Parser.cpp 69.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
//===- Parser.cpp - MLIR Parser Implementation ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the parser for the MLIR textual form.
//
//===----------------------------------------------------------------------===//

#include "Parser.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Verifier.h"
#include "mlir/Parser.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/SourceMgr.h"
#include <algorithm>

using namespace mlir;
using namespace mlir::detail;
using llvm::MemoryBuffer;
using llvm::SMLoc;
using llvm::SourceMgr;

//===----------------------------------------------------------------------===//
// Parser
//===----------------------------------------------------------------------===//

/// Parse a comma separated list of elements that must have at least one entry
/// in it.
ParseResult Parser::parseCommaSeparatedList(
    const std::function<ParseResult()> &parseElement) {
  // Non-empty case starts with an element.
  if (parseElement())
    return failure();

  // Otherwise we have a list of comma separated elements.
  while (consumeIf(Token::comma)) {
    if (parseElement())
      return failure();
  }
  return success();
}

/// Parse a comma-separated list of elements, terminated with an arbitrary
/// token.  This allows empty lists if allowEmptyList is true.
///
///   abstract-list ::= rightToken                  // if allowEmptyList == true
///   abstract-list ::= element (',' element)* rightToken
///
ParseResult Parser::parseCommaSeparatedListUntil(
    Token::Kind rightToken, const std::function<ParseResult()> &parseElement,
    bool allowEmptyList) {
  // Handle the empty case.
  if (getToken().is(rightToken)) {
    if (!allowEmptyList)
      return emitError("expected list element");
    consumeToken(rightToken);
    return success();
  }

  if (parseCommaSeparatedList(parseElement) ||
      parseToken(rightToken, "expected ',' or '" +
                                 Token::getTokenSpelling(rightToken) + "'"))
    return failure();

  return success();
}

InFlightDiagnostic Parser::emitError(SMLoc loc, const Twine &message) {
  auto diag = mlir::emitError(getEncodedSourceLocation(loc), message);

  // If we hit a parse error in response to a lexer error, then the lexer
  // already reported the error.
  if (getToken().is(Token::error))
    diag.abandon();
  return diag;
}

/// Consume the specified token if present and return success.  On failure,
/// output a diagnostic and return failure.
ParseResult Parser::parseToken(Token::Kind expectedToken,
                               const Twine &message) {
  if (consumeIf(expectedToken))
    return success();
  return emitError(message);
}

//===----------------------------------------------------------------------===//
// OperationParser
//===----------------------------------------------------------------------===//

namespace {
/// This class provides support for parsing operations and regions of
/// operations.
class OperationParser : public Parser {
public:
  OperationParser(ParserState &state, ModuleOp moduleOp)
      : Parser(state), opBuilder(moduleOp.getBodyRegion()), moduleOp(moduleOp) {
  }

  ~OperationParser();

  /// After parsing is finished, this function must be called to see if there
  /// are any remaining issues.
  ParseResult finalize();

  //===--------------------------------------------------------------------===//
  // SSA Value Handling
  //===--------------------------------------------------------------------===//

  /// This represents a use of an SSA value in the program.  The first two
  /// entries in the tuple are the name and result number of a reference.  The
  /// third is the location of the reference, which is used in case this ends
  /// up being a use of an undefined value.
  struct SSAUseInfo {
    StringRef name;  // Value name, e.g. %42 or %abc
    unsigned number; // Number, specified with #12
    SMLoc loc;       // Location of first definition or use.
  };

  /// Push a new SSA name scope to the parser.
  void pushSSANameScope(bool isIsolated);

  /// Pop the last SSA name scope from the parser.
  ParseResult popSSANameScope();

  /// Register a definition of a value with the symbol table.
  ParseResult addDefinition(SSAUseInfo useInfo, Value value);

  /// Parse an optional list of SSA uses into 'results'.
  ParseResult parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results);

  /// Parse a single SSA use into 'result'.
  ParseResult parseSSAUse(SSAUseInfo &result);

  /// Given a reference to an SSA value and its type, return a reference. This
  /// returns null on failure.
  Value resolveSSAUse(SSAUseInfo useInfo, Type type);

  ParseResult parseSSADefOrUseAndType(
      const std::function<ParseResult(SSAUseInfo, Type)> &action);

  ParseResult parseOptionalSSAUseAndTypeList(SmallVectorImpl<Value> &results);

  /// Return the location of the value identified by its name and number if it
  /// has been already reference.
  Optional<SMLoc> getReferenceLoc(StringRef name, unsigned number) {
    auto &values = isolatedNameScopes.back().values;
    if (!values.count(name) || number >= values[name].size())
      return {};
    if (values[name][number].first)
      return values[name][number].second;
    return {};
  }

  //===--------------------------------------------------------------------===//
  // Operation Parsing
  //===--------------------------------------------------------------------===//

  /// Parse an operation instance.
  ParseResult parseOperation();

  /// Parse a single operation successor.
  ParseResult parseSuccessor(Block *&dest);

  /// Parse a comma-separated list of operation successors in brackets.
  ParseResult parseSuccessors(SmallVectorImpl<Block *> &destinations);

  /// Parse an operation instance that is in the generic form.
  Operation *parseGenericOperation();

  /// Parse an operation instance that is in the generic form and insert it at
  /// the provided insertion point.
  Operation *parseGenericOperation(Block *insertBlock,
                                   Block::iterator insertPt);

  /// This is the structure of a result specifier in the assembly syntax,
  /// including the name, number of results, and location.
  typedef std::tuple<StringRef, unsigned, SMLoc> ResultRecord;

  /// Parse an operation instance that is in the op-defined custom form.
  /// resultInfo specifies information about the "%name =" specifiers.
  Operation *parseCustomOperation(ArrayRef<ResultRecord> resultIDs);

  //===--------------------------------------------------------------------===//
  // Region Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a region into 'region' with the provided entry block arguments.
  /// 'isIsolatedNameScope' indicates if the naming scope of this region is
  /// isolated from those above.
  ParseResult parseRegion(Region &region,
                          ArrayRef<std::pair<SSAUseInfo, Type>> entryArguments,
                          bool isIsolatedNameScope = false);

  /// Parse a region body into 'region'.
  ParseResult parseRegionBody(Region &region);

  //===--------------------------------------------------------------------===//
  // Block Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a new block into 'block'.
  ParseResult parseBlock(Block *&block);

  /// Parse a list of operations into 'block'.
  ParseResult parseBlockBody(Block *block);

  /// Parse a (possibly empty) list of block arguments.
  ParseResult parseOptionalBlockArgList(SmallVectorImpl<BlockArgument> &results,
                                        Block *owner);

  /// Get the block with the specified name, creating it if it doesn't
  /// already exist.  The location specified is the point of use, which allows
  /// us to diagnose references to blocks that are not defined precisely.
  Block *getBlockNamed(StringRef name, SMLoc loc);

  /// Define the block with the specified name. Returns the Block* or nullptr in
  /// the case of redefinition.
  Block *defineBlockNamed(StringRef name, SMLoc loc, Block *existing);

private:
  /// Returns the info for a block at the current scope for the given name.
  std::pair<Block *, SMLoc> &getBlockInfoByName(StringRef name) {
    return blocksByName.back()[name];
  }

  /// Insert a new forward reference to the given block.
  void insertForwardRef(Block *block, SMLoc loc) {
    forwardRef.back().try_emplace(block, loc);
  }

  /// Erase any forward reference to the given block.
  bool eraseForwardRef(Block *block) { return forwardRef.back().erase(block); }

  /// Record that a definition was added at the current scope.
  void recordDefinition(StringRef def);

  /// Get the value entry for the given SSA name.
  SmallVectorImpl<std::pair<Value, SMLoc>> &getSSAValueEntry(StringRef name);

  /// Create a forward reference placeholder value with the given location and
  /// result type.
  Value createForwardRefPlaceholder(SMLoc loc, Type type);

  /// Return true if this is a forward reference.
  bool isForwardRefPlaceholder(Value value) {
    return forwardRefPlaceholders.count(value);
  }

  /// This struct represents an isolated SSA name scope. This scope may contain
  /// other nested non-isolated scopes. These scopes are used for operations
  /// that are known to be isolated to allow for reusing names within their
  /// regions, even if those names are used above.
  struct IsolatedSSANameScope {
    /// Record that a definition was added at the current scope.
    void recordDefinition(StringRef def) {
      definitionsPerScope.back().insert(def);
    }

    /// Push a nested name scope.
    void pushSSANameScope() { definitionsPerScope.push_back({}); }

    /// Pop a nested name scope.
    void popSSANameScope() {
      for (auto &def : definitionsPerScope.pop_back_val())
        values.erase(def.getKey());
    }

    /// This keeps track of all of the SSA values we are tracking for each name
    /// scope, indexed by their name. This has one entry per result number.
    llvm::StringMap<SmallVector<std::pair<Value, SMLoc>, 1>> values;

    /// This keeps track of all of the values defined by a specific name scope.
    SmallVector<llvm::StringSet<>, 2> definitionsPerScope;
  };

  /// A list of isolated name scopes.
  SmallVector<IsolatedSSANameScope, 2> isolatedNameScopes;

  /// This keeps track of the block names as well as the location of the first
  /// reference for each nested name scope. This is used to diagnose invalid
  /// block references and memorize them.
  SmallVector<DenseMap<StringRef, std::pair<Block *, SMLoc>>, 2> blocksByName;
  SmallVector<DenseMap<Block *, SMLoc>, 2> forwardRef;

  /// These are all of the placeholders we've made along with the location of
  /// their first reference, to allow checking for use of undefined values.
  DenseMap<Value, SMLoc> forwardRefPlaceholders;

  /// The builder used when creating parsed operation instances.
  OpBuilder opBuilder;

  /// The top level module operation.
  ModuleOp moduleOp;
};
} // end anonymous namespace

OperationParser::~OperationParser() {
  for (auto &fwd : forwardRefPlaceholders) {
    // Drop all uses of undefined forward declared reference and destroy
    // defining operation.
    fwd.first.dropAllUses();
    fwd.first.getDefiningOp()->destroy();
  }
}

/// After parsing is finished, this function must be called to see if there are
/// any remaining issues.
ParseResult OperationParser::finalize() {
  // Check for any forward references that are left.  If we find any, error
  // out.
  if (!forwardRefPlaceholders.empty()) {
    SmallVector<const char *, 4> errors;
    // Iteration over the map isn't deterministic, so sort by source location.
    for (auto entry : forwardRefPlaceholders)
      errors.push_back(entry.second.getPointer());
    llvm::array_pod_sort(errors.begin(), errors.end());

    for (auto entry : errors) {
      auto loc = SMLoc::getFromPointer(entry);
      emitError(loc, "use of undeclared SSA value name");
    }
    return failure();
  }

  return success();
}

//===----------------------------------------------------------------------===//
// SSA Value Handling
//===----------------------------------------------------------------------===//

void OperationParser::pushSSANameScope(bool isIsolated) {
  blocksByName.push_back(DenseMap<StringRef, std::pair<Block *, SMLoc>>());
  forwardRef.push_back(DenseMap<Block *, SMLoc>());

  // Push back a new name definition scope.
  if (isIsolated)
    isolatedNameScopes.push_back({});
  isolatedNameScopes.back().pushSSANameScope();
}

ParseResult OperationParser::popSSANameScope() {
  auto forwardRefInCurrentScope = forwardRef.pop_back_val();

  // Verify that all referenced blocks were defined.
  if (!forwardRefInCurrentScope.empty()) {
    SmallVector<std::pair<const char *, Block *>, 4> errors;
    // Iteration over the map isn't deterministic, so sort by source location.
    for (auto entry : forwardRefInCurrentScope) {
      errors.push_back({entry.second.getPointer(), entry.first});
      // Add this block to the top-level region to allow for automatic cleanup.
      moduleOp.getOperation()->getRegion(0).push_back(entry.first);
    }
    llvm::array_pod_sort(errors.begin(), errors.end());

    for (auto entry : errors) {
      auto loc = SMLoc::getFromPointer(entry.first);
      emitError(loc, "reference to an undefined block");
    }
    return failure();
  }

  // Pop the next nested namescope. If there is only one internal namescope,
  // just pop the isolated scope.
  auto &currentNameScope = isolatedNameScopes.back();
  if (currentNameScope.definitionsPerScope.size() == 1)
    isolatedNameScopes.pop_back();
  else
    currentNameScope.popSSANameScope();

  blocksByName.pop_back();
  return success();
}

/// Register a definition of a value with the symbol table.
ParseResult OperationParser::addDefinition(SSAUseInfo useInfo, Value value) {
  auto &entries = getSSAValueEntry(useInfo.name);

  // Make sure there is a slot for this value.
  if (entries.size() <= useInfo.number)
    entries.resize(useInfo.number + 1);

  // If we already have an entry for this, check to see if it was a definition
  // or a forward reference.
  if (auto existing = entries[useInfo.number].first) {
    if (!isForwardRefPlaceholder(existing)) {
      return emitError(useInfo.loc)
          .append("redefinition of SSA value '", useInfo.name, "'")
          .attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
          .append("previously defined here");
    }

    if (existing.getType() != value.getType()) {
      return emitError(useInfo.loc)
          .append("definition of SSA value '", useInfo.name, "#",
                  useInfo.number, "' has type ", value.getType())
          .attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
          .append("previously used here with type ", existing.getType());
    }

    // If it was a forward reference, update everything that used it to use
    // the actual definition instead, delete the forward ref, and remove it
    // from our set of forward references we track.
    existing.replaceAllUsesWith(value);
    existing.getDefiningOp()->destroy();
    forwardRefPlaceholders.erase(existing);
  }

  /// Record this definition for the current scope.
  entries[useInfo.number] = {value, useInfo.loc};
  recordDefinition(useInfo.name);
  return success();
}

/// Parse a (possibly empty) list of SSA operands.
///
///   ssa-use-list ::= ssa-use (`,` ssa-use)*
///   ssa-use-list-opt ::= ssa-use-list?
///
ParseResult
OperationParser::parseOptionalSSAUseList(SmallVectorImpl<SSAUseInfo> &results) {
  if (getToken().isNot(Token::percent_identifier))
    return success();
  return parseCommaSeparatedList([&]() -> ParseResult {
    SSAUseInfo result;
    if (parseSSAUse(result))
      return failure();
    results.push_back(result);
    return success();
  });
}

/// Parse a SSA operand for an operation.
///
///   ssa-use ::= ssa-id
///
ParseResult OperationParser::parseSSAUse(SSAUseInfo &result) {
  result.name = getTokenSpelling();
  result.number = 0;
  result.loc = getToken().getLoc();
  if (parseToken(Token::percent_identifier, "expected SSA operand"))
    return failure();

  // If we have an attribute ID, it is a result number.
  if (getToken().is(Token::hash_identifier)) {
    if (auto value = getToken().getHashIdentifierNumber())
      result.number = value.getValue();
    else
      return emitError("invalid SSA value result number");
    consumeToken(Token::hash_identifier);
  }

  return success();
}

/// Given an unbound reference to an SSA value and its type, return the value
/// it specifies.  This returns null on failure.
Value OperationParser::resolveSSAUse(SSAUseInfo useInfo, Type type) {
  auto &entries = getSSAValueEntry(useInfo.name);

  // If we have already seen a value of this name, return it.
  if (useInfo.number < entries.size() && entries[useInfo.number].first) {
    auto result = entries[useInfo.number].first;
    // Check that the type matches the other uses.
    if (result.getType() == type)
      return result;

    emitError(useInfo.loc, "use of value '")
        .append(useInfo.name,
                "' expects different type than prior uses: ", type, " vs ",
                result.getType())
        .attachNote(getEncodedSourceLocation(entries[useInfo.number].second))
        .append("prior use here");
    return nullptr;
  }

  // Make sure we have enough slots for this.
  if (entries.size() <= useInfo.number)
    entries.resize(useInfo.number + 1);

  // If the value has already been defined and this is an overly large result
  // number, diagnose that.
  if (entries[0].first && !isForwardRefPlaceholder(entries[0].first))
    return (emitError(useInfo.loc, "reference to invalid result number"),
            nullptr);

  // Otherwise, this is a forward reference.  Create a placeholder and remember
  // that we did so.
  auto result = createForwardRefPlaceholder(useInfo.loc, type);
  entries[useInfo.number].first = result;
  entries[useInfo.number].second = useInfo.loc;
  return result;
}

/// Parse an SSA use with an associated type.
///
///   ssa-use-and-type ::= ssa-use `:` type
ParseResult OperationParser::parseSSADefOrUseAndType(
    const std::function<ParseResult(SSAUseInfo, Type)> &action) {
  SSAUseInfo useInfo;
  if (parseSSAUse(useInfo) ||
      parseToken(Token::colon, "expected ':' and type for SSA operand"))
    return failure();

  auto type = parseType();
  if (!type)
    return failure();

  return action(useInfo, type);
}

/// Parse a (possibly empty) list of SSA operands, followed by a colon, then
/// followed by a type list.
///
///   ssa-use-and-type-list
///     ::= ssa-use-list ':' type-list-no-parens
///
ParseResult OperationParser::parseOptionalSSAUseAndTypeList(
    SmallVectorImpl<Value> &results) {
  SmallVector<SSAUseInfo, 4> valueIDs;
  if (parseOptionalSSAUseList(valueIDs))
    return failure();

  // If there were no operands, then there is no colon or type lists.
  if (valueIDs.empty())
    return success();

  SmallVector<Type, 4> types;
  if (parseToken(Token::colon, "expected ':' in operand list") ||
      parseTypeListNoParens(types))
    return failure();

  if (valueIDs.size() != types.size())
    return emitError("expected ")
           << valueIDs.size() << " types to match operand list";

  results.reserve(valueIDs.size());
  for (unsigned i = 0, e = valueIDs.size(); i != e; ++i) {
    if (auto value = resolveSSAUse(valueIDs[i], types[i]))
      results.push_back(value);
    else
      return failure();
  }

  return success();
}

/// Record that a definition was added at the current scope.
void OperationParser::recordDefinition(StringRef def) {
  isolatedNameScopes.back().recordDefinition(def);
}

/// Get the value entry for the given SSA name.
SmallVectorImpl<std::pair<Value, SMLoc>> &
OperationParser::getSSAValueEntry(StringRef name) {
  return isolatedNameScopes.back().values[name];
}

/// Create and remember a new placeholder for a forward reference.
Value OperationParser::createForwardRefPlaceholder(SMLoc loc, Type type) {
  // Forward references are always created as operations, because we just need
  // something with a def/use chain.
  //
  // We create these placeholders as having an empty name, which we know
  // cannot be created through normal user input, allowing us to distinguish
  // them.
  auto name = OperationName("placeholder", getContext());
  auto *op = Operation::create(
      getEncodedSourceLocation(loc), name, type, /*operands=*/{},
      /*attributes=*/llvm::None, /*successors=*/{}, /*numRegions=*/0);
  forwardRefPlaceholders[op->getResult(0)] = loc;
  return op->getResult(0);
}

//===----------------------------------------------------------------------===//
// Operation Parsing
//===----------------------------------------------------------------------===//

/// Parse an operation.
///
///  operation         ::= op-result-list?
///                        (generic-operation | custom-operation)
///                        trailing-location?
///  generic-operation ::= string-literal `(` ssa-use-list? `)`
///                        successor-list? (`(` region-list `)`)?
///                        attribute-dict? `:` function-type
///  custom-operation  ::= bare-id custom-operation-format
///  op-result-list    ::= op-result (`,` op-result)* `=`
///  op-result         ::= ssa-id (`:` integer-literal)
///
ParseResult OperationParser::parseOperation() {
  auto loc = getToken().getLoc();
  SmallVector<ResultRecord, 1> resultIDs;
  size_t numExpectedResults = 0;
  if (getToken().is(Token::percent_identifier)) {
    // Parse the group of result ids.
    auto parseNextResult = [&]() -> ParseResult {
      // Parse the next result id.
      if (!getToken().is(Token::percent_identifier))
        return emitError("expected valid ssa identifier");

      Token nameTok = getToken();
      consumeToken(Token::percent_identifier);

      // If the next token is a ':', we parse the expected result count.
      size_t expectedSubResults = 1;
      if (consumeIf(Token::colon)) {
        // Check that the next token is an integer.
        if (!getToken().is(Token::integer))
          return emitError("expected integer number of results");

        // Check that number of results is > 0.
        auto val = getToken().getUInt64IntegerValue();
        if (!val.hasValue() || val.getValue() < 1)
          return emitError("expected named operation to have atleast 1 result");
        consumeToken(Token::integer);
        expectedSubResults = *val;
      }

      resultIDs.emplace_back(nameTok.getSpelling(), expectedSubResults,
                             nameTok.getLoc());
      numExpectedResults += expectedSubResults;
      return success();
    };
    if (parseCommaSeparatedList(parseNextResult))
      return failure();

    if (parseToken(Token::equal, "expected '=' after SSA name"))
      return failure();
  }

  Operation *op;
  if (getToken().is(Token::bare_identifier) || getToken().isKeyword())
    op = parseCustomOperation(resultIDs);
  else if (getToken().is(Token::string))
    op = parseGenericOperation();
  else
    return emitError("expected operation name in quotes");

  // If parsing of the basic operation failed, then this whole thing fails.
  if (!op)
    return failure();

  // If the operation had a name, register it.
  if (!resultIDs.empty()) {
    if (op->getNumResults() == 0)
      return emitError(loc, "cannot name an operation with no results");
    if (numExpectedResults != op->getNumResults())
      return emitError(loc, "operation defines ")
             << op->getNumResults() << " results but was provided "
             << numExpectedResults << " to bind";

    // Add definitions for each of the result groups.
    unsigned opResI = 0;
    for (ResultRecord &resIt : resultIDs) {
      for (unsigned subRes : llvm::seq<unsigned>(0, std::get<1>(resIt))) {
        if (addDefinition({std::get<0>(resIt), subRes, std::get<2>(resIt)},
                          op->getResult(opResI++)))
          return failure();
      }
    }
  }

  return success();
}

/// Parse a single operation successor.
///
///   successor ::= block-id
///
ParseResult OperationParser::parseSuccessor(Block *&dest) {
  // Verify branch is identifier and get the matching block.
  if (!getToken().is(Token::caret_identifier))
    return emitError("expected block name");
  dest = getBlockNamed(getTokenSpelling(), getToken().getLoc());
  consumeToken();
  return success();
}

/// Parse a comma-separated list of operation successors in brackets.
///
///   successor-list ::= `[` successor (`,` successor )* `]`
///
ParseResult
OperationParser::parseSuccessors(SmallVectorImpl<Block *> &destinations) {
  if (parseToken(Token::l_square, "expected '['"))
    return failure();

  auto parseElt = [this, &destinations] {
    Block *dest;
    ParseResult res = parseSuccessor(dest);
    destinations.push_back(dest);
    return res;
  };
  return parseCommaSeparatedListUntil(Token::r_square, parseElt,
                                      /*allowEmptyList=*/false);
}

namespace {
// RAII-style guard for cleaning up the regions in the operation state before
// deleting them.  Within the parser, regions may get deleted if parsing failed,
// and other errors may be present, in particular undominated uses.  This makes
// sure such uses are deleted.
struct CleanupOpStateRegions {
  ~CleanupOpStateRegions() {
    SmallVector<Region *, 4> regionsToClean;
    regionsToClean.reserve(state.regions.size());
    for (auto &region : state.regions)
      if (region)
        for (auto &block : *region)
          block.dropAllDefinedValueUses();
  }
  OperationState &state;
};
} // namespace

Operation *OperationParser::parseGenericOperation() {
  // Get location information for the operation.
  auto srcLocation = getEncodedSourceLocation(getToken().getLoc());

  std::string name = getToken().getStringValue();
  if (name.empty())
    return (emitError("empty operation name is invalid"), nullptr);
  if (name.find('\0') != StringRef::npos)
    return (emitError("null character not allowed in operation name"), nullptr);

  consumeToken(Token::string);

  OperationState result(srcLocation, name);

  // Lazy load dialects in the context as needed.
  if (!result.name.getAbstractOperation()) {
    StringRef dialectName = StringRef(name).split('.').first;
    if (!getContext()->getLoadedDialect(dialectName) &&
        getContext()->getOrLoadDialect(dialectName)) {
      result.name = OperationName(name, getContext());
    }
  }

  // Parse the operand list.
  SmallVector<SSAUseInfo, 8> operandInfos;
  if (parseToken(Token::l_paren, "expected '(' to start operand list") ||
      parseOptionalSSAUseList(operandInfos) ||
      parseToken(Token::r_paren, "expected ')' to end operand list")) {
    return nullptr;
  }

  // Parse the successor list.
  if (getToken().is(Token::l_square)) {
    // Check if the operation is a known terminator.
    const AbstractOperation *abstractOp = result.name.getAbstractOperation();
    if (abstractOp && !abstractOp->hasProperty(OperationProperty::Terminator))
      return emitError("successors in non-terminator"), nullptr;

    SmallVector<Block *, 2> successors;
    if (parseSuccessors(successors))
      return nullptr;
    result.addSuccessors(successors);
  }

  // Parse the region list.
  CleanupOpStateRegions guard{result};
  if (consumeIf(Token::l_paren)) {
    do {
      // Create temporary regions with the top level region as parent.
      result.regions.emplace_back(new Region(moduleOp));
      if (parseRegion(*result.regions.back(), /*entryArguments=*/{}))
        return nullptr;
    } while (consumeIf(Token::comma));
    if (parseToken(Token::r_paren, "expected ')' to end region list"))
      return nullptr;
  }

  if (getToken().is(Token::l_brace)) {
    if (parseAttributeDict(result.attributes))
      return nullptr;
  }

  if (parseToken(Token::colon, "expected ':' followed by operation type"))
    return nullptr;

  auto typeLoc = getToken().getLoc();
  auto type = parseType();
  if (!type)
    return nullptr;
  auto fnType = type.dyn_cast<FunctionType>();
  if (!fnType)
    return (emitError(typeLoc, "expected function type"), nullptr);

  result.addTypes(fnType.getResults());

  // Check that we have the right number of types for the operands.
  auto operandTypes = fnType.getInputs();
  if (operandTypes.size() != operandInfos.size()) {
    auto plural = "s"[operandInfos.size() == 1];
    return (emitError(typeLoc, "expected ")
                << operandInfos.size() << " operand type" << plural
                << " but had " << operandTypes.size(),
            nullptr);
  }

  // Resolve all of the operands.
  for (unsigned i = 0, e = operandInfos.size(); i != e; ++i) {
    result.operands.push_back(resolveSSAUse(operandInfos[i], operandTypes[i]));
    if (!result.operands.back())
      return nullptr;
  }

  // Parse a location if one is present.
  if (parseOptionalTrailingLocation(result.location))
    return nullptr;

  return opBuilder.createOperation(result);
}

Operation *OperationParser::parseGenericOperation(Block *insertBlock,
                                                  Block::iterator insertPt) {
  OpBuilder::InsertionGuard restoreInsertionPoint(opBuilder);
  opBuilder.setInsertionPoint(insertBlock, insertPt);
  return parseGenericOperation();
}

namespace {
class CustomOpAsmParser : public OpAsmParser {
public:
  CustomOpAsmParser(SMLoc nameLoc,
                    ArrayRef<OperationParser::ResultRecord> resultIDs,
                    const AbstractOperation *opDefinition,
                    OperationParser &parser)
      : nameLoc(nameLoc), resultIDs(resultIDs), opDefinition(opDefinition),
        parser(parser) {}

  /// Parse an instance of the operation described by 'opDefinition' into the
  /// provided operation state.
  ParseResult parseOperation(OperationState &opState) {
    if (opDefinition->parseAssembly(*this, opState))
      return failure();
    return success();
  }

  Operation *parseGenericOperation(Block *insertBlock,
                                   Block::iterator insertPt) final {
    return parser.parseGenericOperation(insertBlock, insertPt);
  }

  //===--------------------------------------------------------------------===//
  // Utilities
  //===--------------------------------------------------------------------===//

  /// Return if any errors were emitted during parsing.
  bool didEmitError() const { return emittedError; }

  /// Emit a diagnostic at the specified location and return failure.
  InFlightDiagnostic emitError(llvm::SMLoc loc, const Twine &message) override {
    emittedError = true;
    return parser.emitError(loc, "custom op '" + opDefinition->name.strref() +
                                     "' " + message);
  }

  llvm::SMLoc getCurrentLocation() override {
    return parser.getToken().getLoc();
  }

  Builder &getBuilder() const override { return parser.builder; }

  /// Return the name of the specified result in the specified syntax, as well
  /// as the subelement in the name.  For example, in this operation:
  ///
  ///  %x, %y:2, %z = foo.op
  ///
  ///    getResultName(0) == {"x", 0 }
  ///    getResultName(1) == {"y", 0 }
  ///    getResultName(2) == {"y", 1 }
  ///    getResultName(3) == {"z", 0 }
  std::pair<StringRef, unsigned>
  getResultName(unsigned resultNo) const override {
    // Scan for the resultID that contains this result number.
    for (unsigned nameID = 0, e = resultIDs.size(); nameID != e; ++nameID) {
      const auto &entry = resultIDs[nameID];
      if (resultNo < std::get<1>(entry)) {
        // Don't pass on the leading %.
        StringRef name = std::get<0>(entry).drop_front();
        return {name, resultNo};
      }
      resultNo -= std::get<1>(entry);
    }

    // Invalid result number.
    return {"", ~0U};
  }

  /// Return the number of declared SSA results.  This returns 4 for the foo.op
  /// example in the comment for getResultName.
  size_t getNumResults() const override {
    size_t count = 0;
    for (auto &entry : resultIDs)
      count += std::get<1>(entry);
    return count;
  }

  llvm::SMLoc getNameLoc() const override { return nameLoc; }

  //===--------------------------------------------------------------------===//
  // Token Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a `->` token.
  ParseResult parseArrow() override {
    return parser.parseToken(Token::arrow, "expected '->'");
  }

  /// Parses a `->` if present.
  ParseResult parseOptionalArrow() override {
    return success(parser.consumeIf(Token::arrow));
  }

  /// Parse a '{' token.
  ParseResult parseLBrace() override {
    return parser.parseToken(Token::l_brace, "expected '{'");
  }

  /// Parse a '{' token if present
  ParseResult parseOptionalLBrace() override {
    return success(parser.consumeIf(Token::l_brace));
  }

  /// Parse a `}` token.
  ParseResult parseRBrace() override {
    return parser.parseToken(Token::r_brace, "expected '}'");
  }

  /// Parse a `}` token if present
  ParseResult parseOptionalRBrace() override {
    return success(parser.consumeIf(Token::r_brace));
  }

  /// Parse a `:` token.
  ParseResult parseColon() override {
    return parser.parseToken(Token::colon, "expected ':'");
  }

  /// Parse a `:` token if present.
  ParseResult parseOptionalColon() override {
    return success(parser.consumeIf(Token::colon));
  }

  /// Parse a `,` token.
  ParseResult parseComma() override {
    return parser.parseToken(Token::comma, "expected ','");
  }

  /// Parse a `,` token if present.
  ParseResult parseOptionalComma() override {
    return success(parser.consumeIf(Token::comma));
  }

  /// Parses a `...` if present.
  ParseResult parseOptionalEllipsis() override {
    return success(parser.consumeIf(Token::ellipsis));
  }

  /// Parse a `=` token.
  ParseResult parseEqual() override {
    return parser.parseToken(Token::equal, "expected '='");
  }

  /// Parse a `=` token if present.
  ParseResult parseOptionalEqual() override {
    return success(parser.consumeIf(Token::equal));
  }

  /// Parse a '<' token.
  ParseResult parseLess() override {
    return parser.parseToken(Token::less, "expected '<'");
  }

  /// Parse a '>' token.
  ParseResult parseGreater() override {
    return parser.parseToken(Token::greater, "expected '>'");
  }

  /// Parse a `(` token.
  ParseResult parseLParen() override {
    return parser.parseToken(Token::l_paren, "expected '('");
  }

  /// Parses a '(' if present.
  ParseResult parseOptionalLParen() override {
    return success(parser.consumeIf(Token::l_paren));
  }

  /// Parse a `)` token.
  ParseResult parseRParen() override {
    return parser.parseToken(Token::r_paren, "expected ')'");
  }

  /// Parses a ')' if present.
  ParseResult parseOptionalRParen() override {
    return success(parser.consumeIf(Token::r_paren));
  }

  /// Parses a '?' if present.
  ParseResult parseOptionalQuestion() override {
    return success(parser.consumeIf(Token::question));
  }

  /// Parse a `[` token.
  ParseResult parseLSquare() override {
    return parser.parseToken(Token::l_square, "expected '['");
  }

  /// Parses a '[' if present.
  ParseResult parseOptionalLSquare() override {
    return success(parser.consumeIf(Token::l_square));
  }

  /// Parse a `]` token.
  ParseResult parseRSquare() override {
    return parser.parseToken(Token::r_square, "expected ']'");
  }

  /// Parses a ']' if present.
  ParseResult parseOptionalRSquare() override {
    return success(parser.consumeIf(Token::r_square));
  }

  //===--------------------------------------------------------------------===//
  // Attribute Parsing
  //===--------------------------------------------------------------------===//

  /// Parse an arbitrary attribute of a given type and return it in result.
  ParseResult parseAttribute(Attribute &result, Type type) override {
    result = parser.parseAttribute(type);
    return success(static_cast<bool>(result));
  }

  /// Parse an optional attribute.
  template <typename AttrT>
  OptionalParseResult
  parseOptionalAttributeAndAddToList(AttrT &result, Type type,
                                     StringRef attrName, NamedAttrList &attrs) {
    OptionalParseResult parseResult =
        parser.parseOptionalAttribute(result, type);
    if (parseResult.hasValue() && succeeded(*parseResult))
      attrs.push_back(parser.builder.getNamedAttr(attrName, result));
    return parseResult;
  }
  OptionalParseResult parseOptionalAttribute(Attribute &result, Type type,
                                             StringRef attrName,
                                             NamedAttrList &attrs) override {
    return parseOptionalAttributeAndAddToList(result, type, attrName, attrs);
  }
  OptionalParseResult parseOptionalAttribute(ArrayAttr &result, Type type,
                                             StringRef attrName,
                                             NamedAttrList &attrs) override {
    return parseOptionalAttributeAndAddToList(result, type, attrName, attrs);
  }

  /// Parse a named dictionary into 'result' if it is present.
  ParseResult parseOptionalAttrDict(NamedAttrList &result) override {
    if (parser.getToken().isNot(Token::l_brace))
      return success();
    return parser.parseAttributeDict(result);
  }

  /// Parse a named dictionary into 'result' if the `attributes` keyword is
  /// present.
  ParseResult parseOptionalAttrDictWithKeyword(NamedAttrList &result) override {
    if (failed(parseOptionalKeyword("attributes")))
      return success();
    return parser.parseAttributeDict(result);
  }

  /// Parse an affine map instance into 'map'.
  ParseResult parseAffineMap(AffineMap &map) override {
    return parser.parseAffineMapReference(map);
  }

  /// Parse an integer set instance into 'set'.
  ParseResult printIntegerSet(IntegerSet &set) override {
    return parser.parseIntegerSetReference(set);
  }

  //===--------------------------------------------------------------------===//
  // Identifier Parsing
  //===--------------------------------------------------------------------===//

  /// Returns true if the current token corresponds to a keyword.
  bool isCurrentTokenAKeyword() const {
    return parser.getToken().is(Token::bare_identifier) ||
           parser.getToken().isKeyword();
  }

  /// Parse the given keyword if present.
  ParseResult parseOptionalKeyword(StringRef keyword) override {
    // Check that the current token has the same spelling.
    if (!isCurrentTokenAKeyword() || parser.getTokenSpelling() != keyword)
      return failure();
    parser.consumeToken();
    return success();
  }

  /// Parse a keyword, if present, into 'keyword'.
  ParseResult parseOptionalKeyword(StringRef *keyword) override {
    // Check that the current token is a keyword.
    if (!isCurrentTokenAKeyword())
      return failure();

    *keyword = parser.getTokenSpelling();
    parser.consumeToken();
    return success();
  }

  /// Parse an optional @-identifier and store it (without the '@' symbol) in a
  /// string attribute named 'attrName'.
  ParseResult parseOptionalSymbolName(StringAttr &result, StringRef attrName,
                                      NamedAttrList &attrs) override {
    Token atToken = parser.getToken();
    if (atToken.isNot(Token::at_identifier))
      return failure();

    result = getBuilder().getStringAttr(atToken.getSymbolReference());
    attrs.push_back(getBuilder().getNamedAttr(attrName, result));
    parser.consumeToken();
    return success();
  }

  //===--------------------------------------------------------------------===//
  // Operand Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a single operand.
  ParseResult parseOperand(OperandType &result) override {
    OperationParser::SSAUseInfo useInfo;
    if (parser.parseSSAUse(useInfo))
      return failure();

    result = {useInfo.loc, useInfo.name, useInfo.number};
    return success();
  }

  /// Parse a single operand if present.
  OptionalParseResult parseOptionalOperand(OperandType &result) override {
    if (parser.getToken().is(Token::percent_identifier))
      return parseOperand(result);
    return llvm::None;
  }

  /// Parse zero or more SSA comma-separated operand references with a specified
  /// surrounding delimiter, and an optional required operand count.
  ParseResult parseOperandList(SmallVectorImpl<OperandType> &result,
                               int requiredOperandCount = -1,
                               Delimiter delimiter = Delimiter::None) override {
    return parseOperandOrRegionArgList(result, /*isOperandList=*/true,
                                       requiredOperandCount, delimiter);
  }

  /// Parse zero or more SSA comma-separated operand or region arguments with
  ///  optional surrounding delimiter and required operand count.
  ParseResult
  parseOperandOrRegionArgList(SmallVectorImpl<OperandType> &result,
                              bool isOperandList, int requiredOperandCount = -1,
                              Delimiter delimiter = Delimiter::None) {
    auto startLoc = parser.getToken().getLoc();

    // Handle delimiters.
    switch (delimiter) {
    case Delimiter::None:
      // Don't check for the absence of a delimiter if the number of operands
      // is unknown (and hence the operand list could be empty).
      if (requiredOperandCount == -1)
        break;
      // Token already matches an identifier and so can't be a delimiter.
      if (parser.getToken().is(Token::percent_identifier))
        break;
      // Test against known delimiters.
      if (parser.getToken().is(Token::l_paren) ||
          parser.getToken().is(Token::l_square))
        return emitError(startLoc, "unexpected delimiter");
      return emitError(startLoc, "invalid operand");
    case Delimiter::OptionalParen:
      if (parser.getToken().isNot(Token::l_paren))
        return success();
      LLVM_FALLTHROUGH;
    case Delimiter::Paren:
      if (parser.parseToken(Token::l_paren, "expected '(' in operand list"))
        return failure();
      break;
    case Delimiter::OptionalSquare:
      if (parser.getToken().isNot(Token::l_square))
        return success();
      LLVM_FALLTHROUGH;
    case Delimiter::Square:
      if (parser.parseToken(Token::l_square, "expected '[' in operand list"))
        return failure();
      break;
    }

    // Check for zero operands.
    if (parser.getToken().is(Token::percent_identifier)) {
      do {
        OperandType operandOrArg;
        if (isOperandList ? parseOperand(operandOrArg)
                          : parseRegionArgument(operandOrArg))
          return failure();
        result.push_back(operandOrArg);
      } while (parser.consumeIf(Token::comma));
    }

    // Handle delimiters.   If we reach here, the optional delimiters were
    // present, so we need to parse their closing one.
    switch (delimiter) {
    case Delimiter::None:
      break;
    case Delimiter::OptionalParen:
    case Delimiter::Paren:
      if (parser.parseToken(Token::r_paren, "expected ')' in operand list"))
        return failure();
      break;
    case Delimiter::OptionalSquare:
    case Delimiter::Square:
      if (parser.parseToken(Token::r_square, "expected ']' in operand list"))
        return failure();
      break;
    }

    if (requiredOperandCount != -1 &&
        result.size() != static_cast<size_t>(requiredOperandCount))
      return emitError(startLoc, "expected ")
             << requiredOperandCount << " operands";
    return success();
  }

  /// Parse zero or more trailing SSA comma-separated trailing operand
  /// references with a specified surrounding delimiter, and an optional
  /// required operand count. A leading comma is expected before the operands.
  ParseResult parseTrailingOperandList(SmallVectorImpl<OperandType> &result,
                                       int requiredOperandCount,
                                       Delimiter delimiter) override {
    if (parser.getToken().is(Token::comma)) {
      parseComma();
      return parseOperandList(result, requiredOperandCount, delimiter);
    }
    if (requiredOperandCount != -1)
      return emitError(parser.getToken().getLoc(), "expected ")
             << requiredOperandCount << " operands";
    return success();
  }

  /// Resolve an operand to an SSA value, emitting an error on failure.
  ParseResult resolveOperand(const OperandType &operand, Type type,
                             SmallVectorImpl<Value> &result) override {
    OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
                                               operand.location};
    if (auto value = parser.resolveSSAUse(operandInfo, type)) {
      result.push_back(value);
      return success();
    }
    return failure();
  }

  /// Parse an AffineMap of SSA ids.
  ParseResult parseAffineMapOfSSAIds(SmallVectorImpl<OperandType> &operands,
                                     Attribute &mapAttr, StringRef attrName,
                                     NamedAttrList &attrs,
                                     Delimiter delimiter) override {
    SmallVector<OperandType, 2> dimOperands;
    SmallVector<OperandType, 1> symOperands;

    auto parseElement = [&](bool isSymbol) -> ParseResult {
      OperandType operand;
      if (parseOperand(operand))
        return failure();
      if (isSymbol)
        symOperands.push_back(operand);
      else
        dimOperands.push_back(operand);
      return success();
    };

    AffineMap map;
    if (parser.parseAffineMapOfSSAIds(map, parseElement, delimiter))
      return failure();
    // Add AffineMap attribute.
    if (map) {
      mapAttr = AffineMapAttr::get(map);
      attrs.push_back(parser.builder.getNamedAttr(attrName, mapAttr));
    }

    // Add dim operands before symbol operands in 'operands'.
    operands.assign(dimOperands.begin(), dimOperands.end());
    operands.append(symOperands.begin(), symOperands.end());
    return success();
  }

  //===--------------------------------------------------------------------===//
  // Region Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a region that takes `arguments` of `argTypes` types.  This
  /// effectively defines the SSA values of `arguments` and assigns their type.
  ParseResult parseRegion(Region &region, ArrayRef<OperandType> arguments,
                          ArrayRef<Type> argTypes,
                          bool enableNameShadowing) override {
    assert(arguments.size() == argTypes.size() &&
           "mismatching number of arguments and types");

    SmallVector<std::pair<OperationParser::SSAUseInfo, Type>, 2>
        regionArguments;
    for (auto pair : llvm::zip(arguments, argTypes)) {
      const OperandType &operand = std::get<0>(pair);
      Type type = std::get<1>(pair);
      OperationParser::SSAUseInfo operandInfo = {operand.name, operand.number,
                                                 operand.location};
      regionArguments.emplace_back(operandInfo, type);
    }

    // Try to parse the region.
    assert((!enableNameShadowing ||
            opDefinition->hasProperty(OperationProperty::IsolatedFromAbove)) &&
           "name shadowing is only allowed on isolated regions");
    if (parser.parseRegion(region, regionArguments, enableNameShadowing))
      return failure();
    return success();
  }

  /// Parses a region if present.
  ParseResult parseOptionalRegion(Region &region,
                                  ArrayRef<OperandType> arguments,
                                  ArrayRef<Type> argTypes,
                                  bool enableNameShadowing) override {
    if (parser.getToken().isNot(Token::l_brace))
      return success();
    return parseRegion(region, arguments, argTypes, enableNameShadowing);
  }

  /// Parses a region if present. If the region is present, a new region is
  /// allocated and placed in `region`. If no region is present, `region`
  /// remains untouched.
  OptionalParseResult
  parseOptionalRegion(std::unique_ptr<Region> &region,
                      ArrayRef<OperandType> arguments, ArrayRef<Type> argTypes,
                      bool enableNameShadowing = false) override {
    if (parser.getToken().isNot(Token::l_brace))
      return llvm::None;
    std::unique_ptr<Region> newRegion = std::make_unique<Region>();
    if (parseRegion(*newRegion, arguments, argTypes, enableNameShadowing))
      return failure();

    region = std::move(newRegion);
    return success();
  }

  /// Parse a region argument. The type of the argument will be resolved later
  /// by a call to `parseRegion`.
  ParseResult parseRegionArgument(OperandType &argument) override {
    return parseOperand(argument);
  }

  /// Parse a region argument if present.
  ParseResult parseOptionalRegionArgument(OperandType &argument) override {
    if (parser.getToken().isNot(Token::percent_identifier))
      return success();
    return parseRegionArgument(argument);
  }

  ParseResult
  parseRegionArgumentList(SmallVectorImpl<OperandType> &result,
                          int requiredOperandCount = -1,
                          Delimiter delimiter = Delimiter::None) override {
    return parseOperandOrRegionArgList(result, /*isOperandList=*/false,
                                       requiredOperandCount, delimiter);
  }

  //===--------------------------------------------------------------------===//
  // Successor Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a single operation successor.
  ParseResult parseSuccessor(Block *&dest) override {
    return parser.parseSuccessor(dest);
  }

  /// Parse an optional operation successor and its operand list.
  OptionalParseResult parseOptionalSuccessor(Block *&dest) override {
    if (parser.getToken().isNot(Token::caret_identifier))
      return llvm::None;
    return parseSuccessor(dest);
  }

  /// Parse a single operation successor and its operand list.
  ParseResult
  parseSuccessorAndUseList(Block *&dest,
                           SmallVectorImpl<Value> &operands) override {
    if (parseSuccessor(dest))
      return failure();

    // Handle optional arguments.
    if (succeeded(parseOptionalLParen()) &&
        (parser.parseOptionalSSAUseAndTypeList(operands) || parseRParen())) {
      return failure();
    }
    return success();
  }

  //===--------------------------------------------------------------------===//
  // Type Parsing
  //===--------------------------------------------------------------------===//

  /// Parse a type.
  ParseResult parseType(Type &result) override {
    return failure(!(result = parser.parseType()));
  }

  /// Parse an optional type.
  OptionalParseResult parseOptionalType(Type &result) override {
    return parser.parseOptionalType(result);
  }

  /// Parse an arrow followed by a type list.
  ParseResult parseArrowTypeList(SmallVectorImpl<Type> &result) override {
    if (parseArrow() || parser.parseFunctionResultTypes(result))
      return failure();
    return success();
  }

  /// Parse an optional arrow followed by a type list.
  ParseResult
  parseOptionalArrowTypeList(SmallVectorImpl<Type> &result) override {
    if (!parser.consumeIf(Token::arrow))
      return success();
    return parser.parseFunctionResultTypes(result);
  }

  /// Parse a colon followed by a type.
  ParseResult parseColonType(Type &result) override {
    return failure(parser.parseToken(Token::colon, "expected ':'") ||
                   !(result = parser.parseType()));
  }

  /// Parse a colon followed by a type list, which must have at least one type.
  ParseResult parseColonTypeList(SmallVectorImpl<Type> &result) override {
    if (parser.parseToken(Token::colon, "expected ':'"))
      return failure();
    return parser.parseTypeListNoParens(result);
  }

  /// Parse an optional colon followed by a type list, which if present must
  /// have at least one type.
  ParseResult
  parseOptionalColonTypeList(SmallVectorImpl<Type> &result) override {
    if (!parser.consumeIf(Token::colon))
      return success();
    return parser.parseTypeListNoParens(result);
  }

  /// Parse a list of assignments of the form
  /// (%x1 = %y1 : type1, %x2 = %y2 : type2, ...).
  /// The list must contain at least one entry
  ParseResult parseAssignmentList(SmallVectorImpl<OperandType> &lhs,
                                  SmallVectorImpl<OperandType> &rhs) override {
    auto parseElt = [&]() -> ParseResult {
      OperandType regionArg, operand;
      if (parseRegionArgument(regionArg) || parseEqual() ||
          parseOperand(operand))
        return failure();
      lhs.push_back(regionArg);
      rhs.push_back(operand);
      return success();
    };
    if (parseLParen())
      return failure();
    return parser.parseCommaSeparatedListUntil(Token::r_paren, parseElt);
  }

private:
  /// The source location of the operation name.
  SMLoc nameLoc;

  /// Information about the result name specifiers.
  ArrayRef<OperationParser::ResultRecord> resultIDs;

  /// The abstract information of the operation.
  const AbstractOperation *opDefinition;

  /// The main operation parser.
  OperationParser &parser;

  /// A flag that indicates if any errors were emitted during parsing.
  bool emittedError = false;
};
} // end anonymous namespace.

Operation *
OperationParser::parseCustomOperation(ArrayRef<ResultRecord> resultIDs) {
  llvm::SMLoc opLoc = getToken().getLoc();
  StringRef opName = getTokenSpelling();

  auto *opDefinition = AbstractOperation::lookup(opName, getContext());
  if (!opDefinition) {
    if (opName.contains('.')) {
      // This op has a dialect, we try to check if we can register it in the
      // context on the fly.
      StringRef dialectName = opName.split('.').first;
      if (!getContext()->getLoadedDialect(dialectName) &&
          getContext()->getOrLoadDialect(dialectName)) {
        opDefinition = AbstractOperation::lookup(opName, getContext());
      }
    } else {
      // If the operation name has no namespace prefix we treat it as a standard
      // operation and prefix it with "std".
      // TODO: Would it be better to just build a mapping of the registered
      // operations in the standard dialect?
      if (getContext()->getOrLoadDialect("std"))
        opDefinition = AbstractOperation::lookup(Twine("std." + opName).str(),
                                                 getContext());
    }
  }

  if (!opDefinition) {
    emitError(opLoc) << "custom op '" << opName << "' is unknown";
    return nullptr;
  }

  consumeToken();

  // If the custom op parser crashes, produce some indication to help
  // debugging.
  std::string opNameStr = opName.str();
  llvm::PrettyStackTraceFormat fmt("MLIR Parser: custom op parser '%s'",
                                   opNameStr.c_str());

  // Get location information for the operation.
  auto srcLocation = getEncodedSourceLocation(opLoc);

  // Have the op implementation take a crack and parsing this.
  OperationState opState(srcLocation, opDefinition->name);
  CleanupOpStateRegions guard{opState};
  CustomOpAsmParser opAsmParser(opLoc, resultIDs, opDefinition, *this);
  if (opAsmParser.parseOperation(opState))
    return nullptr;

  // If it emitted an error, we failed.
  if (opAsmParser.didEmitError())
    return nullptr;

  // Parse a location if one is present.
  if (parseOptionalTrailingLocation(opState.location))
    return nullptr;

  // Otherwise, we succeeded.  Use the state it parsed as our op information.
  return opBuilder.createOperation(opState);
}

//===----------------------------------------------------------------------===//
// Region Parsing
//===----------------------------------------------------------------------===//

/// Region.
///
///   region ::= '{' region-body
///
ParseResult OperationParser::parseRegion(
    Region &region,
    ArrayRef<std::pair<OperationParser::SSAUseInfo, Type>> entryArguments,
    bool isIsolatedNameScope) {
  // Parse the '{'.
  if (parseToken(Token::l_brace, "expected '{' to begin a region"))
    return failure();

  // Check for an empty region.
  if (entryArguments.empty() && consumeIf(Token::r_brace))
    return success();
  auto currentPt = opBuilder.saveInsertionPoint();

  // Push a new named value scope.
  pushSSANameScope(isIsolatedNameScope);

  // Parse the first block directly to allow for it to be unnamed.
  auto owning_block = std::make_unique<Block>();
  Block *block = owning_block.get();

  // Add arguments to the entry block.
  if (!entryArguments.empty()) {
    for (auto &placeholderArgPair : entryArguments) {
      auto &argInfo = placeholderArgPair.first;
      // Ensure that the argument was not already defined.
      if (auto defLoc = getReferenceLoc(argInfo.name, argInfo.number)) {
        return emitError(argInfo.loc, "region entry argument '" + argInfo.name +
                                          "' is already in use")
                   .attachNote(getEncodedSourceLocation(*defLoc))
               << "previously referenced here";
      }
      if (addDefinition(placeholderArgPair.first,
                        block->addArgument(placeholderArgPair.second))) {
        return failure();
      }
    }

    // If we had named arguments, then don't allow a block name.
    if (getToken().is(Token::caret_identifier))
      return emitError("invalid block name in region with named arguments");
  }

  if (parseBlock(block)) {
    return failure();
  }

  // Verify that no other arguments were parsed.
  if (!entryArguments.empty() &&
      block->getNumArguments() > entryArguments.size()) {
    return emitError("entry block arguments were already defined");
  }

  // Parse the rest of the region.
  region.push_back(owning_block.release());
  if (parseRegionBody(region))
    return failure();

  // Pop the SSA value scope for this region.
  if (popSSANameScope())
    return failure();

  // Reset the original insertion point.
  opBuilder.restoreInsertionPoint(currentPt);
  return success();
}

/// Region.
///
///   region-body ::= block* '}'
///
ParseResult OperationParser::parseRegionBody(Region &region) {
  // Parse the list of blocks.
  while (!consumeIf(Token::r_brace)) {
    Block *newBlock = nullptr;
    if (parseBlock(newBlock))
      return failure();
    region.push_back(newBlock);
  }
  return success();
}

//===----------------------------------------------------------------------===//
// Block Parsing
//===----------------------------------------------------------------------===//

/// Block declaration.
///
///   block ::= block-label? operation*
///   block-label    ::= block-id block-arg-list? `:`
///   block-id       ::= caret-id
///   block-arg-list ::= `(` ssa-id-and-type-list? `)`
///
ParseResult OperationParser::parseBlock(Block *&block) {
  // The first block of a region may already exist, if it does the caret
  // identifier is optional.
  if (block && getToken().isNot(Token::caret_identifier))
    return parseBlockBody(block);

  SMLoc nameLoc = getToken().getLoc();
  auto name = getTokenSpelling();
  if (parseToken(Token::caret_identifier, "expected block name"))
    return failure();

  block = defineBlockNamed(name, nameLoc, block);

  // Fail if the block was already defined.
  if (!block)
    return emitError(nameLoc, "redefinition of block '") << name << "'";

  // If an argument list is present, parse it.
  if (consumeIf(Token::l_paren)) {
    SmallVector<BlockArgument, 8> bbArgs;
    if (parseOptionalBlockArgList(bbArgs, block) ||
        parseToken(Token::r_paren, "expected ')' to end argument list"))
      return failure();
  }

  if (parseToken(Token::colon, "expected ':' after block name"))
    return failure();

  return parseBlockBody(block);
}

ParseResult OperationParser::parseBlockBody(Block *block) {
  // Set the insertion point to the end of the block to parse.
  opBuilder.setInsertionPointToEnd(block);

  // Parse the list of operations that make up the body of the block.
  while (getToken().isNot(Token::caret_identifier, Token::r_brace))
    if (parseOperation())
      return failure();

  return success();
}

/// Get the block with the specified name, creating it if it doesn't already
/// exist.  The location specified is the point of use, which allows
/// us to diagnose references to blocks that are not defined precisely.
Block *OperationParser::getBlockNamed(StringRef name, SMLoc loc) {
  auto &blockAndLoc = getBlockInfoByName(name);
  if (!blockAndLoc.first) {
    blockAndLoc = {new Block(), loc};
    insertForwardRef(blockAndLoc.first, loc);
  }

  return blockAndLoc.first;
}

/// Define the block with the specified name. Returns the Block* or nullptr in
/// the case of redefinition.
Block *OperationParser::defineBlockNamed(StringRef name, SMLoc loc,
                                         Block *existing) {
  auto &blockAndLoc = getBlockInfoByName(name);
  if (!blockAndLoc.first) {
    // If the caller provided a block, use it.  Otherwise create a new one.
    if (!existing)
      existing = new Block();
    blockAndLoc.first = existing;
    blockAndLoc.second = loc;
    return blockAndLoc.first;
  }

  // Forward declarations are removed once defined, so if we are defining a
  // existing block and it is not a forward declaration, then it is a
  // redeclaration.
  if (!eraseForwardRef(blockAndLoc.first))
    return nullptr;
  return blockAndLoc.first;
}

/// Parse a (possibly empty) list of SSA operands with types as block arguments.
///
///   ssa-id-and-type-list ::= ssa-id-and-type (`,` ssa-id-and-type)*
///
ParseResult OperationParser::parseOptionalBlockArgList(
    SmallVectorImpl<BlockArgument> &results, Block *owner) {
  if (getToken().is(Token::r_brace))
    return success();

  // If the block already has arguments, then we're handling the entry block.
  // Parse and register the names for the arguments, but do not add them.
  bool definingExistingArgs = owner->getNumArguments() != 0;
  unsigned nextArgument = 0;

  return parseCommaSeparatedList([&]() -> ParseResult {
    return parseSSADefOrUseAndType(
        [&](SSAUseInfo useInfo, Type type) -> ParseResult {
          // If this block did not have existing arguments, define a new one.
          if (!definingExistingArgs)
            return addDefinition(useInfo, owner->addArgument(type));

          // Otherwise, ensure that this argument has already been created.
          if (nextArgument >= owner->getNumArguments())
            return emitError("too many arguments specified in argument list");

          // Finally, make sure the existing argument has the correct type.
          auto arg = owner->getArgument(nextArgument++);
          if (arg.getType() != type)
            return emitError("argument and block argument type mismatch");
          return addDefinition(useInfo, arg);
        });
  });
}

//===----------------------------------------------------------------------===//
// Top-level entity parsing.
//===----------------------------------------------------------------------===//

namespace {
/// This parser handles entities that are only valid at the top level of the
/// file.
class ModuleParser : public Parser {
public:
  explicit ModuleParser(ParserState &state) : Parser(state) {}

  ParseResult parseModule(ModuleOp module);

private:
  /// Parse an attribute alias declaration.
  ParseResult parseAttributeAliasDef();

  /// Parse an attribute alias declaration.
  ParseResult parseTypeAliasDef();
};
} // end anonymous namespace

/// Parses an attribute alias declaration.
///
///   attribute-alias-def ::= '#' alias-name `=` attribute-value
///
ParseResult ModuleParser::parseAttributeAliasDef() {
  assert(getToken().is(Token::hash_identifier));
  StringRef aliasName = getTokenSpelling().drop_front();

  // Check for redefinitions.
  if (getState().symbols.attributeAliasDefinitions.count(aliasName) > 0)
    return emitError("redefinition of attribute alias id '" + aliasName + "'");

  // Make sure this isn't invading the dialect attribute namespace.
  if (aliasName.contains('.'))
    return emitError("attribute names with a '.' are reserved for "
                     "dialect-defined names");

  consumeToken(Token::hash_identifier);

  // Parse the '='.
  if (parseToken(Token::equal, "expected '=' in attribute alias definition"))
    return failure();

  // Parse the attribute value.
  Attribute attr = parseAttribute();
  if (!attr)
    return failure();

  getState().symbols.attributeAliasDefinitions[aliasName] = attr;
  return success();
}

/// Parse a type alias declaration.
///
///   type-alias-def ::= '!' alias-name `=` 'type' type
///
ParseResult ModuleParser::parseTypeAliasDef() {
  assert(getToken().is(Token::exclamation_identifier));
  StringRef aliasName = getTokenSpelling().drop_front();

  // Check for redefinitions.
  if (getState().symbols.typeAliasDefinitions.count(aliasName) > 0)
    return emitError("redefinition of type alias id '" + aliasName + "'");

  // Make sure this isn't invading the dialect type namespace.
  if (aliasName.contains('.'))
    return emitError("type names with a '.' are reserved for "
                     "dialect-defined names");

  consumeToken(Token::exclamation_identifier);

  // Parse the '=' and 'type'.
  if (parseToken(Token::equal, "expected '=' in type alias definition") ||
      parseToken(Token::kw_type, "expected 'type' in type alias definition"))
    return failure();

  // Parse the type.
  Type aliasedType = parseType();
  if (!aliasedType)
    return failure();

  // Register this alias with the parser state.
  getState().symbols.typeAliasDefinitions.try_emplace(aliasName, aliasedType);
  return success();
}

/// This is the top-level module parser.
ParseResult ModuleParser::parseModule(ModuleOp module) {
  OperationParser opParser(getState(), module);

  // Module itself is a name scope.
  opParser.pushSSANameScope(/*isIsolated=*/true);

  while (true) {
    switch (getToken().getKind()) {
    default:
      // Parse a top-level operation.
      if (opParser.parseOperation())
        return failure();
      break;

    // If we got to the end of the file, then we're done.
    case Token::eof: {
      if (opParser.finalize())
        return failure();

      // Handle the case where the top level module was explicitly defined.
      auto &bodyBlocks = module.getBodyRegion().getBlocks();
      auto &operations = bodyBlocks.front().getOperations();
      assert(!operations.empty() && "expected a valid module terminator");

      // Check that the first operation is a module, and it is the only
      // non-terminator operation.
      ModuleOp nested = dyn_cast<ModuleOp>(operations.front());
      if (nested && std::next(operations.begin(), 2) == operations.end()) {
        // Merge the data of the nested module operation into 'module'.
        module.setLoc(nested.getLoc());
        module.setAttrs(nested.getOperation()->getMutableAttrDict());
        bodyBlocks.splice(bodyBlocks.end(), nested.getBodyRegion().getBlocks());

        // Erase the original module body.
        bodyBlocks.pop_front();
      }

      return opParser.popSSANameScope();
    }

    // If we got an error token, then the lexer already emitted an error, just
    // stop.  Someday we could introduce error recovery if there was demand
    // for it.
    case Token::error:
      return failure();

    // Parse an attribute alias.
    case Token::hash_identifier:
      if (parseAttributeAliasDef())
        return failure();
      break;

    // Parse a type alias.
    case Token::exclamation_identifier:
      if (parseTypeAliasDef())
        return failure();
      break;
    }
  }
}

//===----------------------------------------------------------------------===//

/// This parses the file specified by the indicated SourceMgr and returns an
/// MLIR module if it was valid.  If not, it emits diagnostics and returns
/// null.
OwningModuleRef mlir::parseSourceFile(const llvm::SourceMgr &sourceMgr,
                                      MLIRContext *context) {
  auto sourceBuf = sourceMgr.getMemoryBuffer(sourceMgr.getMainFileID());

  // This is the result module we are parsing into.
  OwningModuleRef module(ModuleOp::create(FileLineColLoc::get(
      sourceBuf->getBufferIdentifier(), /*line=*/0, /*column=*/0, context)));

  SymbolState aliasState;
  ParserState state(sourceMgr, context, aliasState);
  if (ModuleParser(state).parseModule(*module))
    return nullptr;

  // Make sure the parse module has no other structural problems detected by
  // the verifier.
  if (failed(verify(*module)))
    return nullptr;

  return module;
}

/// This parses the file specified by the indicated filename and returns an
/// MLIR module if it was valid.  If not, the error message is emitted through
/// the error handler registered in the context, and a null pointer is returned.
OwningModuleRef mlir::parseSourceFile(StringRef filename,
                                      MLIRContext *context) {
  llvm::SourceMgr sourceMgr;
  return parseSourceFile(filename, sourceMgr, context);
}

/// This parses the file specified by the indicated filename using the provided
/// SourceMgr and returns an MLIR module if it was valid.  If not, the error
/// message is emitted through the error handler registered in the context, and
/// a null pointer is returned.
OwningModuleRef mlir::parseSourceFile(StringRef filename,
                                      llvm::SourceMgr &sourceMgr,
                                      MLIRContext *context) {
  if (sourceMgr.getNumBuffers() != 0) {
    // TODO: Extend to support multiple buffers.
    emitError(mlir::UnknownLoc::get(context),
              "only main buffer parsed at the moment");
    return nullptr;
  }
  auto file_or_err = llvm::MemoryBuffer::getFileOrSTDIN(filename);
  if (std::error_code error = file_or_err.getError()) {
    emitError(mlir::UnknownLoc::get(context),
              "could not open input file " + filename);
    return nullptr;
  }

  // Load the MLIR module.
  sourceMgr.AddNewSourceBuffer(std::move(*file_or_err), llvm::SMLoc());
  return parseSourceFile(sourceMgr, context);
}

/// This parses the program string to a MLIR module if it was valid. If not,
/// it emits diagnostics and returns null.
OwningModuleRef mlir::parseSourceString(StringRef moduleStr,
                                        MLIRContext *context) {
  auto memBuffer = MemoryBuffer::getMemBuffer(moduleStr);
  if (!memBuffer)
    return nullptr;

  SourceMgr sourceMgr;
  sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
  return parseSourceFile(sourceMgr, context);
}