MLIRContext.cpp
35.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/MLIRContext.h"
#include "AffineExprDetail.h"
#include "AffineMapDetail.h"
#include "AttributeDetail.h"
#include "IntegerSetDetail.h"
#include "LocationDetail.h"
#include "TypeDetail.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Types.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
#define DEBUG_TYPE "mlircontext"
using namespace mlir;
using namespace mlir::detail;
using llvm::hash_combine;
using llvm::hash_combine_range;
//===----------------------------------------------------------------------===//
// MLIRContext CommandLine Options
//===----------------------------------------------------------------------===//
namespace {
/// This struct contains command line options that can be used to initialize
/// various bits of an MLIRContext. This uses a struct wrapper to avoid the need
/// for global command line options.
struct MLIRContextOptions {
llvm::cl::opt<bool> disableThreading{
"mlir-disable-threading",
llvm::cl::desc("Disabling multi-threading within MLIR")};
llvm::cl::opt<bool> printOpOnDiagnostic{
"mlir-print-op-on-diagnostic",
llvm::cl::desc("When a diagnostic is emitted on an operation, also print "
"the operation as an attached note"),
llvm::cl::init(true)};
llvm::cl::opt<bool> printStackTraceOnDiagnostic{
"mlir-print-stacktrace-on-diagnostic",
llvm::cl::desc("When a diagnostic is emitted, also print the stack trace "
"as an attached note")};
};
} // end anonymous namespace
static llvm::ManagedStatic<MLIRContextOptions> clOptions;
/// Register a set of useful command-line options that can be used to configure
/// various flags within the MLIRContext. These flags are used when constructing
/// an MLIR context for initialization.
void mlir::registerMLIRContextCLOptions() {
// Make sure that the options struct has been initialized.
*clOptions;
}
//===----------------------------------------------------------------------===//
// Builtin Dialect
//===----------------------------------------------------------------------===//
namespace {
/// A builtin dialect to define types/etc that are necessary for the validity of
/// the IR.
struct BuiltinDialect : public Dialect {
BuiltinDialect(MLIRContext *context)
: Dialect(/*name=*/"", context, TypeID::get<BuiltinDialect>()) {
addTypes<ComplexType, BFloat16Type, Float16Type, Float32Type, Float64Type,
FunctionType, IndexType, IntegerType, MemRefType,
UnrankedMemRefType, NoneType, OpaqueType, RankedTensorType,
TupleType, UnrankedTensorType, VectorType>();
addAttributes<AffineMapAttr, ArrayAttr, DenseIntOrFPElementsAttr,
DenseStringElementsAttr, DictionaryAttr, FloatAttr,
SymbolRefAttr, IntegerAttr, IntegerSetAttr, OpaqueAttr,
OpaqueElementsAttr, SparseElementsAttr, StringAttr, TypeAttr,
UnitAttr>();
addAttributes<CallSiteLoc, FileLineColLoc, FusedLoc, NameLoc, OpaqueLoc,
UnknownLoc>();
// TODO: These operations should be moved to a different dialect when they
// have been fully decoupled from the core.
addOperations<FuncOp, ModuleOp, ModuleTerminatorOp>();
}
static StringRef getDialectNamespace() { return ""; }
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// Locking Utilities
//===----------------------------------------------------------------------===//
namespace {
/// Utility reader lock that takes a runtime flag that specifies if we really
/// need to lock.
struct ScopedReaderLock {
ScopedReaderLock(llvm::sys::SmartRWMutex<true> &mutexParam, bool shouldLock)
: mutex(shouldLock ? &mutexParam : nullptr) {
if (mutex)
mutex->lock_shared();
}
~ScopedReaderLock() {
if (mutex)
mutex->unlock_shared();
}
llvm::sys::SmartRWMutex<true> *mutex;
};
/// Utility writer lock that takes a runtime flag that specifies if we really
/// need to lock.
struct ScopedWriterLock {
ScopedWriterLock(llvm::sys::SmartRWMutex<true> &mutexParam, bool shouldLock)
: mutex(shouldLock ? &mutexParam : nullptr) {
if (mutex)
mutex->lock();
}
~ScopedWriterLock() {
if (mutex)
mutex->unlock();
}
llvm::sys::SmartRWMutex<true> *mutex;
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// AffineMap and IntegerSet hashing
//===----------------------------------------------------------------------===//
/// A utility function to safely get or create a uniqued instance within the
/// given set container.
template <typename ValueT, typename DenseInfoT, typename KeyT,
typename ConstructorFn>
static ValueT safeGetOrCreate(DenseSet<ValueT, DenseInfoT> &container,
KeyT &&key, llvm::sys::SmartRWMutex<true> &mutex,
bool threadingIsEnabled,
ConstructorFn &&constructorFn) {
// Check for an existing instance in read-only mode.
if (threadingIsEnabled) {
llvm::sys::SmartScopedReader<true> instanceLock(mutex);
auto it = container.find_as(key);
if (it != container.end())
return *it;
}
// Acquire a writer-lock so that we can safely create the new instance.
ScopedWriterLock instanceLock(mutex, threadingIsEnabled);
// Check for an existing instance again here, because another writer thread
// may have already created one. Otherwise, construct a new instance.
auto existing = container.insert_as(ValueT(), key);
if (existing.second)
return *existing.first = constructorFn();
return *existing.first;
}
namespace {
struct AffineMapKeyInfo : DenseMapInfo<AffineMap> {
// Affine maps are uniqued based on their dim/symbol counts and affine
// expressions.
using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>>;
using DenseMapInfo<AffineMap>::isEqual;
static unsigned getHashValue(const AffineMap &key) {
return getHashValue(
KeyTy(key.getNumDims(), key.getNumSymbols(), key.getResults()));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(
std::get<0>(key), std::get<1>(key),
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()));
}
static bool isEqual(const KeyTy &lhs, AffineMap rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
rhs.getResults());
}
};
struct IntegerSetKeyInfo : DenseMapInfo<IntegerSet> {
// Integer sets are uniqued based on their dim/symbol counts, affine
// expressions appearing in the LHS of constraints, and eqFlags.
using KeyTy =
std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>, ArrayRef<bool>>;
using DenseMapInfo<IntegerSet>::isEqual;
static unsigned getHashValue(const IntegerSet &key) {
return getHashValue(KeyTy(key.getNumDims(), key.getNumSymbols(),
key.getConstraints(), key.getEqFlags()));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(
std::get<0>(key), std::get<1>(key),
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
}
static bool isEqual(const KeyTy &lhs, IntegerSet rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
rhs.getConstraints(), rhs.getEqFlags());
}
};
} // end anonymous namespace.
//===----------------------------------------------------------------------===//
// MLIRContextImpl
//===----------------------------------------------------------------------===//
namespace mlir {
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
/// This class is completely private to this file, so everything is public.
class MLIRContextImpl {
public:
//===--------------------------------------------------------------------===//
// Identifier uniquing
//===--------------------------------------------------------------------===//
// Identifier allocator and mutex for thread safety.
llvm::BumpPtrAllocator identifierAllocator;
llvm::sys::SmartRWMutex<true> identifierMutex;
//===--------------------------------------------------------------------===//
// Diagnostics
//===--------------------------------------------------------------------===//
DiagnosticEngine diagEngine;
//===--------------------------------------------------------------------===//
// Options
//===--------------------------------------------------------------------===//
/// In most cases, creating operation in unregistered dialect is not desired
/// and indicate a misconfiguration of the compiler. This option enables to
/// detect such use cases
bool allowUnregisteredDialects = false;
/// Enable support for multi-threading within MLIR.
bool threadingIsEnabled = true;
/// Track if we are currently executing in a threaded execution environment
/// (like the pass-manager): this is only a debugging feature to help reducing
/// the chances of data races one some context APIs.
#ifndef NDEBUG
std::atomic<int> multiThreadedExecutionContext{0};
#endif
/// If the operation should be attached to diagnostics printed via the
/// Operation::emit methods.
bool printOpOnDiagnostic = true;
/// If the current stack trace should be attached when emitting diagnostics.
bool printStackTraceOnDiagnostic = false;
//===--------------------------------------------------------------------===//
// Other
//===--------------------------------------------------------------------===//
/// This is a list of dialects that are created referring to this context.
/// The MLIRContext owns the objects.
DenseMap<StringRef, std::unique_ptr<Dialect>> loadedDialects;
DialectRegistry dialectsRegistry;
/// This is a mapping from operation name to AbstractOperation for registered
/// operations.
llvm::StringMap<AbstractOperation> registeredOperations;
/// These are identifiers uniqued into this MLIRContext.
llvm::StringSet<llvm::BumpPtrAllocator &> identifiers;
/// An allocator used for AbstractAttribute and AbstractType objects.
llvm::BumpPtrAllocator abstractDialectSymbolAllocator;
//===--------------------------------------------------------------------===//
// Affine uniquing
//===--------------------------------------------------------------------===//
// Affine allocator and mutex for thread safety.
llvm::BumpPtrAllocator affineAllocator;
llvm::sys::SmartRWMutex<true> affineMutex;
// Affine map uniquing.
using AffineMapSet = DenseSet<AffineMap, AffineMapKeyInfo>;
AffineMapSet affineMaps;
// Integer set uniquing.
using IntegerSets = DenseSet<IntegerSet, IntegerSetKeyInfo>;
IntegerSets integerSets;
// Affine expression uniquing.
StorageUniquer affineUniquer;
//===--------------------------------------------------------------------===//
// Type uniquing
//===--------------------------------------------------------------------===//
DenseMap<TypeID, const AbstractType *> registeredTypes;
StorageUniquer typeUniquer;
/// Cached Type Instances.
BFloat16Type bf16Ty;
Float16Type f16Ty;
Float32Type f32Ty;
Float64Type f64Ty;
IndexType indexTy;
IntegerType int1Ty, int8Ty, int16Ty, int32Ty, int64Ty, int128Ty;
NoneType noneType;
//===--------------------------------------------------------------------===//
// Attribute uniquing
//===--------------------------------------------------------------------===//
DenseMap<TypeID, const AbstractAttribute *> registeredAttributes;
StorageUniquer attributeUniquer;
/// Cached Attribute Instances.
BoolAttr falseAttr, trueAttr;
UnitAttr unitAttr;
UnknownLoc unknownLocAttr;
DictionaryAttr emptyDictionaryAttr;
public:
MLIRContextImpl() : identifiers(identifierAllocator) {}
~MLIRContextImpl() {
for (auto typeMapping : registeredTypes)
typeMapping.second->~AbstractType();
for (auto attrMapping : registeredAttributes)
attrMapping.second->~AbstractAttribute();
}
};
} // end namespace mlir
MLIRContext::MLIRContext(bool loadAllDialects) : impl(new MLIRContextImpl()) {
// Initialize values based on the command line flags if they were provided.
if (clOptions.isConstructed()) {
disableMultithreading(clOptions->disableThreading);
printOpOnDiagnostic(clOptions->printOpOnDiagnostic);
printStackTraceOnDiagnostic(clOptions->printStackTraceOnDiagnostic);
}
// Register dialects with this context.
getOrLoadDialect<BuiltinDialect>();
if (loadAllDialects)
loadAllGloballyRegisteredDialects();
// Initialize several common attributes and types to avoid the need to lock
// the context when accessing them.
//// Types.
/// Floating-point Types.
impl->bf16Ty = TypeUniquer::get<BFloat16Type>(this);
impl->f16Ty = TypeUniquer::get<Float16Type>(this);
impl->f32Ty = TypeUniquer::get<Float32Type>(this);
impl->f64Ty = TypeUniquer::get<Float64Type>(this);
/// Index Type.
impl->indexTy = TypeUniquer::get<IndexType>(this);
/// Integer Types.
impl->int1Ty = TypeUniquer::get<IntegerType>(this, 1, IntegerType::Signless);
impl->int8Ty = TypeUniquer::get<IntegerType>(this, 8, IntegerType::Signless);
impl->int16Ty =
TypeUniquer::get<IntegerType>(this, 16, IntegerType::Signless);
impl->int32Ty =
TypeUniquer::get<IntegerType>(this, 32, IntegerType::Signless);
impl->int64Ty =
TypeUniquer::get<IntegerType>(this, 64, IntegerType::Signless);
impl->int128Ty =
TypeUniquer::get<IntegerType>(this, 128, IntegerType::Signless);
/// None Type.
impl->noneType = TypeUniquer::get<NoneType>(this);
//// Attributes.
//// Note: These must be registered after the types as they may generate one
//// of the above types internally.
/// Bool Attributes.
impl->falseAttr = AttributeUniquer::get<IntegerAttr>(
this, impl->int1Ty, APInt(/*numBits=*/1, false))
.cast<BoolAttr>();
impl->trueAttr = AttributeUniquer::get<IntegerAttr>(
this, impl->int1Ty, APInt(/*numBits=*/1, true))
.cast<BoolAttr>();
/// Unit Attribute.
impl->unitAttr = AttributeUniquer::get<UnitAttr>(this);
/// Unknown Location Attribute.
impl->unknownLocAttr = AttributeUniquer::get<UnknownLoc>(this);
/// The empty dictionary attribute.
impl->emptyDictionaryAttr =
AttributeUniquer::get<DictionaryAttr>(this, ArrayRef<NamedAttribute>());
// Register the affine storage objects with the uniquer.
impl->affineUniquer
.registerParametricStorageType<AffineBinaryOpExprStorage>();
impl->affineUniquer
.registerParametricStorageType<AffineConstantExprStorage>();
impl->affineUniquer.registerParametricStorageType<AffineDimExprStorage>();
}
MLIRContext::~MLIRContext() {}
/// Copy the specified array of elements into memory managed by the provided
/// bump pointer allocator. This assumes the elements are all PODs.
template <typename T>
static ArrayRef<T> copyArrayRefInto(llvm::BumpPtrAllocator &allocator,
ArrayRef<T> elements) {
auto result = allocator.Allocate<T>(elements.size());
std::uninitialized_copy(elements.begin(), elements.end(), result);
return ArrayRef<T>(result, elements.size());
}
//===----------------------------------------------------------------------===//
// Diagnostic Handlers
//===----------------------------------------------------------------------===//
/// Returns the diagnostic engine for this context.
DiagnosticEngine &MLIRContext::getDiagEngine() { return getImpl().diagEngine; }
//===----------------------------------------------------------------------===//
// Dialect and Operation Registration
//===----------------------------------------------------------------------===//
DialectRegistry &MLIRContext::getDialectRegistry() {
return impl->dialectsRegistry;
}
/// Return information about all registered IR dialects.
std::vector<Dialect *> MLIRContext::getLoadedDialects() {
std::vector<Dialect *> result;
result.reserve(impl->loadedDialects.size());
for (auto &dialect : impl->loadedDialects)
result.push_back(dialect.second.get());
llvm::array_pod_sort(result.begin(), result.end(),
[](Dialect *const *lhs, Dialect *const *rhs) -> int {
return (*lhs)->getNamespace() < (*rhs)->getNamespace();
});
return result;
}
std::vector<StringRef> MLIRContext::getAvailableDialects() {
std::vector<StringRef> result;
for (auto &dialect : impl->dialectsRegistry)
result.push_back(dialect.first);
return result;
}
/// Get a registered IR dialect with the given namespace. If none is found,
/// then return nullptr.
Dialect *MLIRContext::getLoadedDialect(StringRef name) {
// Dialects are sorted by name, so we can use binary search for lookup.
auto it = impl->loadedDialects.find(name);
return (it != impl->loadedDialects.end()) ? it->second.get() : nullptr;
}
Dialect *MLIRContext::getOrLoadDialect(StringRef name) {
Dialect *dialect = getLoadedDialect(name);
if (dialect)
return dialect;
return impl->dialectsRegistry.loadByName(name, this);
}
/// Get a dialect for the provided namespace and TypeID: abort the program if a
/// dialect exist for this namespace with different TypeID. Returns a pointer to
/// the dialect owned by the context.
Dialect *
MLIRContext::getOrLoadDialect(StringRef dialectNamespace, TypeID dialectID,
function_ref<std::unique_ptr<Dialect>()> ctor) {
auto &impl = getImpl();
// Get the correct insertion position sorted by namespace.
std::unique_ptr<Dialect> &dialect = impl.loadedDialects[dialectNamespace];
if (!dialect) {
LLVM_DEBUG(llvm::dbgs()
<< "Load new dialect in Context " << dialectNamespace << "\n");
#ifndef NDEBUG
if (impl.multiThreadedExecutionContext != 0)
llvm::report_fatal_error(
"Loading a dialect (" + dialectNamespace +
") while in a multi-threaded execution context (maybe "
"the PassManager): this can indicate a "
"missing `dependentDialects` in a pass for example.");
#endif
dialect = ctor();
assert(dialect && "dialect ctor failed");
return dialect.get();
}
// Abort if dialect with namespace has already been registered.
if (dialect->getTypeID() != dialectID)
llvm::report_fatal_error("a dialect with namespace '" + dialectNamespace +
"' has already been registered");
return dialect.get();
}
void MLIRContext::loadAllGloballyRegisteredDialects() {
if (!isGlobalDialectRegistryEnabled())
return;
getGlobalDialectRegistry().loadAll(this);
}
bool MLIRContext::allowsUnregisteredDialects() {
return impl->allowUnregisteredDialects;
}
void MLIRContext::allowUnregisteredDialects(bool allowing) {
impl->allowUnregisteredDialects = allowing;
}
/// Return true if multi-threading is disabled by the context.
bool MLIRContext::isMultithreadingEnabled() {
return impl->threadingIsEnabled && llvm::llvm_is_multithreaded();
}
/// Set the flag specifying if multi-threading is disabled by the context.
void MLIRContext::disableMultithreading(bool disable) {
impl->threadingIsEnabled = !disable;
// Update the threading mode for each of the uniquers.
impl->affineUniquer.disableMultithreading(disable);
impl->attributeUniquer.disableMultithreading(disable);
impl->typeUniquer.disableMultithreading(disable);
}
void MLIRContext::enterMultiThreadedExecution() {
#ifndef NDEBUG
++impl->multiThreadedExecutionContext;
#endif
}
void MLIRContext::exitMultiThreadedExecution() {
#ifndef NDEBUG
--impl->multiThreadedExecutionContext;
#endif
}
/// Return true if we should attach the operation to diagnostics emitted via
/// Operation::emit.
bool MLIRContext::shouldPrintOpOnDiagnostic() {
return impl->printOpOnDiagnostic;
}
/// Set the flag specifying if we should attach the operation to diagnostics
/// emitted via Operation::emit.
void MLIRContext::printOpOnDiagnostic(bool enable) {
impl->printOpOnDiagnostic = enable;
}
/// Return true if we should attach the current stacktrace to diagnostics when
/// emitted.
bool MLIRContext::shouldPrintStackTraceOnDiagnostic() {
return impl->printStackTraceOnDiagnostic;
}
/// Set the flag specifying if we should attach the current stacktrace when
/// emitting diagnostics.
void MLIRContext::printStackTraceOnDiagnostic(bool enable) {
impl->printStackTraceOnDiagnostic = enable;
}
/// Return information about all registered operations. This isn't very
/// efficient, typically you should ask the operations about their properties
/// directly.
std::vector<AbstractOperation *> MLIRContext::getRegisteredOperations() {
// We just have the operations in a non-deterministic hash table order. Dump
// into a temporary array, then sort it by operation name to get a stable
// ordering.
llvm::StringMap<AbstractOperation> ®isteredOps =
impl->registeredOperations;
std::vector<AbstractOperation *> result;
result.reserve(registeredOps.size());
for (auto &elt : registeredOps)
result.push_back(&elt.second);
llvm::array_pod_sort(
result.begin(), result.end(),
[](AbstractOperation *const *lhs, AbstractOperation *const *rhs) {
return (*lhs)->name.compare((*rhs)->name);
});
return result;
}
bool MLIRContext::isOperationRegistered(StringRef name) {
return impl->registeredOperations.count(name);
}
void Dialect::addOperation(AbstractOperation opInfo) {
assert((getNamespace().empty() || opInfo.dialect.name == getNamespace()) &&
"op name doesn't start with dialect namespace");
assert(&opInfo.dialect == this && "Dialect object mismatch");
auto &impl = context->getImpl();
assert(impl.multiThreadedExecutionContext == 0 &&
"Registering a new operation kind while in a multi-threaded execution "
"context");
StringRef opName = opInfo.name;
if (!impl.registeredOperations.insert({opName, std::move(opInfo)}).second) {
llvm::errs() << "error: operation named '" << opInfo.name
<< "' is already registered.\n";
abort();
}
}
void Dialect::addType(TypeID typeID, AbstractType &&typeInfo) {
auto &impl = context->getImpl();
assert(impl.multiThreadedExecutionContext == 0 &&
"Registering a new type kind while in a multi-threaded execution "
"context");
auto *newInfo =
new (impl.abstractDialectSymbolAllocator.Allocate<AbstractType>())
AbstractType(std::move(typeInfo));
if (!impl.registeredTypes.insert({typeID, newInfo}).second)
llvm::report_fatal_error("Dialect Type already registered.");
}
void Dialect::addAttribute(TypeID typeID, AbstractAttribute &&attrInfo) {
auto &impl = context->getImpl();
assert(impl.multiThreadedExecutionContext == 0 &&
"Registering a new attribute kind while in a multi-threaded execution "
"context");
auto *newInfo =
new (impl.abstractDialectSymbolAllocator.Allocate<AbstractAttribute>())
AbstractAttribute(std::move(attrInfo));
if (!impl.registeredAttributes.insert({typeID, newInfo}).second)
llvm::report_fatal_error("Dialect Attribute already registered.");
}
/// Get the dialect that registered the attribute with the provided typeid.
const AbstractAttribute &AbstractAttribute::lookup(TypeID typeID,
MLIRContext *context) {
auto &impl = context->getImpl();
auto it = impl.registeredAttributes.find(typeID);
if (it == impl.registeredAttributes.end())
llvm::report_fatal_error("Trying to create an Attribute that was not "
"registered in this MLIRContext.");
return *it->second;
}
/// Look up the specified operation in the operation set and return a pointer
/// to it if present. Otherwise, return a null pointer.
const AbstractOperation *AbstractOperation::lookup(StringRef opName,
MLIRContext *context) {
auto &impl = context->getImpl();
auto it = impl.registeredOperations.find(opName);
if (it != impl.registeredOperations.end())
return &it->second;
return nullptr;
}
AbstractOperation::AbstractOperation(
StringRef name, Dialect &dialect, OperationProperties opProperties,
TypeID typeID,
ParseResult (&parseAssembly)(OpAsmParser &parser, OperationState &result),
void (&printAssembly)(Operation *op, OpAsmPrinter &p),
LogicalResult (&verifyInvariants)(Operation *op),
LogicalResult (&foldHook)(Operation *op, ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &results),
void (&getCanonicalizationPatterns)(OwningRewritePatternList &results,
MLIRContext *context),
detail::InterfaceMap &&interfaceMap, bool (&hasTrait)(TypeID traitID))
: name(Identifier::get(name, dialect.getContext())), dialect(dialect),
typeID(typeID), parseAssembly(parseAssembly),
printAssembly(printAssembly), verifyInvariants(verifyInvariants),
foldHook(foldHook),
getCanonicalizationPatterns(getCanonicalizationPatterns),
opProperties(opProperties), interfaceMap(std::move(interfaceMap)),
hasRawTrait(hasTrait) {}
/// Get the dialect that registered the type with the provided typeid.
const AbstractType &AbstractType::lookup(TypeID typeID, MLIRContext *context) {
auto &impl = context->getImpl();
auto it = impl.registeredTypes.find(typeID);
if (it == impl.registeredTypes.end())
llvm::report_fatal_error(
"Trying to create a Type that was not registered in this MLIRContext.");
return *it->second;
}
//===----------------------------------------------------------------------===//
// Identifier uniquing
//===----------------------------------------------------------------------===//
/// Return an identifier for the specified string.
Identifier Identifier::get(StringRef str, MLIRContext *context) {
auto &impl = context->getImpl();
// Check for an existing identifier in read-only mode.
if (context->isMultithreadingEnabled()) {
llvm::sys::SmartScopedReader<true> contextLock(impl.identifierMutex);
auto it = impl.identifiers.find(str);
if (it != impl.identifiers.end())
return Identifier(&*it);
}
// Check invariants after seeing if we already have something in the
// identifier table - if we already had it in the table, then it already
// passed invariant checks.
assert(!str.empty() && "Cannot create an empty identifier");
assert(str.find('\0') == StringRef::npos &&
"Cannot create an identifier with a nul character");
// Acquire a writer-lock so that we can safely create the new instance.
ScopedWriterLock contextLock(impl.identifierMutex, impl.threadingIsEnabled);
auto it = impl.identifiers.insert(str).first;
return Identifier(&*it);
}
//===----------------------------------------------------------------------===//
// Type uniquing
//===----------------------------------------------------------------------===//
/// Returns the storage uniquer used for constructing type storage instances.
/// This should not be used directly.
StorageUniquer &MLIRContext::getTypeUniquer() { return getImpl().typeUniquer; }
BFloat16Type BFloat16Type::get(MLIRContext *context) {
return context->getImpl().bf16Ty;
}
Float16Type Float16Type::get(MLIRContext *context) {
return context->getImpl().f16Ty;
}
Float32Type Float32Type::get(MLIRContext *context) {
return context->getImpl().f32Ty;
}
Float64Type Float64Type::get(MLIRContext *context) {
return context->getImpl().f64Ty;
}
/// Get an instance of the IndexType.
IndexType IndexType::get(MLIRContext *context) {
return context->getImpl().indexTy;
}
/// Return an existing integer type instance if one is cached within the
/// context.
static IntegerType
getCachedIntegerType(unsigned width,
IntegerType::SignednessSemantics signedness,
MLIRContext *context) {
if (signedness != IntegerType::Signless)
return IntegerType();
switch (width) {
case 1:
return context->getImpl().int1Ty;
case 8:
return context->getImpl().int8Ty;
case 16:
return context->getImpl().int16Ty;
case 32:
return context->getImpl().int32Ty;
case 64:
return context->getImpl().int64Ty;
case 128:
return context->getImpl().int128Ty;
default:
return IntegerType();
}
}
IntegerType IntegerType::get(unsigned width, MLIRContext *context) {
return get(width, IntegerType::Signless, context);
}
IntegerType IntegerType::get(unsigned width,
IntegerType::SignednessSemantics signedness,
MLIRContext *context) {
if (auto cached = getCachedIntegerType(width, signedness, context))
return cached;
return Base::get(context, width, signedness);
}
IntegerType IntegerType::getChecked(unsigned width, Location location) {
return getChecked(width, IntegerType::Signless, location);
}
IntegerType IntegerType::getChecked(unsigned width,
SignednessSemantics signedness,
Location location) {
if (auto cached =
getCachedIntegerType(width, signedness, location->getContext()))
return cached;
return Base::getChecked(location, width, signedness);
}
/// Get an instance of the NoneType.
NoneType NoneType::get(MLIRContext *context) {
if (NoneType cachedInst = context->getImpl().noneType)
return cachedInst;
// Note: May happen when initializing the singleton attributes of the builtin
// dialect.
return Base::get(context);
}
//===----------------------------------------------------------------------===//
// Attribute uniquing
//===----------------------------------------------------------------------===//
/// Returns the storage uniquer used for constructing attribute storage
/// instances. This should not be used directly.
StorageUniquer &MLIRContext::getAttributeUniquer() {
return getImpl().attributeUniquer;
}
/// Initialize the given attribute storage instance.
void AttributeUniquer::initializeAttributeStorage(AttributeStorage *storage,
MLIRContext *ctx,
TypeID attrID) {
storage->initialize(AbstractAttribute::lookup(attrID, ctx));
// If the attribute did not provide a type, then default to NoneType.
if (!storage->getType())
storage->setType(NoneType::get(ctx));
}
BoolAttr BoolAttr::get(bool value, MLIRContext *context) {
return value ? context->getImpl().trueAttr : context->getImpl().falseAttr;
}
UnitAttr UnitAttr::get(MLIRContext *context) {
return context->getImpl().unitAttr;
}
Location UnknownLoc::get(MLIRContext *context) {
return context->getImpl().unknownLocAttr;
}
/// Return empty dictionary.
DictionaryAttr DictionaryAttr::getEmpty(MLIRContext *context) {
return context->getImpl().emptyDictionaryAttr;
}
//===----------------------------------------------------------------------===//
// AffineMap uniquing
//===----------------------------------------------------------------------===//
StorageUniquer &MLIRContext::getAffineUniquer() {
return getImpl().affineUniquer;
}
AffineMap AffineMap::getImpl(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> results,
MLIRContext *context) {
auto &impl = context->getImpl();
auto key = std::make_tuple(dimCount, symbolCount, results);
// Safely get or create an AffineMap instance.
return safeGetOrCreate(
impl.affineMaps, key, impl.affineMutex, impl.threadingIsEnabled, [&] {
auto *res = impl.affineAllocator.Allocate<detail::AffineMapStorage>();
// Copy the results into the bump pointer.
results = copyArrayRefInto(impl.affineAllocator, results);
// Initialize the memory using placement new.
new (res)
detail::AffineMapStorage{dimCount, symbolCount, results, context};
return AffineMap(res);
});
}
AffineMap AffineMap::get(MLIRContext *context) {
return getImpl(/*dimCount=*/0, /*symbolCount=*/0, /*results=*/{}, context);
}
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
MLIRContext *context) {
return getImpl(dimCount, symbolCount, /*results=*/{}, context);
}
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
AffineExpr result) {
return getImpl(dimCount, symbolCount, {result}, result.getContext());
}
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> results, MLIRContext *context) {
return getImpl(dimCount, symbolCount, results, context);
}
//===----------------------------------------------------------------------===//
// Integer Sets: these are allocated into the bump pointer, and are immutable.
// Unlike AffineMap's, these are uniqued only if they are small.
//===----------------------------------------------------------------------===//
IntegerSet IntegerSet::get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> constraints,
ArrayRef<bool> eqFlags) {
// The number of constraints can't be zero.
assert(!constraints.empty());
assert(constraints.size() == eqFlags.size());
auto &impl = constraints[0].getContext()->getImpl();
// A utility function to construct a new IntegerSetStorage instance.
auto constructorFn = [&] {
auto *res = impl.affineAllocator.Allocate<detail::IntegerSetStorage>();
// Copy the results and equality flags into the bump pointer.
constraints = copyArrayRefInto(impl.affineAllocator, constraints);
eqFlags = copyArrayRefInto(impl.affineAllocator, eqFlags);
// Initialize the memory using placement new.
new (res)
detail::IntegerSetStorage{dimCount, symbolCount, constraints, eqFlags};
return IntegerSet(res);
};
// If this instance is uniqued, then we handle it separately so that multiple
// threads may simultaneously access existing instances.
if (constraints.size() < IntegerSet::kUniquingThreshold) {
auto key = std::make_tuple(dimCount, symbolCount, constraints, eqFlags);
return safeGetOrCreate(impl.integerSets, key, impl.affineMutex,
impl.threadingIsEnabled, constructorFn);
}
// Otherwise, acquire a writer-lock so that we can safely create the new
// instance.
ScopedWriterLock affineLock(impl.affineMutex, impl.threadingIsEnabled);
return constructorFn();
}
//===----------------------------------------------------------------------===//
// StorageUniquerSupport
//===----------------------------------------------------------------------===//
/// Utility method to generate a default location for use when checking the
/// construction invariants of a storage object. This is defined out-of-line to
/// avoid the need to include Location.h.
const AttributeStorage *
mlir::detail::generateUnknownStorageLocation(MLIRContext *ctx) {
return reinterpret_cast<const AttributeStorage *>(
ctx->getImpl().unknownLocAttr.getAsOpaquePointer());
}