NormalizeMemRefs.cpp
18.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
//===- NormalizeMemRefs.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an interprocedural pass to normalize memrefs to have
// identity layout maps.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/SmallSet.h"
#define DEBUG_TYPE "normalize-memrefs"
using namespace mlir;
namespace {
/// All memrefs passed across functions with non-trivial layout maps are
/// converted to ones with trivial identity layout ones.
/// If all the memref types/uses in a function are normalizable, we treat
/// such functions as normalizable. Also, if a normalizable function is known
/// to call a non-normalizable function, we treat that function as
/// non-normalizable as well. We assume external functions to be normalizable.
struct NormalizeMemRefs : public NormalizeMemRefsBase<NormalizeMemRefs> {
void runOnOperation() override;
void normalizeFuncOpMemRefs(FuncOp funcOp, ModuleOp moduleOp);
bool areMemRefsNormalizable(FuncOp funcOp);
void updateFunctionSignature(FuncOp funcOp, ModuleOp moduleOp);
void setCalleesAndCallersNonNormalizable(FuncOp funcOp, ModuleOp moduleOp,
DenseSet<FuncOp> &normalizableFuncs);
};
} // end anonymous namespace
std::unique_ptr<OperationPass<ModuleOp>> mlir::createNormalizeMemRefsPass() {
return std::make_unique<NormalizeMemRefs>();
}
void NormalizeMemRefs::runOnOperation() {
LLVM_DEBUG(llvm::dbgs() << "Normalizing Memrefs...\n");
ModuleOp moduleOp = getOperation();
// We maintain all normalizable FuncOps in a DenseSet. It is initialized
// with all the functions within a module and then functions which are not
// normalizable are removed from this set.
// TODO: Change this to work on FuncLikeOp once there is an operation
// interface for it.
DenseSet<FuncOp> normalizableFuncs;
// Initialize `normalizableFuncs` with all the functions within a module.
moduleOp.walk([&](FuncOp funcOp) { normalizableFuncs.insert(funcOp); });
// Traverse through all the functions applying a filter which determines
// whether that function is normalizable or not. All callers/callees of
// a non-normalizable function will also become non-normalizable even if
// they aren't passing any or specific non-normalizable memrefs. So,
// functions which calls or get called by a non-normalizable becomes non-
// normalizable functions themselves.
moduleOp.walk([&](FuncOp funcOp) {
if (normalizableFuncs.contains(funcOp)) {
if (!areMemRefsNormalizable(funcOp)) {
LLVM_DEBUG(llvm::dbgs()
<< "@" << funcOp.getName()
<< " contains ops that cannot normalize MemRefs\n");
// Since this function is not normalizable, we set all the caller
// functions and the callees of this function as not normalizable.
// TODO: Drop this conservative assumption in the future.
setCalleesAndCallersNonNormalizable(funcOp, moduleOp,
normalizableFuncs);
}
}
});
LLVM_DEBUG(llvm::dbgs() << "Normalizing " << normalizableFuncs.size()
<< " functions\n");
// Those functions which can be normalized are subjected to normalization.
for (FuncOp &funcOp : normalizableFuncs)
normalizeFuncOpMemRefs(funcOp, moduleOp);
}
/// Check whether all the uses of oldMemRef are either dereferencing uses or the
/// op is of type : DeallocOp, CallOp or ReturnOp. Only if these constraints
/// are satisfied will the value become a candidate for replacement.
/// TODO: Extend this for DimOps.
static bool isMemRefNormalizable(Value::user_range opUsers) {
if (llvm::any_of(opUsers, [](Operation *op) {
if (op->hasTrait<OpTrait::MemRefsNormalizable>())
return false;
return true;
}))
return false;
return true;
}
/// Set all the calling functions and the callees of the function as not
/// normalizable.
void NormalizeMemRefs::setCalleesAndCallersNonNormalizable(
FuncOp funcOp, ModuleOp moduleOp, DenseSet<FuncOp> &normalizableFuncs) {
if (!normalizableFuncs.contains(funcOp))
return;
LLVM_DEBUG(
llvm::dbgs() << "@" << funcOp.getName()
<< " calls or is called by non-normalizable function\n");
normalizableFuncs.erase(funcOp);
// Caller of the function.
Optional<SymbolTable::UseRange> symbolUses = funcOp.getSymbolUses(moduleOp);
for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
// TODO: Extend this for ops that are FunctionLike. This would require
// creating an OpInterface for FunctionLike ops.
FuncOp parentFuncOp = symbolUse.getUser()->getParentOfType<FuncOp>();
for (FuncOp &funcOp : normalizableFuncs) {
if (parentFuncOp == funcOp) {
setCalleesAndCallersNonNormalizable(funcOp, moduleOp,
normalizableFuncs);
break;
}
}
}
// Functions called by this function.
funcOp.walk([&](CallOp callOp) {
StringRef callee = callOp.getCallee();
for (FuncOp &funcOp : normalizableFuncs) {
// We compare FuncOp and callee's name.
if (callee == funcOp.getName()) {
setCalleesAndCallersNonNormalizable(funcOp, moduleOp,
normalizableFuncs);
break;
}
}
});
}
/// Check whether all the uses of AllocOps, CallOps and function arguments of a
/// function are either of dereferencing type or are uses in: DeallocOp, CallOp
/// or ReturnOp. Only if these constraints are satisfied will the function
/// become a candidate for normalization. We follow a conservative approach here
/// wherein even if the non-normalizable memref is not a part of the function's
/// argument or return type, we still label the entire function as
/// non-normalizable. We assume external functions to be normalizable.
bool NormalizeMemRefs::areMemRefsNormalizable(FuncOp funcOp) {
// We assume external functions to be normalizable.
if (funcOp.isExternal())
return true;
if (funcOp
.walk([&](AllocOp allocOp) -> WalkResult {
Value oldMemRef = allocOp.getResult();
if (!isMemRefNormalizable(oldMemRef.getUsers()))
return WalkResult::interrupt();
return WalkResult::advance();
})
.wasInterrupted())
return false;
if (funcOp
.walk([&](CallOp callOp) -> WalkResult {
for (unsigned resIndex :
llvm::seq<unsigned>(0, callOp.getNumResults())) {
Value oldMemRef = callOp.getResult(resIndex);
if (oldMemRef.getType().isa<MemRefType>())
if (!isMemRefNormalizable(oldMemRef.getUsers()))
return WalkResult::interrupt();
}
return WalkResult::advance();
})
.wasInterrupted())
return false;
for (unsigned argIndex : llvm::seq<unsigned>(0, funcOp.getNumArguments())) {
BlockArgument oldMemRef = funcOp.getArgument(argIndex);
if (oldMemRef.getType().isa<MemRefType>())
if (!isMemRefNormalizable(oldMemRef.getUsers()))
return false;
}
return true;
}
/// Fetch the updated argument list and result of the function and update the
/// function signature. This updates the function's return type at the caller
/// site and in case the return type is a normalized memref then it updates
/// the calling function's signature.
/// TODO: An update to the calling function signature is required only if the
/// returned value is in turn used in ReturnOp of the calling function.
void NormalizeMemRefs::updateFunctionSignature(FuncOp funcOp,
ModuleOp moduleOp) {
FunctionType functionType = funcOp.getType();
SmallVector<Type, 4> resultTypes;
FunctionType newFuncType;
resultTypes = llvm::to_vector<4>(functionType.getResults());
// External function's signature was already updated in
// 'normalizeFuncOpMemRefs()'.
if (!funcOp.isExternal()) {
SmallVector<Type, 8> argTypes;
for (const auto &argEn : llvm::enumerate(funcOp.getArguments()))
argTypes.push_back(argEn.value().getType());
// Traverse ReturnOps to check if an update to the return type in the
// function signature is required.
funcOp.walk([&](ReturnOp returnOp) {
for (const auto &operandEn : llvm::enumerate(returnOp.getOperands())) {
Type opType = operandEn.value().getType();
MemRefType memrefType = opType.dyn_cast<MemRefType>();
// If type is not memref or if the memref type is same as that in
// function's return signature then no update is required.
if (!memrefType || memrefType == resultTypes[operandEn.index()])
continue;
// Update function's return type signature.
// Return type gets normalized either as a result of function argument
// normalization, AllocOp normalization or an update made at CallOp.
// There can be many call flows inside a function and an update to a
// specific ReturnOp has not yet been made. So we check that the result
// memref type is normalized.
// TODO: When selective normalization is implemented, handle multiple
// results case where some are normalized, some aren't.
if (memrefType.getAffineMaps().empty())
resultTypes[operandEn.index()] = memrefType;
}
});
// We create a new function type and modify the function signature with this
// new type.
newFuncType = FunctionType::get(/*inputs=*/argTypes,
/*results=*/resultTypes,
/*context=*/&getContext());
}
// Since we update the function signature, it might affect the result types at
// the caller site. Since this result might even be used by the caller
// function in ReturnOps, the caller function's signature will also change.
// Hence we record the caller function in 'funcOpsToUpdate' to update their
// signature as well.
llvm::SmallDenseSet<FuncOp, 8> funcOpsToUpdate;
// We iterate over all symbolic uses of the function and update the return
// type at the caller site.
Optional<SymbolTable::UseRange> symbolUses = funcOp.getSymbolUses(moduleOp);
for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
Operation *userOp = symbolUse.getUser();
OpBuilder builder(userOp);
// When `userOp` can not be casted to `CallOp`, it is skipped. This assumes
// that the non-CallOp has no memrefs to be replaced.
// TODO: Handle cases where a non-CallOp symbol use of a function deals with
// memrefs.
auto callOp = dyn_cast<CallOp>(userOp);
if (!callOp)
continue;
StringRef callee = callOp.getCallee();
Operation *newCallOp = builder.create<CallOp>(
userOp->getLoc(), resultTypes, builder.getSymbolRefAttr(callee),
userOp->getOperands());
bool replacingMemRefUsesFailed = false;
bool returnTypeChanged = false;
for (unsigned resIndex : llvm::seq<unsigned>(0, userOp->getNumResults())) {
OpResult oldResult = userOp->getResult(resIndex);
OpResult newResult = newCallOp->getResult(resIndex);
// This condition ensures that if the result is not of type memref or if
// the resulting memref was already having a trivial map layout then we
// need not perform any use replacement here.
if (oldResult.getType() == newResult.getType())
continue;
AffineMap layoutMap =
oldResult.getType().dyn_cast<MemRefType>().getAffineMaps().front();
if (failed(replaceAllMemRefUsesWith(oldResult, /*newMemRef=*/newResult,
/*extraIndices=*/{},
/*indexRemap=*/layoutMap,
/*extraOperands=*/{},
/*symbolOperands=*/{},
/*domInstFilter=*/nullptr,
/*postDomInstFilter=*/nullptr,
/*allowDereferencingOps=*/true,
/*replaceInDeallocOp=*/true))) {
// If it failed (due to escapes for example), bail out.
// It should never hit this part of the code because it is called by
// only those functions which are normalizable.
newCallOp->erase();
replacingMemRefUsesFailed = true;
break;
}
returnTypeChanged = true;
}
if (replacingMemRefUsesFailed)
continue;
// Replace all uses for other non-memref result types.
userOp->replaceAllUsesWith(newCallOp);
userOp->erase();
if (returnTypeChanged) {
// Since the return type changed it might lead to a change in function's
// signature.
// TODO: If funcOp doesn't return any memref type then no need to update
// signature.
// TODO: Further optimization - Check if the memref is indeed part of
// ReturnOp at the parentFuncOp and only then updation of signature is
// required.
// TODO: Extend this for ops that are FunctionLike. This would require
// creating an OpInterface for FunctionLike ops.
FuncOp parentFuncOp = newCallOp->getParentOfType<FuncOp>();
funcOpsToUpdate.insert(parentFuncOp);
}
}
// Because external function's signature is already updated in
// 'normalizeFuncOpMemRefs()', we don't need to update it here again.
if (!funcOp.isExternal())
funcOp.setType(newFuncType);
// Updating the signature type of those functions which call the current
// function. Only if the return type of the current function has a normalized
// memref will the caller function become a candidate for signature update.
for (FuncOp parentFuncOp : funcOpsToUpdate)
updateFunctionSignature(parentFuncOp, moduleOp);
}
/// Normalizes the memrefs within a function which includes those arising as a
/// result of AllocOps, CallOps and function's argument. The ModuleOp argument
/// is used to help update function's signature after normalization.
void NormalizeMemRefs::normalizeFuncOpMemRefs(FuncOp funcOp,
ModuleOp moduleOp) {
// Turn memrefs' non-identity layouts maps into ones with identity. Collect
// alloc ops first and then process since normalizeMemRef replaces/erases ops
// during memref rewriting.
SmallVector<AllocOp, 4> allocOps;
funcOp.walk([&](AllocOp op) { allocOps.push_back(op); });
for (AllocOp allocOp : allocOps)
normalizeMemRef(allocOp);
// We use this OpBuilder to create new memref layout later.
OpBuilder b(funcOp);
FunctionType functionType = funcOp.getType();
SmallVector<Type, 8> inputTypes;
// Walk over each argument of a function to perform memref normalization (if
for (unsigned argIndex :
llvm::seq<unsigned>(0, functionType.getNumInputs())) {
Type argType = functionType.getInput(argIndex);
MemRefType memrefType = argType.dyn_cast<MemRefType>();
// Check whether argument is of MemRef type. Any other argument type can
// simply be part of the final function signature.
if (!memrefType) {
inputTypes.push_back(argType);
continue;
}
// Fetch a new memref type after normalizing the old memref to have an
// identity map layout.
MemRefType newMemRefType = normalizeMemRefType(memrefType, b,
/*numSymbolicOperands=*/0);
if (newMemRefType == memrefType || funcOp.isExternal()) {
// Either memrefType already had an identity map or the map couldn't be
// transformed to an identity map.
inputTypes.push_back(newMemRefType);
continue;
}
// Insert a new temporary argument with the new memref type.
BlockArgument newMemRef =
funcOp.front().insertArgument(argIndex, newMemRefType);
BlockArgument oldMemRef = funcOp.getArgument(argIndex + 1);
AffineMap layoutMap = memrefType.getAffineMaps().front();
// Replace all uses of the old memref.
if (failed(replaceAllMemRefUsesWith(oldMemRef, /*newMemRef=*/newMemRef,
/*extraIndices=*/{},
/*indexRemap=*/layoutMap,
/*extraOperands=*/{},
/*symbolOperands=*/{},
/*domInstFilter=*/nullptr,
/*postDomInstFilter=*/nullptr,
/*allowNonDereferencingOps=*/true,
/*replaceInDeallocOp=*/true))) {
// If it failed (due to escapes for example), bail out. Removing the
// temporary argument inserted previously.
funcOp.front().eraseArgument(argIndex);
continue;
}
// All uses for the argument with old memref type were replaced
// successfully. So we remove the old argument now.
funcOp.front().eraseArgument(argIndex + 1);
}
// In a normal function, memrefs in the return type signature gets normalized
// as a result of normalization of functions arguments, AllocOps or CallOps'
// result types. Since an external function doesn't have a body, memrefs in
// the return type signature can only get normalized by iterating over the
// individual return types.
if (funcOp.isExternal()) {
SmallVector<Type, 4> resultTypes;
for (unsigned resIndex :
llvm::seq<unsigned>(0, functionType.getNumResults())) {
Type resType = functionType.getResult(resIndex);
MemRefType memrefType = resType.dyn_cast<MemRefType>();
// Check whether result is of MemRef type. Any other argument type can
// simply be part of the final function signature.
if (!memrefType) {
resultTypes.push_back(resType);
continue;
}
// Computing a new memref type after normalizing the old memref to have an
// identity map layout.
MemRefType newMemRefType = normalizeMemRefType(memrefType, b,
/*numSymbolicOperands=*/0);
resultTypes.push_back(newMemRefType);
continue;
}
FunctionType newFuncType = FunctionType::get(/*inputs=*/inputTypes,
/*results=*/resultTypes,
/*context=*/&getContext());
// Setting the new function signature for this external function.
funcOp.setType(newFuncType);
}
updateFunctionSignature(funcOp, moduleOp);
}