SymbolTable.cpp
35.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
//===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/SymbolTable.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
using namespace mlir;
/// Return true if the given operation is unknown and may potentially define a
/// symbol table.
static bool isPotentiallyUnknownSymbolTable(Operation *op) {
return !op->getDialect() && op->getNumRegions() == 1;
}
/// Returns the string name of the given symbol, or None if this is not a
/// symbol.
static Optional<StringRef> getNameIfSymbol(Operation *symbol) {
auto nameAttr =
symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
return nameAttr ? nameAttr.getValue() : Optional<StringRef>();
}
/// Computes the nested symbol reference attribute for the symbol 'symbolName'
/// that are usable within the symbol table operations from 'symbol' as far up
/// to the given operation 'within', where 'within' is an ancestor of 'symbol'.
/// Returns success if all references up to 'within' could be computed.
static LogicalResult
collectValidReferencesFor(Operation *symbol, StringRef symbolName,
Operation *within,
SmallVectorImpl<SymbolRefAttr> &results) {
assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor");
MLIRContext *ctx = symbol->getContext();
auto leafRef = FlatSymbolRefAttr::get(symbolName, ctx);
results.push_back(leafRef);
// Early exit for when 'within' is the parent of 'symbol'.
Operation *symbolTableOp = symbol->getParentOp();
if (within == symbolTableOp)
return success();
// Collect references until 'symbolTableOp' reaches 'within'.
SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef);
do {
// Each parent of 'symbol' should define a symbol table.
if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
return failure();
// Each parent of 'symbol' should also be a symbol.
Optional<StringRef> symbolTableName = getNameIfSymbol(symbolTableOp);
if (!symbolTableName)
return failure();
results.push_back(SymbolRefAttr::get(*symbolTableName, nestedRefs, ctx));
symbolTableOp = symbolTableOp->getParentOp();
if (symbolTableOp == within)
break;
nestedRefs.insert(nestedRefs.begin(),
FlatSymbolRefAttr::get(*symbolTableName, ctx));
} while (true);
return success();
}
//===----------------------------------------------------------------------===//
// SymbolTable
//===----------------------------------------------------------------------===//
/// Build a symbol table with the symbols within the given operation.
SymbolTable::SymbolTable(Operation *symbolTableOp)
: symbolTableOp(symbolTableOp) {
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() &&
"expected operation to have SymbolTable trait");
assert(symbolTableOp->getNumRegions() == 1 &&
"expected operation to have a single region");
assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) &&
"expected operation to have a single block");
for (auto &op : symbolTableOp->getRegion(0).front()) {
Optional<StringRef> name = getNameIfSymbol(&op);
if (!name)
continue;
auto inserted = symbolTable.insert({*name, &op});
(void)inserted;
assert(inserted.second &&
"expected region to contain uniquely named symbol operations");
}
}
/// Look up a symbol with the specified name, returning null if no such name
/// exists. Names never include the @ on them.
Operation *SymbolTable::lookup(StringRef name) const {
return symbolTable.lookup(name);
}
/// Erase the given symbol from the table.
void SymbolTable::erase(Operation *symbol) {
Optional<StringRef> name = getNameIfSymbol(symbol);
assert(name && "expected valid 'name' attribute");
assert(symbol->getParentOp() == symbolTableOp &&
"expected this operation to be inside of the operation with this "
"SymbolTable");
auto it = symbolTable.find(*name);
if (it != symbolTable.end() && it->second == symbol) {
symbolTable.erase(it);
symbol->erase();
}
}
/// Insert a new symbol into the table and associated operation, and rename it
/// as necessary to avoid collisions.
void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) {
auto &body = symbolTableOp->getRegion(0).front();
if (insertPt == Block::iterator() || insertPt == body.end())
insertPt = Block::iterator(body.getTerminator());
assert(insertPt->getParentOp() == symbolTableOp &&
"expected insertPt to be in the associated module operation");
body.getOperations().insert(insertPt, symbol);
// Add this symbol to the symbol table, uniquing the name if a conflict is
// detected.
StringRef name = getSymbolName(symbol);
if (symbolTable.insert({name, symbol}).second)
return;
// If a conflict was detected, then the symbol will not have been added to
// the symbol table. Try suffixes until we get to a unique name that works.
SmallString<128> nameBuffer(name);
unsigned originalLength = nameBuffer.size();
// Iteratively try suffixes until we find one that isn't used.
do {
nameBuffer.resize(originalLength);
nameBuffer += '_';
nameBuffer += std::to_string(uniquingCounter++);
} while (!symbolTable.insert({nameBuffer, symbol}).second);
setSymbolName(symbol, nameBuffer);
}
/// Returns the name of the given symbol operation.
StringRef SymbolTable::getSymbolName(Operation *symbol) {
Optional<StringRef> name = getNameIfSymbol(symbol);
assert(name && "expected valid symbol name");
return *name;
}
/// Sets the name of the given symbol operation.
void SymbolTable::setSymbolName(Operation *symbol, StringRef name) {
symbol->setAttr(getSymbolAttrName(),
StringAttr::get(name, symbol->getContext()));
}
/// Returns the visibility of the given symbol operation.
SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) {
// If the attribute doesn't exist, assume public.
StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName());
if (!vis)
return Visibility::Public;
// Otherwise, switch on the string value.
return llvm::StringSwitch<Visibility>(vis.getValue())
.Case("private", Visibility::Private)
.Case("nested", Visibility::Nested)
.Case("public", Visibility::Public);
}
/// Sets the visibility of the given symbol operation.
void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) {
MLIRContext *ctx = symbol->getContext();
// If the visibility is public, just drop the attribute as this is the
// default.
if (vis == Visibility::Public) {
symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx));
return;
}
// Otherwise, update the attribute.
assert((vis == Visibility::Private || vis == Visibility::Nested) &&
"unknown symbol visibility kind");
StringRef visName = vis == Visibility::Private ? "private" : "nested";
symbol->setAttr(getVisibilityAttrName(), StringAttr::get(visName, ctx));
}
/// Returns the nearest symbol table from a given operation `from`. Returns
/// nullptr if no valid parent symbol table could be found.
Operation *SymbolTable::getNearestSymbolTable(Operation *from) {
assert(from && "expected valid operation");
if (isPotentiallyUnknownSymbolTable(from))
return nullptr;
while (!from->hasTrait<OpTrait::SymbolTable>()) {
from = from->getParentOp();
// Check that this is a valid op and isn't an unknown symbol table.
if (!from || isPotentiallyUnknownSymbolTable(from))
return nullptr;
}
return from;
}
/// Walks all symbol table operations nested within, and including, `op`. For
/// each symbol table operation, the provided callback is invoked with the op
/// and a boolean signifying if the symbols within that symbol table can be
/// treated as if all uses are visible. `allSymUsesVisible` identifies whether
/// all of the symbol uses of symbols within `op` are visible.
void SymbolTable::walkSymbolTables(
Operation *op, bool allSymUsesVisible,
function_ref<void(Operation *, bool)> callback) {
bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>();
if (isSymbolTable) {
SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op);
allSymUsesVisible |= !symbol || symbol.isPrivate();
} else {
// Otherwise if 'op' is not a symbol table, any nested symbols are
// guaranteed to be hidden.
allSymUsesVisible = true;
}
for (Region ®ion : op->getRegions())
for (Block &block : region)
for (Operation &nestedOp : block)
walkSymbolTables(&nestedOp, allSymUsesVisible, callback);
// If 'op' had the symbol table trait, visit it after any nested symbol
// tables.
if (isSymbolTable)
callback(op, allSymUsesVisible);
}
/// Returns the operation registered with the given symbol name with the
/// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
/// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
/// was found.
Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
StringRef symbol) {
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
// Look for a symbol with the given name.
for (auto &op : symbolTableOp->getRegion(0).front().without_terminator())
if (getNameIfSymbol(&op) == symbol)
return &op;
return nullptr;
}
Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
SymbolRefAttr symbol) {
SmallVector<Operation *, 4> resolvedSymbols;
if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols)))
return nullptr;
return resolvedSymbols.back();
}
LogicalResult
SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol,
SmallVectorImpl<Operation *> &symbols) {
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
// Lookup the root reference for this symbol.
symbolTableOp = lookupSymbolIn(symbolTableOp, symbol.getRootReference());
if (!symbolTableOp)
return failure();
symbols.push_back(symbolTableOp);
// If there are no nested references, just return the root symbol directly.
ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences();
if (nestedRefs.empty())
return success();
// Verify that the root is also a symbol table.
if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
return failure();
// Otherwise, lookup each of the nested non-leaf references and ensure that
// each corresponds to a valid symbol table.
for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) {
symbolTableOp = lookupSymbolIn(symbolTableOp, ref.getValue());
if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>())
return failure();
symbols.push_back(symbolTableOp);
}
symbols.push_back(lookupSymbolIn(symbolTableOp, symbol.getLeafReference()));
return success(symbols.back());
}
/// Returns the operation registered with the given symbol name within the
/// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
/// nullptr if no valid symbol was found.
Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
StringRef symbol) {
Operation *symbolTableOp = getNearestSymbolTable(from);
return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
}
Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
SymbolRefAttr symbol) {
Operation *symbolTableOp = getNearestSymbolTable(from);
return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
}
//===----------------------------------------------------------------------===//
// SymbolTable Trait Types
//===----------------------------------------------------------------------===//
LogicalResult detail::verifySymbolTable(Operation *op) {
if (op->getNumRegions() != 1)
return op->emitOpError()
<< "Operations with a 'SymbolTable' must have exactly one region";
if (!llvm::hasSingleElement(op->getRegion(0)))
return op->emitOpError()
<< "Operations with a 'SymbolTable' must have exactly one block";
// Check that all symbols are uniquely named within child regions.
DenseMap<Attribute, Location> nameToOrigLoc;
for (auto &block : op->getRegion(0)) {
for (auto &op : block) {
// Check for a symbol name attribute.
auto nameAttr =
op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
if (!nameAttr)
continue;
// Try to insert this symbol into the table.
auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc());
if (!it.second)
return op.emitError()
.append("redefinition of symbol named '", nameAttr.getValue(), "'")
.attachNote(it.first->second)
.append("see existing symbol definition here");
}
}
return success();
}
LogicalResult detail::verifySymbol(Operation *op) {
// Verify the name attribute.
if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()))
return op->emitOpError() << "requires string attribute '"
<< mlir::SymbolTable::getSymbolAttrName() << "'";
// Verify the visibility attribute.
if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) {
StringAttr visStrAttr = vis.dyn_cast<StringAttr>();
if (!visStrAttr)
return op->emitOpError() << "requires visibility attribute '"
<< mlir::SymbolTable::getVisibilityAttrName()
<< "' to be a string attribute, but got " << vis;
if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"},
visStrAttr.getValue()))
return op->emitOpError()
<< "visibility expected to be one of [\"public\", \"private\", "
"\"nested\"], but got "
<< visStrAttr;
}
return success();
}
//===----------------------------------------------------------------------===//
// Symbol Use Lists
//===----------------------------------------------------------------------===//
/// Walk all of the symbol references within the given operation, invoking the
/// provided callback for each found use. The callbacks takes as arguments: the
/// use of the symbol, and the nested access chain to the attribute within the
/// operation dictionary. An access chain is a set of indices into nested
/// container attributes. For example, a symbol use in an attribute dictionary
/// that looks like the following:
///
/// {use = [{other_attr, @symbol}]}
///
/// May have the following access chain:
///
/// [0, 0, 1]
///
static WalkResult walkSymbolRefs(
Operation *op,
function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
// Check to see if the operation has any attributes.
if (op->getMutableAttrDict().empty())
return WalkResult::advance();
DictionaryAttr attrDict = op->getAttrDictionary();
// A worklist of a container attribute and the current index into the held
// attribute list.
SmallVector<Attribute, 1> attrWorklist(1, attrDict);
SmallVector<int, 1> curAccessChain(1, /*Value=*/-1);
// Process the symbol references within the given nested attribute range.
auto processAttrs = [&](int &index, auto attrRange) -> WalkResult {
for (Attribute attr : llvm::drop_begin(attrRange, index)) {
/// Check for a nested container attribute, these will also need to be
/// walked.
if (attr.isa<ArrayAttr, DictionaryAttr>()) {
attrWorklist.push_back(attr);
curAccessChain.push_back(-1);
return WalkResult::advance();
}
// Invoke the provided callback if we find a symbol use and check for a
// requested interrupt.
if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>())
if (callback({op, symbolRef}, curAccessChain).wasInterrupted())
return WalkResult::interrupt();
// Make sure to keep the index counter in sync.
++index;
}
// Pop this container attribute from the worklist.
attrWorklist.pop_back();
curAccessChain.pop_back();
return WalkResult::advance();
};
WalkResult result = WalkResult::advance();
do {
Attribute attr = attrWorklist.back();
int &index = curAccessChain.back();
++index;
// Process the given attribute, which is guaranteed to be a container.
if (auto dict = attr.dyn_cast<DictionaryAttr>())
result = processAttrs(index, make_second_range(dict.getValue()));
else
result = processAttrs(index, attr.cast<ArrayAttr>().getValue());
} while (!attrWorklist.empty() && !result.wasInterrupted());
return result;
}
/// Walk all of the uses, for any symbol, that are nested within the given
/// regions, invoking the provided callback for each. This does not traverse
/// into any nested symbol tables.
static Optional<WalkResult> walkSymbolUses(
MutableArrayRef<Region> regions,
function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions));
while (!worklist.empty()) {
for (Operation &op : worklist.pop_back_val()->getOps()) {
if (walkSymbolRefs(&op, callback).wasInterrupted())
return WalkResult::interrupt();
// Check that this isn't a potentially unknown symbol table.
if (isPotentiallyUnknownSymbolTable(&op))
return llvm::None;
// If this op defines a new symbol table scope, we can't traverse. Any
// symbol references nested within 'op' are different semantically.
if (!op.hasTrait<OpTrait::SymbolTable>()) {
for (Region ®ion : op.getRegions())
worklist.push_back(®ion);
}
}
}
return WalkResult::advance();
}
/// Walk all of the uses, for any symbol, that are nested within the given
/// operation 'from', invoking the provided callback for each. This does not
/// traverse into any nested symbol tables.
static Optional<WalkResult> walkSymbolUses(
Operation *from,
function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
// If this operation has regions, and it, as well as its dialect, isn't
// registered then conservatively fail. The operation may define a
// symbol table, so we can't opaquely know if we should traverse to find
// nested uses.
if (isPotentiallyUnknownSymbolTable(from))
return llvm::None;
// Walk the uses on this operation.
if (walkSymbolRefs(from, callback).wasInterrupted())
return WalkResult::interrupt();
// Only recurse if this operation is not a symbol table. A symbol table
// defines a new scope, so we can't walk the attributes from within the symbol
// table op.
if (!from->hasTrait<OpTrait::SymbolTable>())
return walkSymbolUses(from->getRegions(), callback);
return WalkResult::advance();
}
namespace {
/// This class represents a single symbol scope. A symbol scope represents the
/// set of operations nested within a symbol table that may reference symbols
/// within that table. A symbol scope does not contain the symbol table
/// operation itself, just its contained operations. A scope ends at leaf
/// operations or another symbol table operation.
struct SymbolScope {
/// Walk the symbol uses within this scope, invoking the given callback.
/// This variant is used when the callback type matches that expected by
/// 'walkSymbolUses'.
template <typename CallbackT,
typename std::enable_if_t<!std::is_same<
typename llvm::function_traits<CallbackT>::result_t,
void>::value> * = nullptr>
Optional<WalkResult> walk(CallbackT cback) {
if (Region *region = limit.dyn_cast<Region *>())
return walkSymbolUses(*region, cback);
return walkSymbolUses(limit.get<Operation *>(), cback);
}
/// This variant is used when the callback type matches a stripped down type:
/// void(SymbolTable::SymbolUse use)
template <typename CallbackT,
typename std::enable_if_t<std::is_same<
typename llvm::function_traits<CallbackT>::result_t,
void>::value> * = nullptr>
Optional<WalkResult> walk(CallbackT cback) {
return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) {
return cback(use), WalkResult::advance();
});
}
/// The representation of the symbol within this scope.
SymbolRefAttr symbol;
/// The IR unit representing this scope.
llvm::PointerUnion<Operation *, Region *> limit;
};
} // end anonymous namespace
/// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'.
static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
Operation *limit) {
StringRef symName = SymbolTable::getSymbolName(symbol);
assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit);
// Compute the ancestors of 'limit'.
llvm::SetVector<Operation *, SmallVector<Operation *, 4>,
SmallPtrSet<Operation *, 4>>
limitAncestors;
Operation *limitAncestor = limit;
do {
// Check to see if 'symbol' is an ancestor of 'limit'.
if (limitAncestor == symbol) {
// Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr
// doesn't support parent references.
if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) ==
symbol->getParentOp())
return {{SymbolRefAttr::get(symName, symbol->getContext()), limit}};
return {};
}
limitAncestors.insert(limitAncestor);
} while ((limitAncestor = limitAncestor->getParentOp()));
// Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'.
Operation *commonAncestor = symbol->getParentOp();
do {
if (limitAncestors.count(commonAncestor))
break;
} while ((commonAncestor = commonAncestor->getParentOp()));
assert(commonAncestor && "'limit' and 'symbol' have no common ancestor");
// Compute the set of valid nested references for 'symbol' as far up to the
// common ancestor as possible.
SmallVector<SymbolRefAttr, 2> references;
bool collectedAllReferences = succeeded(
collectValidReferencesFor(symbol, symName, commonAncestor, references));
// Handle the case where the common ancestor is 'limit'.
if (commonAncestor == limit) {
SmallVector<SymbolScope, 2> scopes;
// Walk each of the ancestors of 'symbol', calling the compute function for
// each one.
Operation *limitIt = symbol->getParentOp();
for (size_t i = 0, e = references.size(); i != e;
++i, limitIt = limitIt->getParentOp()) {
assert(limitIt->hasTrait<OpTrait::SymbolTable>());
scopes.push_back({references[i], &limitIt->getRegion(0)});
}
return scopes;
}
// Otherwise, we just need the symbol reference for 'symbol' that will be
// used within 'limit'. This is the last reference in the list we computed
// above if we were able to collect all references.
if (!collectedAllReferences)
return {};
return {{references.back(), limit}};
}
static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
Region *limit) {
auto scopes = collectSymbolScopes(symbol, limit->getParentOp());
// If we collected some scopes to walk, make sure to constrain the one for
// limit to the specific region requested.
if (!scopes.empty())
scopes.back().limit = limit;
return scopes;
}
template <typename IRUnit>
static SmallVector<SymbolScope, 1> collectSymbolScopes(StringRef symbol,
IRUnit *limit) {
return {{SymbolRefAttr::get(symbol, limit->getContext()), limit}};
}
/// Returns true if the given reference 'SubRef' is a sub reference of the
/// reference 'ref', i.e. 'ref' is a further qualified reference.
static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) {
if (ref == subRef)
return true;
// If the references are not pointer equal, check to see if `subRef` is a
// prefix of `ref`.
if (ref.isa<FlatSymbolRefAttr>() ||
ref.getRootReference() != subRef.getRootReference())
return false;
auto refLeafs = ref.getNestedReferences();
auto subRefLeafs = subRef.getNestedReferences();
return subRefLeafs.size() < refLeafs.size() &&
subRefLeafs == refLeafs.take_front(subRefLeafs.size());
}
//===----------------------------------------------------------------------===//
// SymbolTable::getSymbolUses
/// The implementation of SymbolTable::getSymbolUses below.
template <typename FromT>
static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) {
std::vector<SymbolTable::SymbolUse> uses;
auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
uses.push_back(symbolUse);
return WalkResult::advance();
};
auto result = walkSymbolUses(from, walkFn);
return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None;
}
/// Get an iterator range for all of the uses, for any symbol, that are nested
/// within the given operation 'from'. This does not traverse into any nested
/// symbol tables, and will also only return uses on 'from' if it does not
/// also define a symbol table. This is because we treat the region as the
/// boundary of the symbol table, and not the op itself. This function returns
/// None if there are any unknown operations that may potentially be symbol
/// tables.
auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> {
return getSymbolUsesImpl(from);
}
auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> {
return getSymbolUsesImpl(MutableArrayRef<Region>(*from));
}
//===----------------------------------------------------------------------===//
// SymbolTable::getSymbolUses
/// The implementation of SymbolTable::getSymbolUses below.
template <typename SymbolT, typename IRUnitT>
static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol,
IRUnitT *limit) {
std::vector<SymbolTable::SymbolUse> uses;
for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) {
if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()))
uses.push_back(symbolUse);
}))
return llvm::None;
}
return SymbolTable::UseRange(std::move(uses));
}
/// Get all of the uses of the given symbol that are nested within the given
/// operation 'from', invoking the provided callback for each. This does not
/// traverse into any nested symbol tables. This function returns None if there
/// are any unknown operations that may potentially be symbol tables.
auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from)
-> Optional<UseRange> {
return getSymbolUsesImpl(symbol, from);
}
auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from)
-> Optional<UseRange> {
return getSymbolUsesImpl(symbol, from);
}
auto SymbolTable::getSymbolUses(StringRef symbol, Region *from)
-> Optional<UseRange> {
return getSymbolUsesImpl(symbol, from);
}
auto SymbolTable::getSymbolUses(Operation *symbol, Region *from)
-> Optional<UseRange> {
return getSymbolUsesImpl(symbol, from);
}
//===----------------------------------------------------------------------===//
// SymbolTable::symbolKnownUseEmpty
/// The implementation of SymbolTable::symbolKnownUseEmpty below.
template <typename SymbolT, typename IRUnitT>
static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) {
for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
// Walk all of the symbol uses looking for a reference to 'symbol'.
if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())
? WalkResult::interrupt()
: WalkResult::advance();
}) != WalkResult::advance())
return false;
}
return true;
}
/// Return if the given symbol is known to have no uses that are nested within
/// the given operation 'from'. This does not traverse into any nested symbol
/// tables. This function will also return false if there are any unknown
/// operations that may potentially be symbol tables.
bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) {
return symbolKnownUseEmptyImpl(symbol, from);
}
bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) {
return symbolKnownUseEmptyImpl(symbol, from);
}
bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Region *from) {
return symbolKnownUseEmptyImpl(symbol, from);
}
bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) {
return symbolKnownUseEmptyImpl(symbol, from);
}
//===----------------------------------------------------------------------===//
// SymbolTable::replaceAllSymbolUses
/// Rebuild the given attribute container after replacing all references to a
/// symbol with the updated attribute in 'accesses'.
static Attribute rebuildAttrAfterRAUW(
Attribute container,
ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses,
unsigned depth) {
// Given a range of Attributes, update the ones referred to by the given
// access chains to point to the new symbol attribute.
auto updateAttrs = [&](auto &&attrRange) {
auto attrBegin = std::begin(attrRange);
for (unsigned i = 0, e = accesses.size(); i != e;) {
ArrayRef<int> access = accesses[i].first;
Attribute &attr = *std::next(attrBegin, access[depth]);
// Check to see if this is a leaf access, i.e. a SymbolRef.
if (access.size() == depth + 1) {
attr = accesses[i].second;
++i;
continue;
}
// Otherwise, this is a container. Collect all of the accesses for this
// index and recurse. The recursion here is bounded by the size of the
// largest access array.
auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) {
ArrayRef<int> nextAccess = it.first;
return nextAccess.size() > depth + 1 &&
nextAccess[depth] == access[depth];
});
attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1);
// Skip over all of the accesses that refer to the nested container.
i += nestedAccesses.size();
}
};
if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) {
auto newAttrs = llvm::to_vector<4>(dictAttr.getValue());
updateAttrs(make_second_range(newAttrs));
return DictionaryAttr::get(newAttrs, dictAttr.getContext());
}
auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue());
updateAttrs(newAttrs);
return ArrayAttr::get(newAttrs, container.getContext());
}
/// Generates a new symbol reference attribute with a new leaf reference.
static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr,
FlatSymbolRefAttr newLeafAttr) {
if (oldAttr.isa<FlatSymbolRefAttr>())
return newLeafAttr;
auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences());
nestedRefs.back() = newLeafAttr;
return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs,
oldAttr.getContext());
}
/// The implementation of SymbolTable::replaceAllSymbolUses below.
template <typename SymbolT, typename IRUnitT>
static LogicalResult
replaceAllSymbolUsesImpl(SymbolT symbol, StringRef newSymbol, IRUnitT *limit) {
// A collection of operations along with their new attribute dictionary.
std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts;
// The current operation being processed.
Operation *curOp = nullptr;
// The set of access chains into the attribute dictionary of the current
// operation, as well as the replacement attribute to use.
SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains;
// Generate a new attribute dictionary for the current operation by replacing
// references to the old symbol.
auto generateNewAttrDict = [&] {
auto oldDict = curOp->getAttrDictionary();
auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0);
return newDict.cast<DictionaryAttr>();
};
// Generate a new attribute to replace the given attribute.
MLIRContext *ctx = limit->getContext();
FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol, ctx);
for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr);
auto walkFn = [&](SymbolTable::SymbolUse symbolUse,
ArrayRef<int> accessChain) {
SymbolRefAttr useRef = symbolUse.getSymbolRef();
if (!isReferencePrefixOf(scope.symbol, useRef))
return WalkResult::advance();
// If we have a valid match, check to see if this is a proper
// subreference. If it is, then we will need to generate a different new
// attribute specifically for this use.
SymbolRefAttr replacementRef = newAttr;
if (useRef != scope.symbol) {
if (scope.symbol.isa<FlatSymbolRefAttr>()) {
replacementRef =
SymbolRefAttr::get(newSymbol, useRef.getNestedReferences(), ctx);
} else {
auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences());
nestedRefs[scope.symbol.getNestedReferences().size() - 1] =
newLeafAttr;
replacementRef =
SymbolRefAttr::get(useRef.getRootReference(), nestedRefs, ctx);
}
}
// If there was a previous operation, generate a new attribute dict
// for it. This means that we've finished processing the current
// operation, so generate a new dictionary for it.
if (curOp && symbolUse.getUser() != curOp) {
updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
accessChains.clear();
}
// Record this access.
curOp = symbolUse.getUser();
accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef});
return WalkResult::advance();
};
if (!scope.walk(walkFn))
return failure();
// Check to see if we have a dangling op that needs to be processed.
if (curOp) {
updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
curOp = nullptr;
}
}
// Update the attribute dictionaries as necessary.
for (auto &it : updatedAttrDicts)
it.first->setAttrs(it.second);
return success();
}
/// Attempt to replace all uses of the given symbol 'oldSymbol' with the
/// provided symbol 'newSymbol' that are nested within the given operation
/// 'from'. This does not traverse into any nested symbol tables. If there are
/// any unknown operations that may potentially be symbol tables, no uses are
/// replaced and failure is returned.
LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
StringRef newSymbol,
Operation *from) {
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
}
LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
StringRef newSymbol,
Operation *from) {
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
}
LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
StringRef newSymbol,
Region *from) {
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
}
LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
StringRef newSymbol,
Region *from) {
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
}
//===----------------------------------------------------------------------===//
// Symbol Interfaces
//===----------------------------------------------------------------------===//
/// Include the generated symbol interfaces.
#include "mlir/IR/SymbolInterfaces.cpp.inc"