AffineMap.cpp 17.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
//===- AffineMap.cpp - MLIR Affine Map Classes ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/IR/AffineMap.h"
#include "AffineMapDetail.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"

using namespace mlir;

namespace {

// AffineExprConstantFolder evaluates an affine expression using constant
// operands passed in 'operandConsts'. Returns an IntegerAttr attribute
// representing the constant value of the affine expression evaluated on
// constant 'operandConsts', or nullptr if it can't be folded.
class AffineExprConstantFolder {
public:
  AffineExprConstantFolder(unsigned numDims, ArrayRef<Attribute> operandConsts)
      : numDims(numDims), operandConsts(operandConsts) {}

  /// Attempt to constant fold the specified affine expr, or return null on
  /// failure.
  IntegerAttr constantFold(AffineExpr expr) {
    if (auto result = constantFoldImpl(expr))
      return IntegerAttr::get(IndexType::get(expr.getContext()), *result);
    return nullptr;
  }

private:
  Optional<int64_t> constantFoldImpl(AffineExpr expr) {
    switch (expr.getKind()) {
    case AffineExprKind::Add:
      return constantFoldBinExpr(
          expr, [](int64_t lhs, int64_t rhs) { return lhs + rhs; });
    case AffineExprKind::Mul:
      return constantFoldBinExpr(
          expr, [](int64_t lhs, int64_t rhs) { return lhs * rhs; });
    case AffineExprKind::Mod:
      return constantFoldBinExpr(
          expr, [](int64_t lhs, int64_t rhs) { return mod(lhs, rhs); });
    case AffineExprKind::FloorDiv:
      return constantFoldBinExpr(
          expr, [](int64_t lhs, int64_t rhs) { return floorDiv(lhs, rhs); });
    case AffineExprKind::CeilDiv:
      return constantFoldBinExpr(
          expr, [](int64_t lhs, int64_t rhs) { return ceilDiv(lhs, rhs); });
    case AffineExprKind::Constant:
      return expr.cast<AffineConstantExpr>().getValue();
    case AffineExprKind::DimId:
      if (auto attr = operandConsts[expr.cast<AffineDimExpr>().getPosition()]
                          .dyn_cast_or_null<IntegerAttr>())
        return attr.getInt();
      return llvm::None;
    case AffineExprKind::SymbolId:
      if (auto attr = operandConsts[numDims +
                                    expr.cast<AffineSymbolExpr>().getPosition()]
                          .dyn_cast_or_null<IntegerAttr>())
        return attr.getInt();
      return llvm::None;
    }
    llvm_unreachable("Unknown AffineExpr");
  }

  // TODO: Change these to operate on APInts too.
  Optional<int64_t> constantFoldBinExpr(AffineExpr expr,
                                        int64_t (*op)(int64_t, int64_t)) {
    auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
    if (auto lhs = constantFoldImpl(binOpExpr.getLHS()))
      if (auto rhs = constantFoldImpl(binOpExpr.getRHS()))
        return op(*lhs, *rhs);
    return llvm::None;
  }

  // The number of dimension operands in AffineMap containing this expression.
  unsigned numDims;
  // The constant valued operands used to evaluate this AffineExpr.
  ArrayRef<Attribute> operandConsts;
};

} // end anonymous namespace

/// Returns a single constant result affine map.
AffineMap AffineMap::getConstantMap(int64_t val, MLIRContext *context) {
  return get(/*dimCount=*/0, /*symbolCount=*/0,
             {getAffineConstantExpr(val, context)});
}

/// Returns an identity affine map (d0, ..., dn) -> (dp, ..., dn) on the most
/// minor dimensions.
AffineMap AffineMap::getMinorIdentityMap(unsigned dims, unsigned results,
                                         MLIRContext *context) {
  assert(dims >= results && "Dimension mismatch");
  auto id = AffineMap::getMultiDimIdentityMap(dims, context);
  return AffineMap::get(dims, 0, id.getResults().take_back(results), context);
}

bool AffineMap::isMinorIdentity() const {
  return *this ==
         getMinorIdentityMap(getNumDims(), getNumResults(), getContext());
}

/// Returns an AffineMap representing a permutation.
AffineMap AffineMap::getPermutationMap(ArrayRef<unsigned> permutation,
                                       MLIRContext *context) {
  assert(!permutation.empty() &&
         "Cannot create permutation map from empty permutation vector");
  SmallVector<AffineExpr, 4> affExprs;
  for (auto index : permutation)
    affExprs.push_back(getAffineDimExpr(index, context));
  auto m = std::max_element(permutation.begin(), permutation.end());
  auto permutationMap = AffineMap::get(*m + 1, 0, affExprs, context);
  assert(permutationMap.isPermutation() && "Invalid permutation vector");
  return permutationMap;
}

template <typename AffineExprContainer>
static void getMaxDimAndSymbol(ArrayRef<AffineExprContainer> exprsList,
                               int64_t &maxDim, int64_t &maxSym) {
  for (const auto &exprs : exprsList) {
    for (auto expr : exprs) {
      expr.walk([&maxDim, &maxSym](AffineExpr e) {
        if (auto d = e.dyn_cast<AffineDimExpr>())
          maxDim = std::max(maxDim, static_cast<int64_t>(d.getPosition()));
        if (auto s = e.dyn_cast<AffineSymbolExpr>())
          maxSym = std::max(maxSym, static_cast<int64_t>(s.getPosition()));
      });
    }
  }
}

template <typename AffineExprContainer>
static SmallVector<AffineMap, 4>
inferFromExprList(ArrayRef<AffineExprContainer> exprsList) {
  assert(!exprsList.empty());
  assert(!exprsList[0].empty());
  auto context = exprsList[0][0].getContext();
  int64_t maxDim = -1, maxSym = -1;
  getMaxDimAndSymbol(exprsList, maxDim, maxSym);
  SmallVector<AffineMap, 4> maps;
  maps.reserve(exprsList.size());
  for (const auto &exprs : exprsList)
    maps.push_back(AffineMap::get(/*dimCount=*/maxDim + 1,
                                  /*symbolCount=*/maxSym + 1, exprs, context));
  return maps;
}

SmallVector<AffineMap, 4>
AffineMap::inferFromExprList(ArrayRef<ArrayRef<AffineExpr>> exprsList) {
  return ::inferFromExprList(exprsList);
}

SmallVector<AffineMap, 4>
AffineMap::inferFromExprList(ArrayRef<SmallVector<AffineExpr, 4>> exprsList) {
  return ::inferFromExprList(exprsList);
}

AffineMap AffineMap::getMultiDimIdentityMap(unsigned numDims,
                                            MLIRContext *context) {
  SmallVector<AffineExpr, 4> dimExprs;
  dimExprs.reserve(numDims);
  for (unsigned i = 0; i < numDims; ++i)
    dimExprs.push_back(mlir::getAffineDimExpr(i, context));
  return get(/*dimCount=*/numDims, /*symbolCount=*/0, dimExprs, context);
}

MLIRContext *AffineMap::getContext() const { return map->context; }

bool AffineMap::isIdentity() const {
  if (getNumDims() != getNumResults())
    return false;
  ArrayRef<AffineExpr> results = getResults();
  for (unsigned i = 0, numDims = getNumDims(); i < numDims; ++i) {
    auto expr = results[i].dyn_cast<AffineDimExpr>();
    if (!expr || expr.getPosition() != i)
      return false;
  }
  return true;
}

bool AffineMap::isEmpty() const {
  return getNumDims() == 0 && getNumSymbols() == 0 && getNumResults() == 0;
}

bool AffineMap::isSingleConstant() const {
  return getNumResults() == 1 && getResult(0).isa<AffineConstantExpr>();
}

int64_t AffineMap::getSingleConstantResult() const {
  assert(isSingleConstant() && "map must have a single constant result");
  return getResult(0).cast<AffineConstantExpr>().getValue();
}

unsigned AffineMap::getNumDims() const {
  assert(map && "uninitialized map storage");
  return map->numDims;
}
unsigned AffineMap::getNumSymbols() const {
  assert(map && "uninitialized map storage");
  return map->numSymbols;
}
unsigned AffineMap::getNumResults() const {
  assert(map && "uninitialized map storage");
  return map->results.size();
}
unsigned AffineMap::getNumInputs() const {
  assert(map && "uninitialized map storage");
  return map->numDims + map->numSymbols;
}

ArrayRef<AffineExpr> AffineMap::getResults() const {
  assert(map && "uninitialized map storage");
  return map->results;
}
AffineExpr AffineMap::getResult(unsigned idx) const {
  assert(map && "uninitialized map storage");
  return map->results[idx];
}

/// Folds the results of the application of an affine map on the provided
/// operands to a constant if possible. Returns false if the folding happens,
/// true otherwise.
LogicalResult
AffineMap::constantFold(ArrayRef<Attribute> operandConstants,
                        SmallVectorImpl<Attribute> &results) const {
  // Attempt partial folding.
  SmallVector<int64_t, 2> integers;
  partialConstantFold(operandConstants, &integers);

  // If all expressions folded to a constant, populate results with attributes
  // containing those constants.
  if (integers.empty())
    return failure();

  auto range = llvm::map_range(integers, [this](int64_t i) {
    return IntegerAttr::get(IndexType::get(getContext()), i);
  });
  results.append(range.begin(), range.end());
  return success();
}

AffineMap
AffineMap::partialConstantFold(ArrayRef<Attribute> operandConstants,
                               SmallVectorImpl<int64_t> *results) const {
  assert(getNumInputs() == operandConstants.size());

  // Fold each of the result expressions.
  AffineExprConstantFolder exprFolder(getNumDims(), operandConstants);
  SmallVector<AffineExpr, 4> exprs;
  exprs.reserve(getNumResults());

  for (auto expr : getResults()) {
    auto folded = exprFolder.constantFold(expr);
    // If did not fold to a constant, keep the original expression, and clear
    // the integer results vector.
    if (folded) {
      exprs.push_back(
          getAffineConstantExpr(folded.getInt(), folded.getContext()));
      if (results)
        results->push_back(folded.getInt());
    } else {
      exprs.push_back(expr);
      if (results) {
        results->clear();
        results = nullptr;
      }
    }
  }

  return get(getNumDims(), getNumSymbols(), exprs, getContext());
}

/// Walk all of the AffineExpr's in this mapping. Each node in an expression
/// tree is visited in postorder.
void AffineMap::walkExprs(std::function<void(AffineExpr)> callback) const {
  for (auto expr : getResults())
    expr.walk(callback);
}

/// This method substitutes any uses of dimensions and symbols (e.g.
/// dim#0 with dimReplacements[0]) in subexpressions and returns the modified
/// expression mapping.  Because this can be used to eliminate dims and
/// symbols, the client needs to specify the number of dims and symbols in
/// the result.  The returned map always has the same number of results.
AffineMap AffineMap::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
                                           ArrayRef<AffineExpr> symReplacements,
                                           unsigned numResultDims,
                                           unsigned numResultSyms) const {
  SmallVector<AffineExpr, 8> results;
  results.reserve(getNumResults());
  for (auto expr : getResults())
    results.push_back(
        expr.replaceDimsAndSymbols(dimReplacements, symReplacements));

  return get(numResultDims, numResultSyms, results, getContext());
}

AffineMap AffineMap::compose(AffineMap map) {
  assert(getNumDims() == map.getNumResults() && "Number of results mismatch");
  // Prepare `map` by concatenating the symbols and rewriting its exprs.
  unsigned numDims = map.getNumDims();
  unsigned numSymbolsThisMap = getNumSymbols();
  unsigned numSymbols = numSymbolsThisMap + map.getNumSymbols();
  SmallVector<AffineExpr, 8> newDims(numDims);
  for (unsigned idx = 0; idx < numDims; ++idx) {
    newDims[idx] = getAffineDimExpr(idx, getContext());
  }
  SmallVector<AffineExpr, 8> newSymbols(numSymbols);
  for (unsigned idx = numSymbolsThisMap; idx < numSymbols; ++idx) {
    newSymbols[idx - numSymbolsThisMap] =
        getAffineSymbolExpr(idx, getContext());
  }
  auto newMap =
      map.replaceDimsAndSymbols(newDims, newSymbols, numDims, numSymbols);
  SmallVector<AffineExpr, 8> exprs;
  exprs.reserve(getResults().size());
  for (auto expr : getResults())
    exprs.push_back(expr.compose(newMap));
  return AffineMap::get(numDims, numSymbols, exprs, map.getContext());
}

SmallVector<int64_t, 4> AffineMap::compose(ArrayRef<int64_t> values) {
  assert(getNumSymbols() == 0 && "Expected symbol-less map");
  SmallVector<AffineExpr, 4> exprs;
  exprs.reserve(values.size());
  MLIRContext *ctx = getContext();
  for (auto v : values)
    exprs.push_back(getAffineConstantExpr(v, ctx));
  auto resMap = compose(AffineMap::get(0, 0, exprs, ctx));
  SmallVector<int64_t, 4> res;
  res.reserve(resMap.getNumResults());
  for (auto e : resMap.getResults())
    res.push_back(e.cast<AffineConstantExpr>().getValue());
  return res;
}

bool AffineMap::isProjectedPermutation() {
  if (getNumSymbols() > 0)
    return false;
  SmallVector<bool, 8> seen(getNumInputs(), false);
  for (auto expr : getResults()) {
    if (auto dim = expr.dyn_cast<AffineDimExpr>()) {
      if (seen[dim.getPosition()])
        return false;
      seen[dim.getPosition()] = true;
      continue;
    }
    return false;
  }
  return true;
}

bool AffineMap::isPermutation() {
  if (getNumDims() != getNumResults())
    return false;
  return isProjectedPermutation();
}

AffineMap AffineMap::getSubMap(ArrayRef<unsigned> resultPos) {
  SmallVector<AffineExpr, 4> exprs;
  exprs.reserve(resultPos.size());
  for (auto idx : resultPos)
    exprs.push_back(getResult(idx));
  return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
}

AffineMap AffineMap::getMajorSubMap(unsigned numResults) {
  if (numResults == 0)
    return AffineMap();
  if (numResults > getNumResults())
    return *this;
  return getSubMap(llvm::to_vector<4>(llvm::seq<unsigned>(0, numResults)));
}

AffineMap AffineMap::getMinorSubMap(unsigned numResults) {
  if (numResults == 0)
    return AffineMap();
  if (numResults > getNumResults())
    return *this;
  return getSubMap(llvm::to_vector<4>(
      llvm::seq<unsigned>(getNumResults() - numResults, getNumResults())));
}

AffineMap mlir::simplifyAffineMap(AffineMap map) {
  SmallVector<AffineExpr, 8> exprs;
  for (auto e : map.getResults()) {
    exprs.push_back(
        simplifyAffineExpr(e, map.getNumDims(), map.getNumSymbols()));
  }
  return AffineMap::get(map.getNumDims(), map.getNumSymbols(), exprs,
                        map.getContext());
}

AffineMap mlir::removeDuplicateExprs(AffineMap map) {
  auto results = map.getResults();
  SmallVector<AffineExpr, 4> uniqueExprs(results.begin(), results.end());
  uniqueExprs.erase(std::unique(uniqueExprs.begin(), uniqueExprs.end()),
                    uniqueExprs.end());
  return AffineMap::get(map.getNumDims(), map.getNumSymbols(), uniqueExprs,
                        map.getContext());
}

AffineMap mlir::inversePermutation(AffineMap map) {
  if (map.isEmpty())
    return map;
  assert(map.getNumSymbols() == 0 && "expected map without symbols");
  SmallVector<AffineExpr, 4> exprs(map.getNumDims());
  for (auto en : llvm::enumerate(map.getResults())) {
    auto expr = en.value();
    // Skip non-permutations.
    if (auto d = expr.dyn_cast<AffineDimExpr>()) {
      if (exprs[d.getPosition()])
        continue;
      exprs[d.getPosition()] = getAffineDimExpr(en.index(), d.getContext());
    }
  }
  SmallVector<AffineExpr, 4> seenExprs;
  seenExprs.reserve(map.getNumDims());
  for (auto expr : exprs)
    if (expr)
      seenExprs.push_back(expr);
  if (seenExprs.size() != map.getNumInputs())
    return AffineMap();
  return AffineMap::get(map.getNumResults(), 0, seenExprs, map.getContext());
}

AffineMap mlir::concatAffineMaps(ArrayRef<AffineMap> maps) {
  unsigned numResults = 0, numDims = 0, numSymbols = 0;
  for (auto m : maps)
    numResults += m.getNumResults();
  SmallVector<AffineExpr, 8> results;
  results.reserve(numResults);
  for (auto m : maps) {
    for (auto res : m.getResults())
      results.push_back(res.shiftSymbols(m.getNumSymbols(), numSymbols));

    numSymbols += m.getNumSymbols();
    numDims = std::max(m.getNumDims(), numDims);
  }
  return AffineMap::get(numDims, numSymbols, results,
                        maps.front().getContext());
}

//===----------------------------------------------------------------------===//
// MutableAffineMap.
//===----------------------------------------------------------------------===//

MutableAffineMap::MutableAffineMap(AffineMap map)
    : numDims(map.getNumDims()), numSymbols(map.getNumSymbols()),
      context(map.getContext()) {
  for (auto result : map.getResults())
    results.push_back(result);
}

void MutableAffineMap::reset(AffineMap map) {
  results.clear();
  numDims = map.getNumDims();
  numSymbols = map.getNumSymbols();
  context = map.getContext();
  for (auto result : map.getResults())
    results.push_back(result);
}

bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
  if (results[idx].isMultipleOf(factor))
    return true;

  // TODO: use simplifyAffineExpr and FlatAffineConstraints to
  // complete this (for a more powerful analysis).
  return false;
}

// Simplifies the result affine expressions of this map. The expressions have to
// be pure for the simplification implemented.
void MutableAffineMap::simplify() {
  // Simplify each of the results if possible.
  // TODO: functional-style map
  for (unsigned i = 0, e = getNumResults(); i < e; i++) {
    results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
  }
}

AffineMap MutableAffineMap::getAffineMap() const {
  return AffineMap::get(numDims, numSymbols, results, context);
}