ModuleTranslation.cpp
37.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the translation between an MLIR LLVM dialect module and
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "DebugTranslation.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Target/LLVMIR/TypeTranslation.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
using namespace mlir;
using namespace mlir::LLVM;
using namespace mlir::LLVM::detail;
#include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
/// Builds a constant of a sequential LLVM type `type`, potentially containing
/// other sequential types recursively, from the individual constant values
/// provided in `constants`. `shape` contains the number of elements in nested
/// sequential types. Reports errors at `loc` and returns nullptr on error.
static llvm::Constant *
buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
ArrayRef<int64_t> shape, llvm::Type *type,
Location loc) {
if (shape.empty()) {
llvm::Constant *result = constants.front();
constants = constants.drop_front();
return result;
}
llvm::Type *elementType;
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
elementType = arrayTy->getElementType();
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
elementType = vectorTy->getElementType();
} else {
emitError(loc) << "expected sequential LLVM types wrapping a scalar";
return nullptr;
}
SmallVector<llvm::Constant *, 8> nested;
nested.reserve(shape.front());
for (int64_t i = 0; i < shape.front(); ++i) {
nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
elementType, loc));
if (!nested.back())
return nullptr;
}
if (shape.size() == 1 && type->isVectorTy())
return llvm::ConstantVector::get(nested);
return llvm::ConstantArray::get(
llvm::ArrayType::get(elementType, shape.front()), nested);
}
/// Returns the first non-sequential type nested in sequential types.
static llvm::Type *getInnermostElementType(llvm::Type *type) {
do {
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
type = arrayTy->getElementType();
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
type = vectorTy->getElementType();
} else {
return type;
}
} while (1);
}
/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
/// This currently supports integer, floating point, splat and dense element
/// attributes and combinations thereof. In case of error, report it to `loc`
/// and return nullptr.
llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType,
Attribute attr,
Location loc) {
if (!attr)
return llvm::UndefValue::get(llvmType);
if (llvmType->isStructTy()) {
emitError(loc, "struct types are not supported in constants");
return nullptr;
}
// For integer types, we allow a mismatch in sizes as the index type in
// MLIR might have a different size than the index type in the LLVM module.
if (auto intAttr = attr.dyn_cast<IntegerAttr>())
return llvm::ConstantInt::get(
llvmType,
intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
if (auto floatAttr = attr.dyn_cast<FloatAttr>())
return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
return llvm::ConstantExpr::getBitCast(
functionMapping.lookup(funcAttr.getValue()), llvmType);
if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
llvm::Type *elementType;
uint64_t numElements;
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
elementType = arrayTy->getElementType();
numElements = arrayTy->getNumElements();
} else {
auto *vectorTy = cast<llvm::FixedVectorType>(llvmType);
elementType = vectorTy->getElementType();
numElements = vectorTy->getNumElements();
}
// Splat value is a scalar. Extract it only if the element type is not
// another sequence type. The recursion terminates because each step removes
// one outer sequential type.
bool elementTypeSequential =
isa<llvm::ArrayType, llvm::VectorType>(elementType);
llvm::Constant *child = getLLVMConstant(
elementType,
elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc);
if (!child)
return nullptr;
if (llvmType->isVectorTy())
return llvm::ConstantVector::getSplat(
llvm::ElementCount::get(numElements, /*Scalable=*/false), child);
if (llvmType->isArrayTy()) {
auto *arrayType = llvm::ArrayType::get(elementType, numElements);
SmallVector<llvm::Constant *, 8> constants(numElements, child);
return llvm::ConstantArray::get(arrayType, constants);
}
}
if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
assert(elementsAttr.getType().hasStaticShape());
assert(elementsAttr.getNumElements() != 0 &&
"unexpected empty elements attribute");
assert(!elementsAttr.getType().getShape().empty() &&
"unexpected empty elements attribute shape");
SmallVector<llvm::Constant *, 8> constants;
constants.reserve(elementsAttr.getNumElements());
llvm::Type *innermostType = getInnermostElementType(llvmType);
for (auto n : elementsAttr.getValues<Attribute>()) {
constants.push_back(getLLVMConstant(innermostType, n, loc));
if (!constants.back())
return nullptr;
}
ArrayRef<llvm::Constant *> constantsRef = constants;
llvm::Constant *result = buildSequentialConstant(
constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
assert(constantsRef.empty() && "did not consume all elemental constants");
return result;
}
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
return llvm::ConstantDataArray::get(
llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(),
stringAttr.getValue().size()});
}
emitError(loc, "unsupported constant value");
return nullptr;
}
/// Convert MLIR integer comparison predicate to LLVM IR comparison predicate.
static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) {
switch (p) {
case LLVM::ICmpPredicate::eq:
return llvm::CmpInst::Predicate::ICMP_EQ;
case LLVM::ICmpPredicate::ne:
return llvm::CmpInst::Predicate::ICMP_NE;
case LLVM::ICmpPredicate::slt:
return llvm::CmpInst::Predicate::ICMP_SLT;
case LLVM::ICmpPredicate::sle:
return llvm::CmpInst::Predicate::ICMP_SLE;
case LLVM::ICmpPredicate::sgt:
return llvm::CmpInst::Predicate::ICMP_SGT;
case LLVM::ICmpPredicate::sge:
return llvm::CmpInst::Predicate::ICMP_SGE;
case LLVM::ICmpPredicate::ult:
return llvm::CmpInst::Predicate::ICMP_ULT;
case LLVM::ICmpPredicate::ule:
return llvm::CmpInst::Predicate::ICMP_ULE;
case LLVM::ICmpPredicate::ugt:
return llvm::CmpInst::Predicate::ICMP_UGT;
case LLVM::ICmpPredicate::uge:
return llvm::CmpInst::Predicate::ICMP_UGE;
}
llvm_unreachable("incorrect comparison predicate");
}
static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) {
switch (p) {
case LLVM::FCmpPredicate::_false:
return llvm::CmpInst::Predicate::FCMP_FALSE;
case LLVM::FCmpPredicate::oeq:
return llvm::CmpInst::Predicate::FCMP_OEQ;
case LLVM::FCmpPredicate::ogt:
return llvm::CmpInst::Predicate::FCMP_OGT;
case LLVM::FCmpPredicate::oge:
return llvm::CmpInst::Predicate::FCMP_OGE;
case LLVM::FCmpPredicate::olt:
return llvm::CmpInst::Predicate::FCMP_OLT;
case LLVM::FCmpPredicate::ole:
return llvm::CmpInst::Predicate::FCMP_OLE;
case LLVM::FCmpPredicate::one:
return llvm::CmpInst::Predicate::FCMP_ONE;
case LLVM::FCmpPredicate::ord:
return llvm::CmpInst::Predicate::FCMP_ORD;
case LLVM::FCmpPredicate::ueq:
return llvm::CmpInst::Predicate::FCMP_UEQ;
case LLVM::FCmpPredicate::ugt:
return llvm::CmpInst::Predicate::FCMP_UGT;
case LLVM::FCmpPredicate::uge:
return llvm::CmpInst::Predicate::FCMP_UGE;
case LLVM::FCmpPredicate::ult:
return llvm::CmpInst::Predicate::FCMP_ULT;
case LLVM::FCmpPredicate::ule:
return llvm::CmpInst::Predicate::FCMP_ULE;
case LLVM::FCmpPredicate::une:
return llvm::CmpInst::Predicate::FCMP_UNE;
case LLVM::FCmpPredicate::uno:
return llvm::CmpInst::Predicate::FCMP_UNO;
case LLVM::FCmpPredicate::_true:
return llvm::CmpInst::Predicate::FCMP_TRUE;
}
llvm_unreachable("incorrect comparison predicate");
}
static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) {
switch (op) {
case LLVM::AtomicBinOp::xchg:
return llvm::AtomicRMWInst::BinOp::Xchg;
case LLVM::AtomicBinOp::add:
return llvm::AtomicRMWInst::BinOp::Add;
case LLVM::AtomicBinOp::sub:
return llvm::AtomicRMWInst::BinOp::Sub;
case LLVM::AtomicBinOp::_and:
return llvm::AtomicRMWInst::BinOp::And;
case LLVM::AtomicBinOp::nand:
return llvm::AtomicRMWInst::BinOp::Nand;
case LLVM::AtomicBinOp::_or:
return llvm::AtomicRMWInst::BinOp::Or;
case LLVM::AtomicBinOp::_xor:
return llvm::AtomicRMWInst::BinOp::Xor;
case LLVM::AtomicBinOp::max:
return llvm::AtomicRMWInst::BinOp::Max;
case LLVM::AtomicBinOp::min:
return llvm::AtomicRMWInst::BinOp::Min;
case LLVM::AtomicBinOp::umax:
return llvm::AtomicRMWInst::BinOp::UMax;
case LLVM::AtomicBinOp::umin:
return llvm::AtomicRMWInst::BinOp::UMin;
case LLVM::AtomicBinOp::fadd:
return llvm::AtomicRMWInst::BinOp::FAdd;
case LLVM::AtomicBinOp::fsub:
return llvm::AtomicRMWInst::BinOp::FSub;
}
llvm_unreachable("incorrect atomic binary operator");
}
static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) {
switch (ordering) {
case LLVM::AtomicOrdering::not_atomic:
return llvm::AtomicOrdering::NotAtomic;
case LLVM::AtomicOrdering::unordered:
return llvm::AtomicOrdering::Unordered;
case LLVM::AtomicOrdering::monotonic:
return llvm::AtomicOrdering::Monotonic;
case LLVM::AtomicOrdering::acquire:
return llvm::AtomicOrdering::Acquire;
case LLVM::AtomicOrdering::release:
return llvm::AtomicOrdering::Release;
case LLVM::AtomicOrdering::acq_rel:
return llvm::AtomicOrdering::AcquireRelease;
case LLVM::AtomicOrdering::seq_cst:
return llvm::AtomicOrdering::SequentiallyConsistent;
}
llvm_unreachable("incorrect atomic ordering");
}
ModuleTranslation::ModuleTranslation(Operation *module,
std::unique_ptr<llvm::Module> llvmModule)
: mlirModule(module), llvmModule(std::move(llvmModule)),
debugTranslation(
std::make_unique<DebugTranslation>(module, *this->llvmModule)),
ompDialect(module->getContext()->getLoadedDialect("omp")),
typeTranslator(this->llvmModule->getContext()) {
assert(satisfiesLLVMModule(mlirModule) &&
"mlirModule should honor LLVM's module semantics.");
}
ModuleTranslation::~ModuleTranslation() {
if (ompBuilder)
ompBuilder->finalize();
}
/// Get the SSA value passed to the current block from the terminator operation
/// of its predecessor.
static Value getPHISourceValue(Block *current, Block *pred,
unsigned numArguments, unsigned index) {
Operation &terminator = *pred->getTerminator();
if (isa<LLVM::BrOp>(terminator))
return terminator.getOperand(index);
// For conditional branches, we need to check if the current block is reached
// through the "true" or the "false" branch and take the relevant operands.
auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator);
assert(condBranchOp &&
"only branch operations can be terminators of a block that "
"has successors");
assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) &&
"successors with arguments in LLVM conditional branches must be "
"different blocks");
return condBranchOp.getSuccessor(0) == current
? condBranchOp.trueDestOperands()[index]
: condBranchOp.falseDestOperands()[index];
}
/// Connect the PHI nodes to the results of preceding blocks.
template <typename T>
static void
connectPHINodes(T &func, const DenseMap<Value, llvm::Value *> &valueMapping,
const DenseMap<Block *, llvm::BasicBlock *> &blockMapping) {
// Skip the first block, it cannot be branched to and its arguments correspond
// to the arguments of the LLVM function.
for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) {
Block *bb = &*it;
llvm::BasicBlock *llvmBB = blockMapping.lookup(bb);
auto phis = llvmBB->phis();
auto numArguments = bb->getNumArguments();
assert(numArguments == std::distance(phis.begin(), phis.end()));
for (auto &numberedPhiNode : llvm::enumerate(phis)) {
auto &phiNode = numberedPhiNode.value();
unsigned index = numberedPhiNode.index();
for (auto *pred : bb->getPredecessors()) {
phiNode.addIncoming(valueMapping.lookup(getPHISourceValue(
bb, pred, numArguments, index)),
blockMapping.lookup(pred));
}
}
}
}
/// Sort function blocks topologically.
template <typename T>
static llvm::SetVector<Block *> topologicalSort(T &f) {
// For each block that has not been visited yet (i.e. that has no
// predecessors), add it to the list as well as its successors.
llvm::SetVector<Block *> blocks;
for (Block &b : f) {
if (blocks.count(&b) == 0) {
llvm::ReversePostOrderTraversal<Block *> traversal(&b);
blocks.insert(traversal.begin(), traversal.end());
}
}
assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted");
return blocks;
}
/// Convert the OpenMP parallel Operation to LLVM IR.
LogicalResult
ModuleTranslation::convertOmpParallel(Operation &opInst,
llvm::IRBuilder<> &builder) {
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
llvm::BasicBlock &continuationIP) {
llvm::LLVMContext &llvmContext = llvmModule->getContext();
llvm::BasicBlock *codeGenIPBB = codeGenIP.getBlock();
llvm::Instruction *codeGenIPBBTI = codeGenIPBB->getTerminator();
builder.SetInsertPoint(codeGenIPBB);
// ParallelOp has only `1` region associated with it.
auto ®ion = cast<omp::ParallelOp>(opInst).getRegion();
for (auto &bb : region) {
auto *llvmBB = llvm::BasicBlock::Create(
llvmContext, "omp.par.region", codeGenIP.getBlock()->getParent());
blockMapping[&bb] = llvmBB;
}
// Then, convert blocks one by one in topological order to ensure
// defs are converted before uses.
llvm::SetVector<Block *> blocks = topologicalSort(region);
for (auto indexedBB : llvm::enumerate(blocks)) {
Block *bb = indexedBB.value();
llvm::BasicBlock *curLLVMBB = blockMapping[bb];
if (bb->isEntryBlock())
codeGenIPBBTI->setSuccessor(0, curLLVMBB);
// TODO: Error not returned up the hierarchy
if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0)))
return;
// If this block has the terminator then add a jump to
// continuation bb
for (auto &op : *bb) {
if (isa<omp::TerminatorOp>(op)) {
builder.SetInsertPoint(curLLVMBB);
builder.CreateBr(&continuationIP);
}
}
}
// Finally, after all blocks have been traversed and values mapped,
// connect the PHI nodes to the results of preceding blocks.
connectPHINodes(region, valueMapping, blockMapping);
};
// TODO: Perform appropriate actions according to the data-sharing
// attribute (shared, private, firstprivate, ...) of variables.
// Currently defaults to shared.
auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
llvm::Value &vPtr,
llvm::Value *&replacementValue) -> InsertPointTy {
replacementValue = &vPtr;
return codeGenIP;
};
// TODO: Perform finalization actions for variables. This has to be
// called for variables which have destructors/finalizers.
auto finiCB = [&](InsertPointTy codeGenIP) {};
llvm::Value *ifCond = nullptr;
if (auto ifExprVar = cast<omp::ParallelOp>(opInst).if_expr_var())
ifCond = valueMapping.lookup(ifExprVar);
llvm::Value *numThreads = nullptr;
if (auto numThreadsVar = cast<omp::ParallelOp>(opInst).num_threads_var())
numThreads = valueMapping.lookup(numThreadsVar);
llvm::omp::ProcBindKind pbKind = llvm::omp::OMP_PROC_BIND_default;
if (auto bind = cast<omp::ParallelOp>(opInst).proc_bind_val())
pbKind = llvm::omp::getProcBindKind(bind.getValue());
// TODO: Is the Parallel construct cancellable?
bool isCancellable = false;
// TODO: Determine the actual alloca insertion point, e.g., the function
// entry or the alloca insertion point as provided by the body callback
// above.
llvm::OpenMPIRBuilder::InsertPointTy allocaIP(builder.saveIP());
builder.restoreIP(
ompBuilder->CreateParallel(builder, allocaIP, bodyGenCB, privCB, finiCB,
ifCond, numThreads, pbKind, isCancellable));
return success();
}
/// Given an OpenMP MLIR operation, create the corresponding LLVM IR
/// (including OpenMP runtime calls).
LogicalResult
ModuleTranslation::convertOmpOperation(Operation &opInst,
llvm::IRBuilder<> &builder) {
if (!ompBuilder) {
ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
ompBuilder->initialize();
}
return llvm::TypeSwitch<Operation *, LogicalResult>(&opInst)
.Case([&](omp::BarrierOp) {
ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier);
return success();
})
.Case([&](omp::TaskwaitOp) {
ompBuilder->CreateTaskwait(builder.saveIP());
return success();
})
.Case([&](omp::TaskyieldOp) {
ompBuilder->CreateTaskyield(builder.saveIP());
return success();
})
.Case([&](omp::FlushOp) {
// No support in Openmp runtime funciton (__kmpc_flush) to accept
// the argument list.
// OpenMP standard states the following:
// "An implementation may implement a flush with a list by ignoring
// the list, and treating it the same as a flush without a list."
//
// The argument list is discarded so that, flush with a list is treated
// same as a flush without a list.
ompBuilder->CreateFlush(builder.saveIP());
return success();
})
.Case([&](omp::TerminatorOp) { return success(); })
.Case(
[&](omp::ParallelOp) { return convertOmpParallel(opInst, builder); })
.Default([&](Operation *inst) {
return inst->emitError("unsupported OpenMP operation: ")
<< inst->getName();
});
}
/// Given a single MLIR operation, create the corresponding LLVM IR operation
/// using the `builder`. LLVM IR Builder does not have a generic interface so
/// this has to be a long chain of `if`s calling different functions with a
/// different number of arguments.
LogicalResult ModuleTranslation::convertOperation(Operation &opInst,
llvm::IRBuilder<> &builder) {
auto extractPosition = [](ArrayAttr attr) {
SmallVector<unsigned, 4> position;
position.reserve(attr.size());
for (Attribute v : attr)
position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue());
return position;
};
#include "mlir/Dialect/LLVMIR/LLVMConversions.inc"
// Emit function calls. If the "callee" attribute is present, this is a
// direct function call and we also need to look up the remapped function
// itself. Otherwise, this is an indirect call and the callee is the first
// operand, look it up as a normal value. Return the llvm::Value representing
// the function result, which may be of llvm::VoidTy type.
auto convertCall = [this, &builder](Operation &op) -> llvm::Value * {
auto operands = lookupValues(op.getOperands());
ArrayRef<llvm::Value *> operandsRef(operands);
if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) {
return builder.CreateCall(functionMapping.lookup(attr.getValue()),
operandsRef);
} else {
auto *calleePtrType =
cast<llvm::PointerType>(operandsRef.front()->getType());
auto *calleeType =
cast<llvm::FunctionType>(calleePtrType->getElementType());
return builder.CreateCall(calleeType, operandsRef.front(),
operandsRef.drop_front());
}
};
// Emit calls. If the called function has a result, remap the corresponding
// value. Note that LLVM IR dialect CallOp has either 0 or 1 result.
if (isa<LLVM::CallOp>(opInst)) {
llvm::Value *result = convertCall(opInst);
if (opInst.getNumResults() != 0) {
valueMapping[opInst.getResult(0)] = result;
return success();
}
// Check that LLVM call returns void for 0-result functions.
return success(result->getType()->isVoidTy());
}
if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) {
auto operands = lookupValues(opInst.getOperands());
ArrayRef<llvm::Value *> operandsRef(operands);
if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) {
builder.CreateInvoke(functionMapping.lookup(attr.getValue()),
blockMapping[invOp.getSuccessor(0)],
blockMapping[invOp.getSuccessor(1)], operandsRef);
} else {
auto *calleePtrType =
cast<llvm::PointerType>(operandsRef.front()->getType());
auto *calleeType =
cast<llvm::FunctionType>(calleePtrType->getElementType());
builder.CreateInvoke(
calleeType, operandsRef.front(), blockMapping[invOp.getSuccessor(0)],
blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front());
}
return success();
}
if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) {
llvm::Type *ty = convertType(lpOp.getType().cast<LLVMType>());
llvm::LandingPadInst *lpi =
builder.CreateLandingPad(ty, lpOp.getNumOperands());
// Add clauses
for (auto operand : lookupValues(lpOp.getOperands())) {
// All operands should be constant - checked by verifier
if (auto constOperand = dyn_cast<llvm::Constant>(operand))
lpi->addClause(constOperand);
}
valueMapping[lpOp.getResult()] = lpi;
return success();
}
// Emit branches. We need to look up the remapped blocks and ignore the block
// arguments that were transformed into PHI nodes.
if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) {
builder.CreateBr(blockMapping[brOp.getSuccessor()]);
return success();
}
if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) {
auto weights = condbrOp.branch_weights();
llvm::MDNode *branchWeights = nullptr;
if (weights) {
// Map weight attributes to LLVM metadata.
auto trueWeight =
weights.getValue().getValue(0).cast<IntegerAttr>().getInt();
auto falseWeight =
weights.getValue().getValue(1).cast<IntegerAttr>().getInt();
branchWeights =
llvm::MDBuilder(llvmModule->getContext())
.createBranchWeights(static_cast<uint32_t>(trueWeight),
static_cast<uint32_t>(falseWeight));
}
builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)),
blockMapping[condbrOp.getSuccessor(0)],
blockMapping[condbrOp.getSuccessor(1)], branchWeights);
return success();
}
// Emit addressof. We need to look up the global value referenced by the
// operation and store it in the MLIR-to-LLVM value mapping. This does not
// emit any LLVM instruction.
if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) {
LLVM::GlobalOp global = addressOfOp.getGlobal();
LLVM::LLVMFuncOp function = addressOfOp.getFunction();
// The verifier should not have allowed this.
assert((global || function) &&
"referencing an undefined global or function");
valueMapping[addressOfOp.getResult()] =
global ? globalsMapping.lookup(global)
: functionMapping.lookup(function.getName());
return success();
}
if (ompDialect && opInst.getDialect() == ompDialect)
return convertOmpOperation(opInst, builder);
return opInst.emitError("unsupported or non-LLVM operation: ")
<< opInst.getName();
}
/// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
/// to define values corresponding to the MLIR block arguments. These nodes
/// are not connected to the source basic blocks, which may not exist yet.
LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) {
llvm::IRBuilder<> builder(blockMapping[&bb]);
auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
// Before traversing operations, make block arguments available through
// value remapping and PHI nodes, but do not add incoming edges for the PHI
// nodes just yet: those values may be defined by this or following blocks.
// This step is omitted if "ignoreArguments" is set. The arguments of the
// first block have been already made available through the remapping of
// LLVM function arguments.
if (!ignoreArguments) {
auto predecessors = bb.getPredecessors();
unsigned numPredecessors =
std::distance(predecessors.begin(), predecessors.end());
for (auto arg : bb.getArguments()) {
auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>();
if (!wrappedType)
return emitError(bb.front().getLoc(),
"block argument does not have an LLVM type");
llvm::Type *type = convertType(wrappedType);
llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
valueMapping[arg] = phi;
}
}
// Traverse operations.
for (auto &op : bb) {
// Set the current debug location within the builder.
builder.SetCurrentDebugLocation(
debugTranslation->translateLoc(op.getLoc(), subprogram));
if (failed(convertOperation(op, builder)))
return failure();
}
return success();
}
/// Create named global variables that correspond to llvm.mlir.global
/// definitions.
LogicalResult ModuleTranslation::convertGlobals() {
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
llvm::Type *type = convertType(op.getType());
llvm::Constant *cst = llvm::UndefValue::get(type);
if (op.getValueOrNull()) {
// String attributes are treated separately because they cannot appear as
// in-function constants and are thus not supported by getLLVMConstant.
if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
cst = llvm::ConstantDataArray::getString(
llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
type = cst->getType();
} else if (!(cst = getLLVMConstant(type, op.getValueOrNull(),
op.getLoc()))) {
return failure();
}
} else if (Block *initializer = op.getInitializerBlock()) {
llvm::IRBuilder<> builder(llvmModule->getContext());
for (auto &op : initializer->without_terminator()) {
if (failed(convertOperation(op, builder)) ||
!isa<llvm::Constant>(valueMapping.lookup(op.getResult(0))))
return emitError(op.getLoc(), "unemittable constant value");
}
ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0)));
}
auto linkage = convertLinkageToLLVM(op.linkage());
bool anyExternalLinkage =
((linkage == llvm::GlobalVariable::ExternalLinkage &&
isa<llvm::UndefValue>(cst)) ||
linkage == llvm::GlobalVariable::ExternalWeakLinkage);
auto addrSpace = op.addr_space();
auto *var = new llvm::GlobalVariable(
*llvmModule, type, op.constant(), linkage,
anyExternalLinkage ? nullptr : cst, op.sym_name(),
/*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
globalsMapping.try_emplace(op, var);
}
return success();
}
/// Attempts to add an attribute identified by `key`, optionally with the given
/// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
/// attribute has a kind known to LLVM IR, create the attribute of this kind,
/// otherwise keep it as a string attribute. Performs additional checks for
/// attributes known to have or not have a value in order to avoid assertions
/// inside LLVM upon construction.
static LogicalResult checkedAddLLVMFnAttribute(Location loc,
llvm::Function *llvmFunc,
StringRef key,
StringRef value = StringRef()) {
auto kind = llvm::Attribute::getAttrKindFromName(key);
if (kind == llvm::Attribute::None) {
llvmFunc->addFnAttr(key, value);
return success();
}
if (llvm::Attribute::doesAttrKindHaveArgument(kind)) {
if (value.empty())
return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
int result;
if (!value.getAsInteger(/*Radix=*/0, result))
llvmFunc->addFnAttr(
llvm::Attribute::get(llvmFunc->getContext(), kind, result));
else
llvmFunc->addFnAttr(key, value);
return success();
}
if (!value.empty())
return emitError(loc) << "LLVM attribute '" << key
<< "' does not expect a value, found '" << value
<< "'";
llvmFunc->addFnAttr(kind);
return success();
}
/// Attaches the attributes listed in the given array attribute to `llvmFunc`.
/// Reports error to `loc` if any and returns immediately. Expects `attributes`
/// to be an array attribute containing either string attributes, treated as
/// value-less LLVM attributes, or array attributes containing two string
/// attributes, with the first string being the name of the corresponding LLVM
/// attribute and the second string beings its value. Note that even integer
/// attributes are expected to have their values expressed as strings.
static LogicalResult
forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
llvm::Function *llvmFunc) {
if (!attributes)
return success();
for (Attribute attr : *attributes) {
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
if (failed(
checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
return failure();
continue;
}
auto arrayAttr = attr.dyn_cast<ArrayAttr>();
if (!arrayAttr || arrayAttr.size() != 2)
return emitError(loc)
<< "expected 'passthrough' to contain string or array attributes";
auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
if (!keyAttr || !valueAttr)
return emitError(loc)
<< "expected arrays within 'passthrough' to contain two strings";
if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
valueAttr.getValue())))
return failure();
}
return success();
}
LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
// Clear the block and value mappings, they are only relevant within one
// function.
blockMapping.clear();
valueMapping.clear();
llvm::Function *llvmFunc = functionMapping.lookup(func.getName());
// Translate the debug information for this function.
debugTranslation->translate(func, *llvmFunc);
// Add function arguments to the value remapping table.
// If there was noalias info then we decorate each argument accordingly.
unsigned int argIdx = 0;
for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
llvm::Argument &llvmArg = std::get<1>(kvp);
BlockArgument mlirArg = std::get<0>(kvp);
if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) {
// NB: Attribute already verified to be boolean, so check if we can indeed
// attach the attribute to this argument, based on its type.
auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>();
if (!argTy.isPointerTy())
return func.emitError(
"llvm.noalias attribute attached to LLVM non-pointer argument");
if (attr.getValue())
llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
}
if (auto attr = func.getArgAttrOfType<IntegerAttr>(argIdx, "llvm.align")) {
// NB: Attribute already verified to be int, so check if we can indeed
// attach the attribute to this argument, based on its type.
auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>();
if (!argTy.isPointerTy())
return func.emitError(
"llvm.align attribute attached to LLVM non-pointer argument");
llvmArg.addAttrs(
llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt())));
}
valueMapping[mlirArg] = &llvmArg;
argIdx++;
}
// Check the personality and set it.
if (func.personality().hasValue()) {
llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
if (llvm::Constant *pfunc =
getLLVMConstant(ty, func.personalityAttr(), func.getLoc()))
llvmFunc->setPersonalityFn(pfunc);
}
// First, create all blocks so we can jump to them.
llvm::LLVMContext &llvmContext = llvmFunc->getContext();
for (auto &bb : func) {
auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
llvmBB->insertInto(llvmFunc);
blockMapping[&bb] = llvmBB;
}
// Then, convert blocks one by one in topological order to ensure defs are
// converted before uses.
auto blocks = topologicalSort(func);
for (auto indexedBB : llvm::enumerate(blocks)) {
auto *bb = indexedBB.value();
if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0)))
return failure();
}
// Finally, after all blocks have been traversed and values mapped, connect
// the PHI nodes to the results of preceding blocks.
connectPHINodes(func, valueMapping, blockMapping);
return success();
}
LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) {
for (Operation &o : getModuleBody(m).getOperations())
if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp>(&o) && !o.isKnownTerminator())
return o.emitOpError("unsupported module-level operation");
return success();
}
LogicalResult ModuleTranslation::convertFunctionSignatures() {
// Declare all functions first because there may be function calls that form a
// call graph with cycles, or global initializers that reference functions.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
function.getName(),
cast<llvm::FunctionType>(convertType(function.getType())));
llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage()));
functionMapping[function.getName()] = llvmFunc;
// Forward the pass-through attributes to LLVM.
if (failed(forwardPassthroughAttributes(function.getLoc(),
function.passthrough(), llvmFunc)))
return failure();
}
return success();
}
LogicalResult ModuleTranslation::convertFunctions() {
// Convert functions.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
// Ignore external functions.
if (function.isExternal())
continue;
if (failed(convertOneFunction(function)))
return failure();
}
return success();
}
llvm::Type *ModuleTranslation::convertType(LLVMType type) {
return typeTranslator.translateType(type);
}
/// A helper to look up remapped operands in the value remapping table.`
SmallVector<llvm::Value *, 8>
ModuleTranslation::lookupValues(ValueRange values) {
SmallVector<llvm::Value *, 8> remapped;
remapped.reserve(values.size());
for (Value v : values) {
assert(valueMapping.count(v) && "referencing undefined value");
remapped.push_back(valueMapping.lookup(v));
}
return remapped;
}
std::unique_ptr<llvm::Module> ModuleTranslation::prepareLLVMModule(
Operation *m, llvm::LLVMContext &llvmContext, StringRef name) {
m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
if (auto dataLayoutAttr =
m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName()))
llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
// Inject declarations for `malloc` and `free` functions that can be used in
// memref allocation/deallocation coming from standard ops lowering.
llvm::IRBuilder<> builder(llvmContext);
llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
builder.getInt64Ty());
llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
builder.getInt8PtrTy());
return llvmModule;
}