturnLike>()) {
for (auto &it : callableResultLattices)
it.markOverdefined();
for (Operation *call : latticeIt->second.getSymbolCalls())
markAllOverdefined(call, call->getResults());
return;
}
// Merge the terminator operands into the results.
bool anyChanged = false;
for (auto it : llvm::zip(terminator->getOperands(), callableResultLattices))
anyChanged |= std::get<1>(it).meet(latticeValues[std::get<0>(it)]);
if (!anyChanged)
return;
// If any of the result lattices changed, update the callers.
for (Operation *call : latticeIt->second.getSymbolCalls())
for (auto it : llvm::zip(call->getResults(), callableResultLattices))
meet(call, latticeValues[std::get<0>(it)], std::get<1>(it));
}
void SCCPSolver::visitBlock(Block *block) {
// If the block is not the entry block we need to compute the lattice state
// for the block arguments. Entry block argument lattices are computed
// elsewhere, such as when visiting the parent operation.
if (!block->isEntryBlock()) {
for (int i : llvm::seq<int>(0, block->getNumArguments()))
visitBlockArgument(block, i);
}
// Visit all of the operations within the block.
for (Operation &op : *block)
visitOperation(&op);
}
void SCCPSolver::visitBlockArgument(Block *block, int i) {
BlockArgument arg = block->getArgument(i);
LatticeValue &argLattice = latticeValues[arg];
if (argLattice.isOverdefined())
return;
bool updatedLattice = false;
for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) {
Block *pred = *it;
// We only care about this predecessor if it is going to execute.
if (!isEdgeExecutable(pred, block))
continue;
// Try to get the operand forwarded by the predecessor. If we can't reason
// about the terminator of the predecessor, mark overdefined.
Optional<OperandRange> branchOperands;
if (auto branch = dyn_cast<BranchOpInterface>(pred->getTerminator()))
branchOperands = branch.getSuccessorOperands(it.getSuccessorIndex());
if (!branchOperands) {
updatedLattice = true;
argLattice.markOverdefined();
break;
}
// If the operand hasn't been resolved, it is unknown which can merge with
// anything.
auto operandLattice = latticeValues.find((*branchOperands)[i]);
if (operandLattice == latticeValues.end())
continue;
// Otherwise, meet the two lattice values.
updatedLattice |= argLattice.meet(operandLattice->second);
if (argLattice.isOverdefined())
break;
}
// If the lattice was updated, visit any executable users of the argument.
if (updatedLattice)
visitUsers(arg);
}
bool SCCPSolver::markBlockExecutable(Block *block) {
bool marked = executableBlocks.insert(block).second;
if (marked)
blockWorklist.push_back(block);
return marked;
}
bool SCCPSolver::isBlockExecutable(Block *block) const {
return executableBlocks.count(block);
}
void SCCPSolver::markEdgeExecutable(Block *from, Block *to) {
if (!executableEdges.insert(std::make_pair(from, to)).second)
return;
// Mark the destination as executable, and reprocess its arguments if it was
// already executable.
if (!markBlockExecutable(to)) {
for (int i : llvm::seq<int>(0, to->getNumArguments()))
visitBlockArgument(to, i);
}
}
bool SCCPSolver::isEdgeExecutable(Block *from, Block *to) const {
return executableEdges.count(std::make_pair(from, to));
}
void SCCPSolver::markOverdefined(Value value) {
latticeValues[value].markOverdefined();
}
bool SCCPSolver::isOverdefined(Value value) const {
auto it = latticeValues.find(value);
return it != latticeValues.end() && it->second.isOverdefined();
}
void SCCPSolver::meet(Operation *owner, LatticeValue &to,
const LatticeValue &from) {
if (to.meet(from))
opWorklist.push_back(owner);
}
//===----------------------------------------------------------------------===//
// SCCP Pass
//===----------------------------------------------------------------------===//
namespace {
struct SCCP : public SCCPBase<SCCP> {
void runOnOperation() override;
};
} // end anonymous namespace
void SCCP::runOnOperation() {
Operation *op = getOperation();
// Solve for SCCP constraints within nested regions.
SCCPSolver solver(op);
solver.solve();
// Cleanup any operations using the solver analysis.
solver.rewrite(&getContext(), op->getRegions());
}
std::unique_ptr<Pass> mlir::createSCCPPass() {
return std::make_unique<SCCP>();
}