Builders.cpp 15.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
//===- Builders.cpp - Helpers for constructing MLIR Classes ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/IR/Builders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;

Builder::Builder(ModuleOp module) : context(module.getContext()) {}

Identifier Builder::getIdentifier(StringRef str) {
  return Identifier::get(str, context);
}

//===----------------------------------------------------------------------===//
// Locations.
//===----------------------------------------------------------------------===//

Location Builder::getUnknownLoc() { return UnknownLoc::get(context); }

Location Builder::getFileLineColLoc(Identifier filename, unsigned line,
                                    unsigned column) {
  return FileLineColLoc::get(filename, line, column, context);
}

Location Builder::getFusedLoc(ArrayRef<Location> locs, Attribute metadata) {
  return FusedLoc::get(locs, metadata, context);
}

//===----------------------------------------------------------------------===//
// Types.
//===----------------------------------------------------------------------===//

FloatType Builder::getBF16Type() { return FloatType::getBF16(context); }

FloatType Builder::getF16Type() { return FloatType::getF16(context); }

FloatType Builder::getF32Type() { return FloatType::getF32(context); }

FloatType Builder::getF64Type() { return FloatType::getF64(context); }

IndexType Builder::getIndexType() { return IndexType::get(context); }

IntegerType Builder::getI1Type() { return IntegerType::get(1, context); }

IntegerType Builder::getI32Type() { return IntegerType::get(32, context); }

IntegerType Builder::getI64Type() { return IntegerType::get(64, context); }

IntegerType Builder::getIntegerType(unsigned width) {
  return IntegerType::get(width, context);
}

IntegerType Builder::getIntegerType(unsigned width, bool isSigned) {
  return IntegerType::get(
      width, isSigned ? IntegerType::Signed : IntegerType::Unsigned, context);
}

FunctionType Builder::getFunctionType(TypeRange inputs, TypeRange results) {
  return FunctionType::get(inputs, results, context);
}

TupleType Builder::getTupleType(TypeRange elementTypes) {
  return TupleType::get(elementTypes, context);
}

NoneType Builder::getNoneType() { return NoneType::get(context); }

//===----------------------------------------------------------------------===//
// Attributes.
//===----------------------------------------------------------------------===//

NamedAttribute Builder::getNamedAttr(StringRef name, Attribute val) {
  return NamedAttribute(getIdentifier(name), val);
}

UnitAttr Builder::getUnitAttr() { return UnitAttr::get(context); }

BoolAttr Builder::getBoolAttr(bool value) {
  return BoolAttr::get(value, context);
}

DictionaryAttr Builder::getDictionaryAttr(ArrayRef<NamedAttribute> value) {
  return DictionaryAttr::get(value, context);
}

IntegerAttr Builder::getIndexAttr(int64_t value) {
  return IntegerAttr::get(getIndexType(), APInt(64, value));
}

IntegerAttr Builder::getI64IntegerAttr(int64_t value) {
  return IntegerAttr::get(getIntegerType(64), APInt(64, value));
}

DenseIntElementsAttr Builder::getBoolVectorAttr(ArrayRef<bool> values) {
  return DenseIntElementsAttr::get(
      VectorType::get(static_cast<int64_t>(values.size()), getI1Type()),
      values);
}

DenseIntElementsAttr Builder::getI32VectorAttr(ArrayRef<int32_t> values) {
  return DenseIntElementsAttr::get(
      VectorType::get(static_cast<int64_t>(values.size()), getIntegerType(32)),
      values);
}

DenseIntElementsAttr Builder::getI64VectorAttr(ArrayRef<int64_t> values) {
  return DenseIntElementsAttr::get(
      VectorType::get(static_cast<int64_t>(values.size()), getIntegerType(64)),
      values);
}

DenseIntElementsAttr Builder::getI32TensorAttr(ArrayRef<int32_t> values) {
  return DenseIntElementsAttr::get(
      RankedTensorType::get(static_cast<int64_t>(values.size()),
                            getIntegerType(32)),
      values);
}

DenseIntElementsAttr Builder::getI64TensorAttr(ArrayRef<int64_t> values) {
  return DenseIntElementsAttr::get(
      RankedTensorType::get(static_cast<int64_t>(values.size()),
                            getIntegerType(64)),
      values);
}

DenseIntElementsAttr Builder::getIndexTensorAttr(ArrayRef<int64_t> values) {
  return DenseIntElementsAttr::get(
      RankedTensorType::get(static_cast<int64_t>(values.size()),
                            getIndexType()),
      values);
}

IntegerAttr Builder::getI32IntegerAttr(int32_t value) {
  return IntegerAttr::get(getIntegerType(32), APInt(32, value));
}

IntegerAttr Builder::getSI32IntegerAttr(int32_t value) {
  return IntegerAttr::get(getIntegerType(32, /*isSigned=*/true),
                          APInt(32, value, /*isSigned=*/true));
}

IntegerAttr Builder::getUI32IntegerAttr(uint32_t value) {
  return IntegerAttr::get(getIntegerType(32, /*isSigned=*/false),
                          APInt(32, (uint64_t)value, /*isSigned=*/false));
}

IntegerAttr Builder::getI16IntegerAttr(int16_t value) {
  return IntegerAttr::get(getIntegerType(16), APInt(16, value));
}

IntegerAttr Builder::getI8IntegerAttr(int8_t value) {
  return IntegerAttr::get(getIntegerType(8), APInt(8, value));
}

IntegerAttr Builder::getIntegerAttr(Type type, int64_t value) {
  if (type.isIndex())
    return IntegerAttr::get(type, APInt(64, value));
  return IntegerAttr::get(
      type, APInt(type.getIntOrFloatBitWidth(), value, type.isSignedInteger()));
}

IntegerAttr Builder::getIntegerAttr(Type type, const APInt &value) {
  return IntegerAttr::get(type, value);
}

FloatAttr Builder::getF64FloatAttr(double value) {
  return FloatAttr::get(getF64Type(), APFloat(value));
}

FloatAttr Builder::getF32FloatAttr(float value) {
  return FloatAttr::get(getF32Type(), APFloat(value));
}

FloatAttr Builder::getF16FloatAttr(float value) {
  return FloatAttr::get(getF16Type(), value);
}

FloatAttr Builder::getFloatAttr(Type type, double value) {
  return FloatAttr::get(type, value);
}

FloatAttr Builder::getFloatAttr(Type type, const APFloat &value) {
  return FloatAttr::get(type, value);
}

StringAttr Builder::getStringAttr(StringRef bytes) {
  return StringAttr::get(bytes, context);
}

ArrayAttr Builder::getArrayAttr(ArrayRef<Attribute> value) {
  return ArrayAttr::get(value, context);
}

FlatSymbolRefAttr Builder::getSymbolRefAttr(Operation *value) {
  auto symName =
      value->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
  assert(symName && "value does not have a valid symbol name");
  return getSymbolRefAttr(symName.getValue());
}
FlatSymbolRefAttr Builder::getSymbolRefAttr(StringRef value) {
  return SymbolRefAttr::get(value, getContext());
}
SymbolRefAttr
Builder::getSymbolRefAttr(StringRef value,
                          ArrayRef<FlatSymbolRefAttr> nestedReferences) {
  return SymbolRefAttr::get(value, nestedReferences, getContext());
}

ArrayAttr Builder::getBoolArrayAttr(ArrayRef<bool> values) {
  auto attrs = llvm::to_vector<8>(llvm::map_range(
      values, [this](bool v) -> Attribute { return getBoolAttr(v); }));
  return getArrayAttr(attrs);
}

ArrayAttr Builder::getI32ArrayAttr(ArrayRef<int32_t> values) {
  auto attrs = llvm::to_vector<8>(llvm::map_range(
      values, [this](int32_t v) -> Attribute { return getI32IntegerAttr(v); }));
  return getArrayAttr(attrs);
}
ArrayAttr Builder::getI64ArrayAttr(ArrayRef<int64_t> values) {
  auto attrs = llvm::to_vector<8>(llvm::map_range(
      values, [this](int64_t v) -> Attribute { return getI64IntegerAttr(v); }));
  return getArrayAttr(attrs);
}

ArrayAttr Builder::getIndexArrayAttr(ArrayRef<int64_t> values) {
  auto attrs = llvm::to_vector<8>(
      llvm::map_range(values, [this](int64_t v) -> Attribute {
        return getIntegerAttr(IndexType::get(getContext()), v);
      }));
  return getArrayAttr(attrs);
}

ArrayAttr Builder::getF32ArrayAttr(ArrayRef<float> values) {
  auto attrs = llvm::to_vector<8>(llvm::map_range(
      values, [this](float v) -> Attribute { return getF32FloatAttr(v); }));
  return getArrayAttr(attrs);
}

ArrayAttr Builder::getF64ArrayAttr(ArrayRef<double> values) {
  auto attrs = llvm::to_vector<8>(llvm::map_range(
      values, [this](double v) -> Attribute { return getF64FloatAttr(v); }));
  return getArrayAttr(attrs);
}

ArrayAttr Builder::getStrArrayAttr(ArrayRef<StringRef> values) {
  auto attrs = llvm::to_vector<8>(llvm::map_range(
      values, [this](StringRef v) -> Attribute { return getStringAttr(v); }));
  return getArrayAttr(attrs);
}

ArrayAttr Builder::getTypeArrayAttr(TypeRange values) {
  auto attrs = llvm::to_vector<8>(llvm::map_range(
      values, [](Type v) -> Attribute { return TypeAttr::get(v); }));
  return getArrayAttr(attrs);
}

ArrayAttr Builder::getAffineMapArrayAttr(ArrayRef<AffineMap> values) {
  auto attrs = llvm::to_vector<8>(llvm::map_range(
      values, [](AffineMap v) -> Attribute { return AffineMapAttr::get(v); }));
  return getArrayAttr(attrs);
}

Attribute Builder::getZeroAttr(Type type) {
  if (type.isa<FloatType>())
    return getFloatAttr(type, 0.0);
  if (type.isa<IndexType>())
    return getIndexAttr(0);
  if (auto integerType = type.dyn_cast<IntegerType>())
    return getIntegerAttr(type, APInt(type.cast<IntegerType>().getWidth(), 0));
  if (type.isa<RankedTensorType, VectorType>()) {
    auto vtType = type.cast<ShapedType>();
    auto element = getZeroAttr(vtType.getElementType());
    if (!element)
      return {};
    return DenseElementsAttr::get(vtType, element);
  }
  return {};
}

//===----------------------------------------------------------------------===//
// Affine Expressions, Affine Maps, and Integer Sets.
//===----------------------------------------------------------------------===//

AffineExpr Builder::getAffineDimExpr(unsigned position) {
  return mlir::getAffineDimExpr(position, context);
}

AffineExpr Builder::getAffineSymbolExpr(unsigned position) {
  return mlir::getAffineSymbolExpr(position, context);
}

AffineExpr Builder::getAffineConstantExpr(int64_t constant) {
  return mlir::getAffineConstantExpr(constant, context);
}

AffineMap Builder::getEmptyAffineMap() { return AffineMap::get(context); }

AffineMap Builder::getConstantAffineMap(int64_t val) {
  return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/0,
                        getAffineConstantExpr(val));
}

AffineMap Builder::getDimIdentityMap() {
  return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, getAffineDimExpr(0));
}

AffineMap Builder::getMultiDimIdentityMap(unsigned rank) {
  SmallVector<AffineExpr, 4> dimExprs;
  dimExprs.reserve(rank);
  for (unsigned i = 0; i < rank; ++i)
    dimExprs.push_back(getAffineDimExpr(i));
  return AffineMap::get(/*dimCount=*/rank, /*symbolCount=*/0, dimExprs,
                        context);
}

AffineMap Builder::getSymbolIdentityMap() {
  return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/1,
                        getAffineSymbolExpr(0));
}

AffineMap Builder::getSingleDimShiftAffineMap(int64_t shift) {
  // expr = d0 + shift.
  auto expr = getAffineDimExpr(0) + shift;
  return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, expr);
}

AffineMap Builder::getShiftedAffineMap(AffineMap map, int64_t shift) {
  SmallVector<AffineExpr, 4> shiftedResults;
  shiftedResults.reserve(map.getNumResults());
  for (auto resultExpr : map.getResults())
    shiftedResults.push_back(resultExpr + shift);
  return AffineMap::get(map.getNumDims(), map.getNumSymbols(), shiftedResults,
                        context);
}

//===----------------------------------------------------------------------===//
// OpBuilder
//===----------------------------------------------------------------------===//

OpBuilder::Listener::~Listener() {}

/// Insert the given operation at the current insertion point and return it.
Operation *OpBuilder::insert(Operation *op) {
  if (block)
    block->getOperations().insert(insertPoint, op);

  if (listener)
    listener->notifyOperationInserted(op);
  return op;
}

/// Add new block with 'argTypes' arguments and set the insertion point to the
/// end of it. The block is inserted at the provided insertion point of
/// 'parent'.
Block *OpBuilder::createBlock(Region *parent, Region::iterator insertPt,
                              TypeRange argTypes) {
  assert(parent && "expected valid parent region");
  if (insertPt == Region::iterator())
    insertPt = parent->end();

  Block *b = new Block();
  b->addArguments(argTypes);
  parent->getBlocks().insert(insertPt, b);
  setInsertionPointToEnd(b);

  if (listener)
    listener->notifyBlockCreated(b);
  return b;
}

/// Add new block with 'argTypes' arguments and set the insertion point to the
/// end of it.  The block is placed before 'insertBefore'.
Block *OpBuilder::createBlock(Block *insertBefore, TypeRange argTypes) {
  assert(insertBefore && "expected valid insertion block");
  return createBlock(insertBefore->getParent(), Region::iterator(insertBefore),
                     argTypes);
}

/// Create an operation given the fields represented as an OperationState.
Operation *OpBuilder::createOperation(const OperationState &state) {
  return insert(Operation::create(state));
}

/// Attempts to fold the given operation and places new results within
/// 'results'. Returns success if the operation was folded, failure otherwise.
/// Note: This function does not erase the operation on a successful fold.
LogicalResult OpBuilder::tryFold(Operation *op,
                                 SmallVectorImpl<Value> &results) {
  results.reserve(op->getNumResults());
  auto cleanupFailure = [&] {
    results.assign(op->result_begin(), op->result_end());
    return failure();
  };

  // If this operation is already a constant, there is nothing to do.
  if (matchPattern(op, m_Constant()))
    return cleanupFailure();

  // Check to see if any operands to the operation is constant and whether
  // the operation knows how to constant fold itself.
  SmallVector<Attribute, 4> constOperands(op->getNumOperands());
  for (unsigned i = 0, e = op->getNumOperands(); i != e; ++i)
    matchPattern(op->getOperand(i), m_Constant(&constOperands[i]));

  // Try to fold the operation.
  SmallVector<OpFoldResult, 4> foldResults;
  if (failed(op->fold(constOperands, foldResults)) || foldResults.empty())
    return cleanupFailure();

  // A temporary builder used for creating constants during folding.
  OpBuilder cstBuilder(context);
  SmallVector<Operation *, 1> generatedConstants;

  // Populate the results with the folded results.
  Dialect *dialect = op->getDialect();
  for (auto &it : llvm::enumerate(foldResults)) {
    // Normal values get pushed back directly.
    if (auto value = it.value().dyn_cast<Value>()) {
      results.push_back(value);
      continue;
    }

    // Otherwise, try to materialize a constant operation.
    if (!dialect)
      return cleanupFailure();

    // Ask the dialect to materialize a constant operation for this value.
    Attribute attr = it.value().get<Attribute>();
    auto *constOp = dialect->materializeConstant(
        cstBuilder, attr, op->getResult(it.index()).getType(), op->getLoc());
    if (!constOp) {
      // Erase any generated constants.
      for (Operation *cst : generatedConstants)
        cst->erase();
      return cleanupFailure();
    }
    assert(matchPattern(constOp, m_Constant()));

    generatedConstants.push_back(constOp);
    results.push_back(constOp->getResult(0));
  }

  // If we were successful, insert any generated constants.
  for (Operation *cst : generatedConstants)
    insert(cst);

  return success();
}