MLIRContext.cpp 35.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/IR/MLIRContext.h"
#include "AffineExprDetail.h"
#include "AffineMapDetail.h"
#include "AttributeDetail.h"
#include "IntegerSetDetail.h"
#include "LocationDetail.h"
#include "TypeDetail.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Types.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>

#define DEBUG_TYPE "mlircontext"

using namespace mlir;
using namespace mlir::detail;

using llvm::hash_combine;
using llvm::hash_combine_range;

//===----------------------------------------------------------------------===//
// MLIRContext CommandLine Options
//===----------------------------------------------------------------------===//

namespace {
/// This struct contains command line options that can be used to initialize
/// various bits of an MLIRContext. This uses a struct wrapper to avoid the need
/// for global command line options.
struct MLIRContextOptions {
  llvm::cl::opt<bool> disableThreading{
      "mlir-disable-threading",
      llvm::cl::desc("Disabling multi-threading within MLIR")};

  llvm::cl::opt<bool> printOpOnDiagnostic{
      "mlir-print-op-on-diagnostic",
      llvm::cl::desc("When a diagnostic is emitted on an operation, also print "
                     "the operation as an attached note"),
      llvm::cl::init(true)};

  llvm::cl::opt<bool> printStackTraceOnDiagnostic{
      "mlir-print-stacktrace-on-diagnostic",
      llvm::cl::desc("When a diagnostic is emitted, also print the stack trace "
                     "as an attached note")};
};
} // end anonymous namespace

static llvm::ManagedStatic<MLIRContextOptions> clOptions;

/// Register a set of useful command-line options that can be used to configure
/// various flags within the MLIRContext. These flags are used when constructing
/// an MLIR context for initialization.
void mlir::registerMLIRContextCLOptions() {
  // Make sure that the options struct has been initialized.
  *clOptions;
}

//===----------------------------------------------------------------------===//
// Builtin Dialect
//===----------------------------------------------------------------------===//

namespace {
/// A builtin dialect to define types/etc that are necessary for the validity of
/// the IR.
struct BuiltinDialect : public Dialect {
  BuiltinDialect(MLIRContext *context)
      : Dialect(/*name=*/"", context, TypeID::get<BuiltinDialect>()) {
    addTypes<ComplexType, BFloat16Type, Float16Type, Float32Type, Float64Type,
             FunctionType, IndexType, IntegerType, MemRefType,
             UnrankedMemRefType, NoneType, OpaqueType, RankedTensorType,
             TupleType, UnrankedTensorType, VectorType>();
    addAttributes<AffineMapAttr, ArrayAttr, DenseIntOrFPElementsAttr,
                  DenseStringElementsAttr, DictionaryAttr, FloatAttr,
                  SymbolRefAttr, IntegerAttr, IntegerSetAttr, OpaqueAttr,
                  OpaqueElementsAttr, SparseElementsAttr, StringAttr, TypeAttr,
                  UnitAttr>();
    addAttributes<CallSiteLoc, FileLineColLoc, FusedLoc, NameLoc, OpaqueLoc,
                  UnknownLoc>();

    // TODO: These operations should be moved to a different dialect when they
    // have been fully decoupled from the core.
    addOperations<FuncOp, ModuleOp, ModuleTerminatorOp>();
  }
  static StringRef getDialectNamespace() { return ""; }
};
} // end anonymous namespace.

//===----------------------------------------------------------------------===//
// Locking Utilities
//===----------------------------------------------------------------------===//

namespace {
/// Utility reader lock that takes a runtime flag that specifies if we really
/// need to lock.
struct ScopedReaderLock {
  ScopedReaderLock(llvm::sys::SmartRWMutex<true> &mutexParam, bool shouldLock)
      : mutex(shouldLock ? &mutexParam : nullptr) {
    if (mutex)
      mutex->lock_shared();
  }
  ~ScopedReaderLock() {
    if (mutex)
      mutex->unlock_shared();
  }
  llvm::sys::SmartRWMutex<true> *mutex;
};
/// Utility writer lock that takes a runtime flag that specifies if we really
/// need to lock.
struct ScopedWriterLock {
  ScopedWriterLock(llvm::sys::SmartRWMutex<true> &mutexParam, bool shouldLock)
      : mutex(shouldLock ? &mutexParam : nullptr) {
    if (mutex)
      mutex->lock();
  }
  ~ScopedWriterLock() {
    if (mutex)
      mutex->unlock();
  }
  llvm::sys::SmartRWMutex<true> *mutex;
};
} // end anonymous namespace.

//===----------------------------------------------------------------------===//
// AffineMap and IntegerSet hashing
//===----------------------------------------------------------------------===//

/// A utility function to safely get or create a uniqued instance within the
/// given set container.
template <typename ValueT, typename DenseInfoT, typename KeyT,
          typename ConstructorFn>
static ValueT safeGetOrCreate(DenseSet<ValueT, DenseInfoT> &container,
                              KeyT &&key, llvm::sys::SmartRWMutex<true> &mutex,
                              bool threadingIsEnabled,
                              ConstructorFn &&constructorFn) {
  // Check for an existing instance in read-only mode.
  if (threadingIsEnabled) {
    llvm::sys::SmartScopedReader<true> instanceLock(mutex);
    auto it = container.find_as(key);
    if (it != container.end())
      return *it;
  }

  // Acquire a writer-lock so that we can safely create the new instance.
  ScopedWriterLock instanceLock(mutex, threadingIsEnabled);

  // Check for an existing instance again here, because another writer thread
  // may have already created one. Otherwise, construct a new instance.
  auto existing = container.insert_as(ValueT(), key);
  if (existing.second)
    return *existing.first = constructorFn();
  return *existing.first;
}

namespace {
struct AffineMapKeyInfo : DenseMapInfo<AffineMap> {
  // Affine maps are uniqued based on their dim/symbol counts and affine
  // expressions.
  using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>>;
  using DenseMapInfo<AffineMap>::isEqual;

  static unsigned getHashValue(const AffineMap &key) {
    return getHashValue(
        KeyTy(key.getNumDims(), key.getNumSymbols(), key.getResults()));
  }

  static unsigned getHashValue(KeyTy key) {
    return hash_combine(
        std::get<0>(key), std::get<1>(key),
        hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()));
  }

  static bool isEqual(const KeyTy &lhs, AffineMap rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
                                  rhs.getResults());
  }
};

struct IntegerSetKeyInfo : DenseMapInfo<IntegerSet> {
  // Integer sets are uniqued based on their dim/symbol counts, affine
  // expressions appearing in the LHS of constraints, and eqFlags.
  using KeyTy =
      std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>, ArrayRef<bool>>;
  using DenseMapInfo<IntegerSet>::isEqual;

  static unsigned getHashValue(const IntegerSet &key) {
    return getHashValue(KeyTy(key.getNumDims(), key.getNumSymbols(),
                              key.getConstraints(), key.getEqFlags()));
  }

  static unsigned getHashValue(KeyTy key) {
    return hash_combine(
        std::get<0>(key), std::get<1>(key),
        hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
        hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
  }

  static bool isEqual(const KeyTy &lhs, IntegerSet rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
                                  rhs.getConstraints(), rhs.getEqFlags());
  }
};
} // end anonymous namespace.

//===----------------------------------------------------------------------===//
// MLIRContextImpl
//===----------------------------------------------------------------------===//

namespace mlir {
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
/// This class is completely private to this file, so everything is public.
class MLIRContextImpl {
public:
  //===--------------------------------------------------------------------===//
  // Identifier uniquing
  //===--------------------------------------------------------------------===//

  // Identifier allocator and mutex for thread safety.
  llvm::BumpPtrAllocator identifierAllocator;
  llvm::sys::SmartRWMutex<true> identifierMutex;

  //===--------------------------------------------------------------------===//
  // Diagnostics
  //===--------------------------------------------------------------------===//
  DiagnosticEngine diagEngine;

  //===--------------------------------------------------------------------===//
  // Options
  //===--------------------------------------------------------------------===//

  /// In most cases, creating operation in unregistered dialect is not desired
  /// and indicate a misconfiguration of the compiler. This option enables to
  /// detect such use cases
  bool allowUnregisteredDialects = false;

  /// Enable support for multi-threading within MLIR.
  bool threadingIsEnabled = true;

  /// Track if we are currently executing in a threaded execution environment
  /// (like the pass-manager): this is only a debugging feature to help reducing
  /// the chances of data races one some context APIs.
#ifndef NDEBUG
  std::atomic<int> multiThreadedExecutionContext{0};
#endif

  /// If the operation should be attached to diagnostics printed via the
  /// Operation::emit methods.
  bool printOpOnDiagnostic = true;

  /// If the current stack trace should be attached when emitting diagnostics.
  bool printStackTraceOnDiagnostic = false;

  //===--------------------------------------------------------------------===//
  // Other
  //===--------------------------------------------------------------------===//

  /// This is a list of dialects that are created referring to this context.
  /// The MLIRContext owns the objects.
  DenseMap<StringRef, std::unique_ptr<Dialect>> loadedDialects;
  DialectRegistry dialectsRegistry;

  /// This is a mapping from operation name to AbstractOperation for registered
  /// operations.
  llvm::StringMap<AbstractOperation> registeredOperations;

  /// These are identifiers uniqued into this MLIRContext.
  llvm::StringSet<llvm::BumpPtrAllocator &> identifiers;

  /// An allocator used for AbstractAttribute and AbstractType objects.
  llvm::BumpPtrAllocator abstractDialectSymbolAllocator;

  //===--------------------------------------------------------------------===//
  // Affine uniquing
  //===--------------------------------------------------------------------===//

  // Affine allocator and mutex for thread safety.
  llvm::BumpPtrAllocator affineAllocator;
  llvm::sys::SmartRWMutex<true> affineMutex;

  // Affine map uniquing.
  using AffineMapSet = DenseSet<AffineMap, AffineMapKeyInfo>;
  AffineMapSet affineMaps;

  // Integer set uniquing.
  using IntegerSets = DenseSet<IntegerSet, IntegerSetKeyInfo>;
  IntegerSets integerSets;

  // Affine expression uniquing.
  StorageUniquer affineUniquer;

  //===--------------------------------------------------------------------===//
  // Type uniquing
  //===--------------------------------------------------------------------===//

  DenseMap<TypeID, const AbstractType *> registeredTypes;
  StorageUniquer typeUniquer;

  /// Cached Type Instances.
  BFloat16Type bf16Ty;
  Float16Type f16Ty;
  Float32Type f32Ty;
  Float64Type f64Ty;
  IndexType indexTy;
  IntegerType int1Ty, int8Ty, int16Ty, int32Ty, int64Ty, int128Ty;
  NoneType noneType;

  //===--------------------------------------------------------------------===//
  // Attribute uniquing
  //===--------------------------------------------------------------------===//

  DenseMap<TypeID, const AbstractAttribute *> registeredAttributes;
  StorageUniquer attributeUniquer;

  /// Cached Attribute Instances.
  BoolAttr falseAttr, trueAttr;
  UnitAttr unitAttr;
  UnknownLoc unknownLocAttr;
  DictionaryAttr emptyDictionaryAttr;

public:
  MLIRContextImpl() : identifiers(identifierAllocator) {}
  ~MLIRContextImpl() {
    for (auto typeMapping : registeredTypes)
      typeMapping.second->~AbstractType();
    for (auto attrMapping : registeredAttributes)
      attrMapping.second->~AbstractAttribute();
  }
};
} // end namespace mlir

MLIRContext::MLIRContext(bool loadAllDialects) : impl(new MLIRContextImpl()) {
  // Initialize values based on the command line flags if they were provided.
  if (clOptions.isConstructed()) {
    disableMultithreading(clOptions->disableThreading);
    printOpOnDiagnostic(clOptions->printOpOnDiagnostic);
    printStackTraceOnDiagnostic(clOptions->printStackTraceOnDiagnostic);
  }

  // Register dialects with this context.
  getOrLoadDialect<BuiltinDialect>();
  if (loadAllDialects)
    loadAllGloballyRegisteredDialects();

  // Initialize several common attributes and types to avoid the need to lock
  // the context when accessing them.

  //// Types.
  /// Floating-point Types.
  impl->bf16Ty = TypeUniquer::get<BFloat16Type>(this);
  impl->f16Ty = TypeUniquer::get<Float16Type>(this);
  impl->f32Ty = TypeUniquer::get<Float32Type>(this);
  impl->f64Ty = TypeUniquer::get<Float64Type>(this);
  /// Index Type.
  impl->indexTy = TypeUniquer::get<IndexType>(this);
  /// Integer Types.
  impl->int1Ty = TypeUniquer::get<IntegerType>(this, 1, IntegerType::Signless);
  impl->int8Ty = TypeUniquer::get<IntegerType>(this, 8, IntegerType::Signless);
  impl->int16Ty =
      TypeUniquer::get<IntegerType>(this, 16, IntegerType::Signless);
  impl->int32Ty =
      TypeUniquer::get<IntegerType>(this, 32, IntegerType::Signless);
  impl->int64Ty =
      TypeUniquer::get<IntegerType>(this, 64, IntegerType::Signless);
  impl->int128Ty =
      TypeUniquer::get<IntegerType>(this, 128, IntegerType::Signless);
  /// None Type.
  impl->noneType = TypeUniquer::get<NoneType>(this);

  //// Attributes.
  //// Note: These must be registered after the types as they may generate one
  //// of the above types internally.
  /// Bool Attributes.
  impl->falseAttr = AttributeUniquer::get<IntegerAttr>(
                        this, impl->int1Ty, APInt(/*numBits=*/1, false))
                        .cast<BoolAttr>();
  impl->trueAttr = AttributeUniquer::get<IntegerAttr>(
                       this, impl->int1Ty, APInt(/*numBits=*/1, true))
                       .cast<BoolAttr>();
  /// Unit Attribute.
  impl->unitAttr = AttributeUniquer::get<UnitAttr>(this);
  /// Unknown Location Attribute.
  impl->unknownLocAttr = AttributeUniquer::get<UnknownLoc>(this);
  /// The empty dictionary attribute.
  impl->emptyDictionaryAttr =
      AttributeUniquer::get<DictionaryAttr>(this, ArrayRef<NamedAttribute>());

  // Register the affine storage objects with the uniquer.
  impl->affineUniquer
      .registerParametricStorageType<AffineBinaryOpExprStorage>();
  impl->affineUniquer
      .registerParametricStorageType<AffineConstantExprStorage>();
  impl->affineUniquer.registerParametricStorageType<AffineDimExprStorage>();
}

MLIRContext::~MLIRContext() {}

/// Copy the specified array of elements into memory managed by the provided
/// bump pointer allocator.  This assumes the elements are all PODs.
template <typename T>
static ArrayRef<T> copyArrayRefInto(llvm::BumpPtrAllocator &allocator,
                                    ArrayRef<T> elements) {
  auto result = allocator.Allocate<T>(elements.size());
  std::uninitialized_copy(elements.begin(), elements.end(), result);
  return ArrayRef<T>(result, elements.size());
}

//===----------------------------------------------------------------------===//
// Diagnostic Handlers
//===----------------------------------------------------------------------===//

/// Returns the diagnostic engine for this context.
DiagnosticEngine &MLIRContext::getDiagEngine() { return getImpl().diagEngine; }

//===----------------------------------------------------------------------===//
// Dialect and Operation Registration
//===----------------------------------------------------------------------===//

DialectRegistry &MLIRContext::getDialectRegistry() {
  return impl->dialectsRegistry;
}

/// Return information about all registered IR dialects.
std::vector<Dialect *> MLIRContext::getLoadedDialects() {
  std::vector<Dialect *> result;
  result.reserve(impl->loadedDialects.size());
  for (auto &dialect : impl->loadedDialects)
    result.push_back(dialect.second.get());
  llvm::array_pod_sort(result.begin(), result.end(),
                       [](Dialect *const *lhs, Dialect *const *rhs) -> int {
                         return (*lhs)->getNamespace() < (*rhs)->getNamespace();
                       });
  return result;
}
std::vector<StringRef> MLIRContext::getAvailableDialects() {
  std::vector<StringRef> result;
  for (auto &dialect : impl->dialectsRegistry)
    result.push_back(dialect.first);
  return result;
}

/// Get a registered IR dialect with the given namespace. If none is found,
/// then return nullptr.
Dialect *MLIRContext::getLoadedDialect(StringRef name) {
  // Dialects are sorted by name, so we can use binary search for lookup.
  auto it = impl->loadedDialects.find(name);
  return (it != impl->loadedDialects.end()) ? it->second.get() : nullptr;
}

Dialect *MLIRContext::getOrLoadDialect(StringRef name) {
  Dialect *dialect = getLoadedDialect(name);
  if (dialect)
    return dialect;
  return impl->dialectsRegistry.loadByName(name, this);
}

/// Get a dialect for the provided namespace and TypeID: abort the program if a
/// dialect exist for this namespace with different TypeID. Returns a pointer to
/// the dialect owned by the context.
Dialect *
MLIRContext::getOrLoadDialect(StringRef dialectNamespace, TypeID dialectID,
                              function_ref<std::unique_ptr<Dialect>()> ctor) {
  auto &impl = getImpl();
  // Get the correct insertion position sorted by namespace.
  std::unique_ptr<Dialect> &dialect = impl.loadedDialects[dialectNamespace];

  if (!dialect) {
    LLVM_DEBUG(llvm::dbgs()
               << "Load new dialect in Context " << dialectNamespace << "\n");
#ifndef NDEBUG
    if (impl.multiThreadedExecutionContext != 0)
      llvm::report_fatal_error(
          "Loading a dialect (" + dialectNamespace +
          ") while in a multi-threaded execution context (maybe "
          "the PassManager): this can indicate a "
          "missing `dependentDialects` in a pass for example.");
#endif
    dialect = ctor();
    assert(dialect && "dialect ctor failed");
    return dialect.get();
  }

  // Abort if dialect with namespace has already been registered.
  if (dialect->getTypeID() != dialectID)
    llvm::report_fatal_error("a dialect with namespace '" + dialectNamespace +
                             "' has already been registered");

  return dialect.get();
}

void MLIRContext::loadAllGloballyRegisteredDialects() {
  if (!isGlobalDialectRegistryEnabled())
    return;
  getGlobalDialectRegistry().loadAll(this);
}

bool MLIRContext::allowsUnregisteredDialects() {
  return impl->allowUnregisteredDialects;
}

void MLIRContext::allowUnregisteredDialects(bool allowing) {
  impl->allowUnregisteredDialects = allowing;
}

/// Return true if multi-threading is disabled by the context.
bool MLIRContext::isMultithreadingEnabled() {
  return impl->threadingIsEnabled && llvm::llvm_is_multithreaded();
}

/// Set the flag specifying if multi-threading is disabled by the context.
void MLIRContext::disableMultithreading(bool disable) {
  impl->threadingIsEnabled = !disable;

  // Update the threading mode for each of the uniquers.
  impl->affineUniquer.disableMultithreading(disable);
  impl->attributeUniquer.disableMultithreading(disable);
  impl->typeUniquer.disableMultithreading(disable);
}

void MLIRContext::enterMultiThreadedExecution() {
#ifndef NDEBUG
  ++impl->multiThreadedExecutionContext;
#endif
}
void MLIRContext::exitMultiThreadedExecution() {
#ifndef NDEBUG
  --impl->multiThreadedExecutionContext;
#endif
}

/// Return true if we should attach the operation to diagnostics emitted via
/// Operation::emit.
bool MLIRContext::shouldPrintOpOnDiagnostic() {
  return impl->printOpOnDiagnostic;
}

/// Set the flag specifying if we should attach the operation to diagnostics
/// emitted via Operation::emit.
void MLIRContext::printOpOnDiagnostic(bool enable) {
  impl->printOpOnDiagnostic = enable;
}

/// Return true if we should attach the current stacktrace to diagnostics when
/// emitted.
bool MLIRContext::shouldPrintStackTraceOnDiagnostic() {
  return impl->printStackTraceOnDiagnostic;
}

/// Set the flag specifying if we should attach the current stacktrace when
/// emitting diagnostics.
void MLIRContext::printStackTraceOnDiagnostic(bool enable) {
  impl->printStackTraceOnDiagnostic = enable;
}

/// Return information about all registered operations.  This isn't very
/// efficient, typically you should ask the operations about their properties
/// directly.
std::vector<AbstractOperation *> MLIRContext::getRegisteredOperations() {
  // We just have the operations in a non-deterministic hash table order. Dump
  // into a temporary array, then sort it by operation name to get a stable
  // ordering.
  llvm::StringMap<AbstractOperation> &registeredOps =
      impl->registeredOperations;

  std::vector<AbstractOperation *> result;
  result.reserve(registeredOps.size());
  for (auto &elt : registeredOps)
    result.push_back(&elt.second);
  llvm::array_pod_sort(
      result.begin(), result.end(),
      [](AbstractOperation *const *lhs, AbstractOperation *const *rhs) {
        return (*lhs)->name.compare((*rhs)->name);
      });

  return result;
}

bool MLIRContext::isOperationRegistered(StringRef name) {
  return impl->registeredOperations.count(name);
}

void Dialect::addOperation(AbstractOperation opInfo) {
  assert((getNamespace().empty() || opInfo.dialect.name == getNamespace()) &&
         "op name doesn't start with dialect namespace");
  assert(&opInfo.dialect == this && "Dialect object mismatch");
  auto &impl = context->getImpl();
  assert(impl.multiThreadedExecutionContext == 0 &&
         "Registering a new operation kind while in a multi-threaded execution "
         "context");
  StringRef opName = opInfo.name;
  if (!impl.registeredOperations.insert({opName, std::move(opInfo)}).second) {
    llvm::errs() << "error: operation named '" << opInfo.name
                 << "' is already registered.\n";
    abort();
  }
}

void Dialect::addType(TypeID typeID, AbstractType &&typeInfo) {
  auto &impl = context->getImpl();
  assert(impl.multiThreadedExecutionContext == 0 &&
         "Registering a new type kind while in a multi-threaded execution "
         "context");
  auto *newInfo =
      new (impl.abstractDialectSymbolAllocator.Allocate<AbstractType>())
          AbstractType(std::move(typeInfo));
  if (!impl.registeredTypes.insert({typeID, newInfo}).second)
    llvm::report_fatal_error("Dialect Type already registered.");
}

void Dialect::addAttribute(TypeID typeID, AbstractAttribute &&attrInfo) {
  auto &impl = context->getImpl();
  assert(impl.multiThreadedExecutionContext == 0 &&
         "Registering a new attribute kind while in a multi-threaded execution "
         "context");
  auto *newInfo =
      new (impl.abstractDialectSymbolAllocator.Allocate<AbstractAttribute>())
          AbstractAttribute(std::move(attrInfo));
  if (!impl.registeredAttributes.insert({typeID, newInfo}).second)
    llvm::report_fatal_error("Dialect Attribute already registered.");
}

/// Get the dialect that registered the attribute with the provided typeid.
const AbstractAttribute &AbstractAttribute::lookup(TypeID typeID,
                                                   MLIRContext *context) {
  auto &impl = context->getImpl();
  auto it = impl.registeredAttributes.find(typeID);
  if (it == impl.registeredAttributes.end())
    llvm::report_fatal_error("Trying to create an Attribute that was not "
                             "registered in this MLIRContext.");
  return *it->second;
}

/// Look up the specified operation in the operation set and return a pointer
/// to it if present.  Otherwise, return a null pointer.
const AbstractOperation *AbstractOperation::lookup(StringRef opName,
                                                   MLIRContext *context) {
  auto &impl = context->getImpl();
  auto it = impl.registeredOperations.find(opName);
  if (it != impl.registeredOperations.end())
    return &it->second;
  return nullptr;
}

AbstractOperation::AbstractOperation(
    StringRef name, Dialect &dialect, OperationProperties opProperties,
    TypeID typeID,
    ParseResult (&parseAssembly)(OpAsmParser &parser, OperationState &result),
    void (&printAssembly)(Operation *op, OpAsmPrinter &p),
    LogicalResult (&verifyInvariants)(Operation *op),
    LogicalResult (&foldHook)(Operation *op, ArrayRef<Attribute> operands,
                              SmallVectorImpl<OpFoldResult> &results),
    void (&getCanonicalizationPatterns)(OwningRewritePatternList &results,
                                        MLIRContext *context),
    detail::InterfaceMap &&interfaceMap, bool (&hasTrait)(TypeID traitID))
    : name(Identifier::get(name, dialect.getContext())), dialect(dialect),
      typeID(typeID), parseAssembly(parseAssembly),
      printAssembly(printAssembly), verifyInvariants(verifyInvariants),
      foldHook(foldHook),
      getCanonicalizationPatterns(getCanonicalizationPatterns),
      opProperties(opProperties), interfaceMap(std::move(interfaceMap)),
      hasRawTrait(hasTrait) {}

/// Get the dialect that registered the type with the provided typeid.
const AbstractType &AbstractType::lookup(TypeID typeID, MLIRContext *context) {
  auto &impl = context->getImpl();
  auto it = impl.registeredTypes.find(typeID);
  if (it == impl.registeredTypes.end())
    llvm::report_fatal_error(
        "Trying to create a Type that was not registered in this MLIRContext.");
  return *it->second;
}

//===----------------------------------------------------------------------===//
// Identifier uniquing
//===----------------------------------------------------------------------===//

/// Return an identifier for the specified string.
Identifier Identifier::get(StringRef str, MLIRContext *context) {
  auto &impl = context->getImpl();

  // Check for an existing identifier in read-only mode.
  if (context->isMultithreadingEnabled()) {
    llvm::sys::SmartScopedReader<true> contextLock(impl.identifierMutex);
    auto it = impl.identifiers.find(str);
    if (it != impl.identifiers.end())
      return Identifier(&*it);
  }

  // Check invariants after seeing if we already have something in the
  // identifier table - if we already had it in the table, then it already
  // passed invariant checks.
  assert(!str.empty() && "Cannot create an empty identifier");
  assert(str.find('\0') == StringRef::npos &&
         "Cannot create an identifier with a nul character");

  // Acquire a writer-lock so that we can safely create the new instance.
  ScopedWriterLock contextLock(impl.identifierMutex, impl.threadingIsEnabled);
  auto it = impl.identifiers.insert(str).first;
  return Identifier(&*it);
}

//===----------------------------------------------------------------------===//
// Type uniquing
//===----------------------------------------------------------------------===//

/// Returns the storage uniquer used for constructing type storage instances.
/// This should not be used directly.
StorageUniquer &MLIRContext::getTypeUniquer() { return getImpl().typeUniquer; }

BFloat16Type BFloat16Type::get(MLIRContext *context) {
  return context->getImpl().bf16Ty;
}
Float16Type Float16Type::get(MLIRContext *context) {
  return context->getImpl().f16Ty;
}
Float32Type Float32Type::get(MLIRContext *context) {
  return context->getImpl().f32Ty;
}
Float64Type Float64Type::get(MLIRContext *context) {
  return context->getImpl().f64Ty;
}

/// Get an instance of the IndexType.
IndexType IndexType::get(MLIRContext *context) {
  return context->getImpl().indexTy;
}

/// Return an existing integer type instance if one is cached within the
/// context.
static IntegerType
getCachedIntegerType(unsigned width,
                     IntegerType::SignednessSemantics signedness,
                     MLIRContext *context) {
  if (signedness != IntegerType::Signless)
    return IntegerType();

  switch (width) {
  case 1:
    return context->getImpl().int1Ty;
  case 8:
    return context->getImpl().int8Ty;
  case 16:
    return context->getImpl().int16Ty;
  case 32:
    return context->getImpl().int32Ty;
  case 64:
    return context->getImpl().int64Ty;
  case 128:
    return context->getImpl().int128Ty;
  default:
    return IntegerType();
  }
}

IntegerType IntegerType::get(unsigned width, MLIRContext *context) {
  return get(width, IntegerType::Signless, context);
}

IntegerType IntegerType::get(unsigned width,
                             IntegerType::SignednessSemantics signedness,
                             MLIRContext *context) {
  if (auto cached = getCachedIntegerType(width, signedness, context))
    return cached;
  return Base::get(context, width, signedness);
}

IntegerType IntegerType::getChecked(unsigned width, Location location) {
  return getChecked(width, IntegerType::Signless, location);
}

IntegerType IntegerType::getChecked(unsigned width,
                                    SignednessSemantics signedness,
                                    Location location) {
  if (auto cached =
          getCachedIntegerType(width, signedness, location->getContext()))
    return cached;
  return Base::getChecked(location, width, signedness);
}

/// Get an instance of the NoneType.
NoneType NoneType::get(MLIRContext *context) {
  if (NoneType cachedInst = context->getImpl().noneType)
    return cachedInst;
  // Note: May happen when initializing the singleton attributes of the builtin
  // dialect.
  return Base::get(context);
}

//===----------------------------------------------------------------------===//
// Attribute uniquing
//===----------------------------------------------------------------------===//

/// Returns the storage uniquer used for constructing attribute storage
/// instances. This should not be used directly.
StorageUniquer &MLIRContext::getAttributeUniquer() {
  return getImpl().attributeUniquer;
}

/// Initialize the given attribute storage instance.
void AttributeUniquer::initializeAttributeStorage(AttributeStorage *storage,
                                                  MLIRContext *ctx,
                                                  TypeID attrID) {
  storage->initialize(AbstractAttribute::lookup(attrID, ctx));

  // If the attribute did not provide a type, then default to NoneType.
  if (!storage->getType())
    storage->setType(NoneType::get(ctx));
}

BoolAttr BoolAttr::get(bool value, MLIRContext *context) {
  return value ? context->getImpl().trueAttr : context->getImpl().falseAttr;
}

UnitAttr UnitAttr::get(MLIRContext *context) {
  return context->getImpl().unitAttr;
}

Location UnknownLoc::get(MLIRContext *context) {
  return context->getImpl().unknownLocAttr;
}

/// Return empty dictionary.
DictionaryAttr DictionaryAttr::getEmpty(MLIRContext *context) {
  return context->getImpl().emptyDictionaryAttr;
}

//===----------------------------------------------------------------------===//
// AffineMap uniquing
//===----------------------------------------------------------------------===//

StorageUniquer &MLIRContext::getAffineUniquer() {
  return getImpl().affineUniquer;
}

AffineMap AffineMap::getImpl(unsigned dimCount, unsigned symbolCount,
                             ArrayRef<AffineExpr> results,
                             MLIRContext *context) {
  auto &impl = context->getImpl();
  auto key = std::make_tuple(dimCount, symbolCount, results);

  // Safely get or create an AffineMap instance.
  return safeGetOrCreate(
      impl.affineMaps, key, impl.affineMutex, impl.threadingIsEnabled, [&] {
        auto *res = impl.affineAllocator.Allocate<detail::AffineMapStorage>();

        // Copy the results into the bump pointer.
        results = copyArrayRefInto(impl.affineAllocator, results);

        // Initialize the memory using placement new.
        new (res)
            detail::AffineMapStorage{dimCount, symbolCount, results, context};
        return AffineMap(res);
      });
}

AffineMap AffineMap::get(MLIRContext *context) {
  return getImpl(/*dimCount=*/0, /*symbolCount=*/0, /*results=*/{}, context);
}

AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
                         MLIRContext *context) {
  return getImpl(dimCount, symbolCount, /*results=*/{}, context);
}

AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
                         AffineExpr result) {
  return getImpl(dimCount, symbolCount, {result}, result.getContext());
}

AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
                         ArrayRef<AffineExpr> results, MLIRContext *context) {
  return getImpl(dimCount, symbolCount, results, context);
}

//===----------------------------------------------------------------------===//
// Integer Sets: these are allocated into the bump pointer, and are immutable.
// Unlike AffineMap's, these are uniqued only if they are small.
//===----------------------------------------------------------------------===//

IntegerSet IntegerSet::get(unsigned dimCount, unsigned symbolCount,
                           ArrayRef<AffineExpr> constraints,
                           ArrayRef<bool> eqFlags) {
  // The number of constraints can't be zero.
  assert(!constraints.empty());
  assert(constraints.size() == eqFlags.size());

  auto &impl = constraints[0].getContext()->getImpl();

  // A utility function to construct a new IntegerSetStorage instance.
  auto constructorFn = [&] {
    auto *res = impl.affineAllocator.Allocate<detail::IntegerSetStorage>();

    // Copy the results and equality flags into the bump pointer.
    constraints = copyArrayRefInto(impl.affineAllocator, constraints);
    eqFlags = copyArrayRefInto(impl.affineAllocator, eqFlags);

    // Initialize the memory using placement new.
    new (res)
        detail::IntegerSetStorage{dimCount, symbolCount, constraints, eqFlags};
    return IntegerSet(res);
  };

  // If this instance is uniqued, then we handle it separately so that multiple
  // threads may simultaneously access existing instances.
  if (constraints.size() < IntegerSet::kUniquingThreshold) {
    auto key = std::make_tuple(dimCount, symbolCount, constraints, eqFlags);
    return safeGetOrCreate(impl.integerSets, key, impl.affineMutex,
                           impl.threadingIsEnabled, constructorFn);
  }

  // Otherwise, acquire a writer-lock so that we can safely create the new
  // instance.
  ScopedWriterLock affineLock(impl.affineMutex, impl.threadingIsEnabled);
  return constructorFn();
}

//===----------------------------------------------------------------------===//
// StorageUniquerSupport
//===----------------------------------------------------------------------===//

/// Utility method to generate a default location for use when checking the
/// construction invariants of a storage object. This is defined out-of-line to
/// avoid the need to include Location.h.
const AttributeStorage *
mlir::detail::generateUnknownStorageLocation(MLIRContext *ctx) {
  return reinterpret_cast<const AttributeStorage *>(
      ctx->getImpl().unknownLocAttr.getAsOpaquePointer());
}