Deserializer.cpp 95.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
//===- Deserializer.cpp - MLIR SPIR-V Deserialization ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the SPIR-V binary to MLIR SPIR-V module deserialization.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/SPIRV/Serialization.h"

#include "mlir/Dialect/SPIRV/SPIRVAttributes.h"
#include "mlir/Dialect/SPIRV/SPIRVBinaryUtils.h"
#include "mlir/Dialect/SPIRV/SPIRVModule.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/SPIRVTypes.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Location.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace mlir;

#define DEBUG_TYPE "spirv-deserialization"

/// Decodes a string literal in `words` starting at `wordIndex`. Update the
/// latter to point to the position in words after the string literal.
static inline StringRef decodeStringLiteral(ArrayRef<uint32_t> words,
                                            unsigned &wordIndex) {
  StringRef str(reinterpret_cast<const char *>(words.data() + wordIndex));
  wordIndex += str.size() / 4 + 1;
  return str;
}

/// Extracts the opcode from the given first word of a SPIR-V instruction.
static inline spirv::Opcode extractOpcode(uint32_t word) {
  return static_cast<spirv::Opcode>(word & 0xffff);
}

/// Returns true if the given `block` is a function entry block.
static inline bool isFnEntryBlock(Block *block) {
  return block->isEntryBlock() &&
         isa_and_nonnull<spirv::FuncOp>(block->getParentOp());
}

namespace {
/// A struct for containing a header block's merge and continue targets.
///
/// This struct is used to track original structured control flow info from
/// SPIR-V blob. This info will be used to create spv.selection/spv.loop
/// later.
struct BlockMergeInfo {
  Block *mergeBlock;
  Block *continueBlock; // nullptr for spv.selection
  Location loc;
  uint32_t control;

  BlockMergeInfo(Location location, uint32_t control)
      : mergeBlock(nullptr), continueBlock(nullptr), loc(location),
        control(control) {}
  BlockMergeInfo(Location location, uint32_t control, Block *m,
                 Block *c = nullptr)
      : mergeBlock(m), continueBlock(c), loc(location), control(control) {}
};

/// A struct for containing OpLine instruction information.
struct DebugLine {
  uint32_t fileID;
  uint32_t line;
  uint32_t col;

  DebugLine(uint32_t fileIDNum, uint32_t lineNum, uint32_t colNum)
      : fileID(fileIDNum), line(lineNum), col(colNum) {}
};

/// Map from a selection/loop's header block to its merge (and continue) target.
using BlockMergeInfoMap = DenseMap<Block *, BlockMergeInfo>;

/// A SPIR-V module serializer.
///
/// A SPIR-V binary module is a single linear stream of instructions; each
/// instruction is composed of 32-bit words. The first word of an instruction
/// records the total number of words of that instruction using the 16
/// higher-order bits. So this deserializer uses that to get instruction
/// boundary and parse instructions and build a SPIR-V ModuleOp gradually.
///
// TODO: clean up created ops on errors
class Deserializer {
public:
  /// Creates a deserializer for the given SPIR-V `binary` module.
  /// The SPIR-V ModuleOp will be created into `context.
  explicit Deserializer(ArrayRef<uint32_t> binary, MLIRContext *context);

  /// Deserializes the remembered SPIR-V binary module.
  LogicalResult deserialize();

  /// Collects the final SPIR-V ModuleOp.
  spirv::OwningSPIRVModuleRef collect();

private:
  //===--------------------------------------------------------------------===//
  // Module structure
  //===--------------------------------------------------------------------===//

  /// Initializes the `module` ModuleOp in this deserializer instance.
  spirv::OwningSPIRVModuleRef createModuleOp();

  /// Processes SPIR-V module header in `binary`.
  LogicalResult processHeader();

  /// Processes the SPIR-V OpCapability with `operands` and updates bookkeeping
  /// in the deserializer.
  LogicalResult processCapability(ArrayRef<uint32_t> operands);

  /// Processes the SPIR-V OpExtension with `operands` and updates bookkeeping
  /// in the deserializer.
  LogicalResult processExtension(ArrayRef<uint32_t> words);

  /// Processes the SPIR-V OpExtInstImport with `operands` and updates
  /// bookkeeping in the deserializer.
  LogicalResult processExtInstImport(ArrayRef<uint32_t> words);

  /// Attaches (version, capabilities, extensions) triple to `module` as an
  /// attribute.
  void attachVCETriple();

  /// Processes the SPIR-V OpMemoryModel with `operands` and updates `module`.
  LogicalResult processMemoryModel(ArrayRef<uint32_t> operands);

  /// Process SPIR-V OpName with `operands`.
  LogicalResult processName(ArrayRef<uint32_t> operands);

  /// Processes an OpDecorate instruction.
  LogicalResult processDecoration(ArrayRef<uint32_t> words);

  // Processes an OpMemberDecorate instruction.
  LogicalResult processMemberDecoration(ArrayRef<uint32_t> words);

  /// Processes an OpMemberName instruction.
  LogicalResult processMemberName(ArrayRef<uint32_t> words);

  /// Gets the function op associated with a result <id> of OpFunction.
  spirv::FuncOp getFunction(uint32_t id) { return funcMap.lookup(id); }

  /// Processes the SPIR-V function at the current `offset` into `binary`.
  /// The operands to the OpFunction instruction is passed in as ``operands`.
  /// This method processes each instruction inside the function and dispatches
  /// them to their handler method accordingly.
  LogicalResult processFunction(ArrayRef<uint32_t> operands);

  /// Processes OpFunctionEnd and finalizes function. This wires up block
  /// argument created from OpPhi instructions and also structurizes control
  /// flow.
  LogicalResult processFunctionEnd(ArrayRef<uint32_t> operands);

  /// Gets the constant's attribute and type associated with the given <id>.
  Optional<std::pair<Attribute, Type>> getConstant(uint32_t id);

  /// Gets the constant's integer attribute with the given <id>. Returns a null
  /// IntegerAttr if the given is not registered or does not correspond to an
  /// integer constant.
  IntegerAttr getConstantInt(uint32_t id);

  /// Returns a symbol to be used for the function name with the given
  /// result <id>. This tries to use the function's OpName if
  /// exists; otherwise creates one based on the <id>.
  std::string getFunctionSymbol(uint32_t id);

  /// Returns a symbol to be used for the specialization constant with the given
  /// result <id>. This tries to use the specialization constant's OpName if
  /// exists; otherwise creates one based on the <id>.
  std::string getSpecConstantSymbol(uint32_t id);

  /// Gets the specialization constant with the given result <id>.
  spirv::SpecConstantOp getSpecConstant(uint32_t id) {
    return specConstMap.lookup(id);
  }

  /// Creates a spirv::SpecConstantOp.
  spirv::SpecConstantOp createSpecConstant(Location loc, uint32_t resultID,
                                           Attribute defaultValue);

  /// Processes the OpVariable instructions at current `offset` into `binary`.
  /// It is expected that this method is used for variables that are to be
  /// defined at module scope and will be deserialized into a spv.globalVariable
  /// instruction.
  LogicalResult processGlobalVariable(ArrayRef<uint32_t> operands);

  /// Gets the global variable associated with a result <id> of OpVariable.
  spirv::GlobalVariableOp getGlobalVariable(uint32_t id) {
    return globalVariableMap.lookup(id);
  }

  //===--------------------------------------------------------------------===//
  // Type
  //===--------------------------------------------------------------------===//

  /// Gets type for a given result <id>.
  Type getType(uint32_t id) { return typeMap.lookup(id); }

  /// Get the type associated with the result <id> of an OpUndef.
  Type getUndefType(uint32_t id) { return undefMap.lookup(id); }

  /// Returns true if the given `type` is for SPIR-V void type.
  bool isVoidType(Type type) const { return type.isa<NoneType>(); }

  /// Processes a SPIR-V type instruction with given `opcode` and `operands` and
  /// registers the type into `module`.
  LogicalResult processType(spirv::Opcode opcode, ArrayRef<uint32_t> operands);

  LogicalResult processArrayType(ArrayRef<uint32_t> operands);

  LogicalResult processCooperativeMatrixType(ArrayRef<uint32_t> operands);

  LogicalResult processFunctionType(ArrayRef<uint32_t> operands);

  LogicalResult processRuntimeArrayType(ArrayRef<uint32_t> operands);

  LogicalResult processStructType(ArrayRef<uint32_t> operands);

  LogicalResult processMatrixType(ArrayRef<uint32_t> operands);

  //===--------------------------------------------------------------------===//
  // Constant
  //===--------------------------------------------------------------------===//

  /// Processes a SPIR-V Op{|Spec}Constant instruction with the given
  /// `operands`. `isSpec` indicates whether this is a specialization constant.
  LogicalResult processConstant(ArrayRef<uint32_t> operands, bool isSpec);

  /// Processes a SPIR-V Op{|Spec}Constant{True|False} instruction with the
  /// given `operands`. `isSpec` indicates whether this is a specialization
  /// constant.
  LogicalResult processConstantBool(bool isTrue, ArrayRef<uint32_t> operands,
                                    bool isSpec);

  /// Processes a SPIR-V OpConstantComposite instruction with the given
  /// `operands`.
  LogicalResult processConstantComposite(ArrayRef<uint32_t> operands);

  LogicalResult processSpecConstantComposite(ArrayRef<uint32_t> operands);

  /// Processes a SPIR-V OpConstantNull instruction with the given `operands`.
  LogicalResult processConstantNull(ArrayRef<uint32_t> operands);

  //===--------------------------------------------------------------------===//
  // Debug
  //===--------------------------------------------------------------------===//

  /// Discontinues any source-level location information that might be active
  /// from a previous OpLine instruction.
  LogicalResult clearDebugLine();

  /// Creates a FileLineColLoc with the OpLine location information.
  Location createFileLineColLoc(OpBuilder opBuilder);

  /// Processes a SPIR-V OpLine instruction with the given `operands`.
  LogicalResult processDebugLine(ArrayRef<uint32_t> operands);

  /// Processes a SPIR-V OpString instruction with the given `operands`.
  LogicalResult processDebugString(ArrayRef<uint32_t> operands);

  //===--------------------------------------------------------------------===//
  // Control flow
  //===--------------------------------------------------------------------===//

  /// Returns the block for the given label <id>.
  Block *getBlock(uint32_t id) const { return blockMap.lookup(id); }

  // In SPIR-V, structured control flow is explicitly declared using merge
  // instructions (OpSelectionMerge and OpLoopMerge). In the SPIR-V dialect,
  // we use spv.selection and spv.loop to group structured control flow.
  // The deserializer need to turn structured control flow marked with merge
  // instructions into using spv.selection/spv.loop ops.
  //
  // Because structured control flow can nest and the basic block order have
  // flexibility, we cannot isolate a structured selection/loop without
  // deserializing all the blocks. So we use the following approach:
  //
  // 1. Deserialize all basic blocks in a function and create MLIR blocks for
  //    them into the function's region. In the meanwhile, keep a map between
  //    selection/loop header blocks to their corresponding merge (and continue)
  //    target blocks.
  // 2. For each selection/loop header block, recursively get all basic blocks
  //    reachable (except the merge block) and put them in a newly created
  //    spv.selection/spv.loop's region. Structured control flow guarantees
  //    that we enter and exit in structured ways and the construct is nestable.
  // 3. Put the new spv.selection/spv.loop op at the beginning of the old merge
  //    block and redirect all branches to the old header block to the old
  //    merge block (which contains the spv.selection/spv.loop op now).

  /// For OpPhi instructions, we use block arguments to represent them. OpPhi
  /// encodes a list of (value, predecessor) pairs. At the time of handling the
  /// block containing an OpPhi instruction, the predecessor block might not be
  /// processed yet, also the value sent by it. So we need to defer handling
  /// the block argument from the predecessors. We use the following approach:
  ///
  /// 1. For each OpPhi instruction, add a block argument to the current block
  ///    in construction. Record the block argument in `valueMap` so its uses
  ///    can be resolved. For the list of (value, predecessor) pairs, update
  ///    `blockPhiInfo` for bookkeeping.
  /// 2. After processing all blocks, loop over `blockPhiInfo` to fix up each
  ///    block recorded there to create the proper block arguments on their
  ///    terminators.

  /// A data structure for containing a SPIR-V block's phi info. It will be
  /// represented as block argument in SPIR-V dialect.
  using BlockPhiInfo =
      SmallVector<uint32_t, 2>; // The result <id> of the values sent

  /// Gets or creates the block corresponding to the given label <id>. The newly
  /// created block will always be placed at the end of the current function.
  Block *getOrCreateBlock(uint32_t id);

  LogicalResult processBranch(ArrayRef<uint32_t> operands);

  LogicalResult processBranchConditional(ArrayRef<uint32_t> operands);

  /// Processes a SPIR-V OpLabel instruction with the given `operands`.
  LogicalResult processLabel(ArrayRef<uint32_t> operands);

  /// Processes a SPIR-V OpSelectionMerge instruction with the given `operands`.
  LogicalResult processSelectionMerge(ArrayRef<uint32_t> operands);

  /// Processes a SPIR-V OpLoopMerge instruction with the given `operands`.
  LogicalResult processLoopMerge(ArrayRef<uint32_t> operands);

  /// Processes a SPIR-V OpPhi instruction with the given `operands`.
  LogicalResult processPhi(ArrayRef<uint32_t> operands);

  /// Creates block arguments on predecessors previously recorded when handling
  /// OpPhi instructions.
  LogicalResult wireUpBlockArgument();

  /// Extracts blocks belonging to a structured selection/loop into a
  /// spv.selection/spv.loop op. This method iterates until all blocks
  /// declared as selection/loop headers are handled.
  LogicalResult structurizeControlFlow();

  //===--------------------------------------------------------------------===//
  // Instruction
  //===--------------------------------------------------------------------===//

  /// Get the Value associated with a result <id>.
  ///
  /// This method materializes normal constants and inserts "casting" ops
  /// (`spv._address_of` and `spv._reference_of`) to turn an symbol into a SSA
  /// value for handling uses of module scope constants/variables in functions.
  Value getValue(uint32_t id);

  /// Slices the first instruction out of `binary` and returns its opcode and
  /// operands via `opcode` and `operands` respectively. Returns failure if
  /// there is no more remaining instructions (`expectedOpcode` will be used to
  /// compose the error message) or the next instruction is malformed.
  LogicalResult
  sliceInstruction(spirv::Opcode &opcode, ArrayRef<uint32_t> &operands,
                   Optional<spirv::Opcode> expectedOpcode = llvm::None);

  /// Processes a SPIR-V instruction with the given `opcode` and `operands`.
  /// This method is the main entrance for handling SPIR-V instruction; it
  /// checks the instruction opcode and dispatches to the corresponding handler.
  /// Processing of Some instructions (like OpEntryPoint and OpExecutionMode)
  /// might need to be deferred, since they contain forward references to <id>s
  /// in the deserialized binary, but module in SPIR-V dialect expects these to
  /// be ssa-uses.
  LogicalResult processInstruction(spirv::Opcode opcode,
                                   ArrayRef<uint32_t> operands,
                                   bool deferInstructions = true);

  /// Processes a OpUndef instruction. Adds a spv.Undef operation at the current
  /// insertion point.
  LogicalResult processUndef(ArrayRef<uint32_t> operands);

  /// Method to dispatch to the specialized deserialization function for an
  /// operation in SPIR-V dialect that is a mirror of an instruction in the
  /// SPIR-V spec. This is auto-generated from ODS. Dispatch is handled for
  /// all operations in SPIR-V dialect that have hasOpcode == 1.
  LogicalResult dispatchToAutogenDeserialization(spirv::Opcode opcode,
                                                 ArrayRef<uint32_t> words);

  /// Processes a SPIR-V OpExtInst with given `operands`. This slices the
  /// entries of `operands` that specify the extended instruction set <id> and
  /// the instruction opcode. The op deserializer is then invoked using the
  /// other entries.
  LogicalResult processExtInst(ArrayRef<uint32_t> operands);

  /// Dispatches the deserialization of extended instruction set operation based
  /// on the extended instruction set name, and instruction opcode. This is
  /// autogenerated from ODS.
  LogicalResult
  dispatchToExtensionSetAutogenDeserialization(StringRef extensionSetName,
                                               uint32_t instructionID,
                                               ArrayRef<uint32_t> words);

  /// Method to deserialize an operation in the SPIR-V dialect that is a mirror
  /// of an instruction in the SPIR-V spec. This is auto generated if hasOpcode
  /// == 1 and autogenSerialization == 1 in ODS.
  template <typename OpTy>
  LogicalResult processOp(ArrayRef<uint32_t> words) {
    return emitError(unknownLoc, "unsupported deserialization for ")
           << OpTy::getOperationName() << " op";
  }

private:
  /// The SPIR-V binary module.
  ArrayRef<uint32_t> binary;

  /// Contains the data of the OpLine instruction which precedes the current
  /// processing instruction.
  llvm::Optional<DebugLine> debugLine;

  /// The current word offset into the binary module.
  unsigned curOffset = 0;

  /// MLIRContext to create SPIR-V ModuleOp into.
  MLIRContext *context;

  // TODO: create Location subclass for binary blob
  Location unknownLoc;

  /// The SPIR-V ModuleOp.
  spirv::OwningSPIRVModuleRef module;

  /// The current function under construction.
  Optional<spirv::FuncOp> curFunction;

  /// The current block under construction.
  Block *curBlock = nullptr;

  OpBuilder opBuilder;

  spirv::Version version;

  /// The list of capabilities used by the module.
  llvm::SmallSetVector<spirv::Capability, 4> capabilities;

  /// The list of extensions used by the module.
  llvm::SmallSetVector<spirv::Extension, 2> extensions;

  // Result <id> to type mapping.
  DenseMap<uint32_t, Type> typeMap;

  // Result <id> to constant attribute and type mapping.
  ///
  /// In the SPIR-V binary format, all constants are placed in the module and
  /// shared by instructions at module level and in subsequent functions. But in
  /// the SPIR-V dialect, we materialize the constant to where it's used in the
  /// function. So when seeing a constant instruction in the binary format, we
  /// don't immediately emit a constant op into the module, we keep its value
  /// (and type) here. Later when it's used, we materialize the constant.
  DenseMap<uint32_t, std::pair<Attribute, Type>> constantMap;

  // Result <id> to variable mapping.
  DenseMap<uint32_t, spirv::SpecConstantOp> specConstMap;

  // Result <id> to variable mapping.
  DenseMap<uint32_t, spirv::GlobalVariableOp> globalVariableMap;

  // Result <id> to function mapping.
  DenseMap<uint32_t, spirv::FuncOp> funcMap;

  // Result <id> to block mapping.
  DenseMap<uint32_t, Block *> blockMap;

  // Header block to its merge (and continue) target mapping.
  BlockMergeInfoMap blockMergeInfo;

  // Block to its phi (block argument) mapping.
  DenseMap<Block *, BlockPhiInfo> blockPhiInfo;

  // Result <id> to value mapping.
  DenseMap<uint32_t, Value> valueMap;

  // Mapping from result <id> to undef value of a type.
  DenseMap<uint32_t, Type> undefMap;

  // Result <id> to name mapping.
  DenseMap<uint32_t, StringRef> nameMap;

  // Result <id> to debug info mapping.
  DenseMap<uint32_t, StringRef> debugInfoMap;

  // Result <id> to decorations mapping.
  DenseMap<uint32_t, MutableDictionaryAttr> decorations;

  // Result <id> to type decorations.
  DenseMap<uint32_t, uint32_t> typeDecorations;

  // Result <id> to member decorations.
  // decorated-struct-type-<id> ->
  //    (struct-member-index -> (decoration -> decoration-operands))
  DenseMap<uint32_t,
           DenseMap<uint32_t, DenseMap<spirv::Decoration, ArrayRef<uint32_t>>>>
      memberDecorationMap;

  // Result <id> to member name.
  // struct-type-<id> -> (struct-member-index -> name)
  DenseMap<uint32_t, DenseMap<uint32_t, StringRef>> memberNameMap;

  // Result <id> to extended instruction set name.
  DenseMap<uint32_t, StringRef> extendedInstSets;

  // List of instructions that are processed in a deferred fashion (after an
  // initial processing of the entire binary). Some operations like
  // OpEntryPoint, and OpExecutionMode use forward references to function
  // <id>s. In SPIR-V dialect the corresponding operations (spv.EntryPoint and
  // spv.ExecutionMode) need these references resolved. So these instructions
  // are deserialized and stored for processing once the entire binary is
  // processed.
  SmallVector<std::pair<spirv::Opcode, ArrayRef<uint32_t>>, 4>
      deferredInstructions;
};
} // namespace

Deserializer::Deserializer(ArrayRef<uint32_t> binary, MLIRContext *context)
    : binary(binary), context(context), unknownLoc(UnknownLoc::get(context)),
      module(createModuleOp()), opBuilder(module->body()) {}

LogicalResult Deserializer::deserialize() {
  LLVM_DEBUG(llvm::dbgs() << "+++ starting deserialization +++\n");

  if (failed(processHeader()))
    return failure();

  spirv::Opcode opcode = spirv::Opcode::OpNop;
  ArrayRef<uint32_t> operands;
  auto binarySize = binary.size();
  while (curOffset < binarySize) {
    // Slice the next instruction out and populate `opcode` and `operands`.
    // Internally this also updates `curOffset`.
    if (failed(sliceInstruction(opcode, operands)))
      return failure();

    if (failed(processInstruction(opcode, operands)))
      return failure();
  }

  assert(curOffset == binarySize &&
         "deserializer should never index beyond the binary end");

  for (auto &deferred : deferredInstructions) {
    if (failed(processInstruction(deferred.first, deferred.second, false))) {
      return failure();
    }
  }

  attachVCETriple();

  LLVM_DEBUG(llvm::dbgs() << "+++ completed deserialization +++\n");
  return success();
}

spirv::OwningSPIRVModuleRef Deserializer::collect() {
  return std::move(module);
}

//===----------------------------------------------------------------------===//
// Module structure
//===----------------------------------------------------------------------===//

spirv::OwningSPIRVModuleRef Deserializer::createModuleOp() {
  OpBuilder builder(context);
  OperationState state(unknownLoc, spirv::ModuleOp::getOperationName());
  spirv::ModuleOp::build(builder, state);
  return cast<spirv::ModuleOp>(Operation::create(state));
}

LogicalResult Deserializer::processHeader() {
  if (binary.size() < spirv::kHeaderWordCount)
    return emitError(unknownLoc,
                     "SPIR-V binary module must have a 5-word header");

  if (binary[0] != spirv::kMagicNumber)
    return emitError(unknownLoc, "incorrect magic number");

  // Version number bytes: 0 | major number | minor number | 0
  uint32_t majorVersion = (binary[1] << 8) >> 24;
  uint32_t minorVersion = (binary[1] << 16) >> 24;
  if (majorVersion == 1) {
    switch (minorVersion) {
#define MIN_VERSION_CASE(v)                                                    \
  case v:                                                                      \
    version = spirv::Version::V_1_##v;                                         \
    break

      MIN_VERSION_CASE(0);
      MIN_VERSION_CASE(1);
      MIN_VERSION_CASE(2);
      MIN_VERSION_CASE(3);
      MIN_VERSION_CASE(4);
      MIN_VERSION_CASE(5);
#undef MIN_VERSION_CASE
    default:
      return emitError(unknownLoc, "unsupported SPIR-V minor version: ")
             << minorVersion;
    }
  } else {
    return emitError(unknownLoc, "unsupported SPIR-V major version: ")
           << majorVersion;
  }

  // TODO: generator number, bound, schema
  curOffset = spirv::kHeaderWordCount;
  return success();
}

LogicalResult Deserializer::processCapability(ArrayRef<uint32_t> operands) {
  if (operands.size() != 1)
    return emitError(unknownLoc, "OpMemoryModel must have one parameter");

  auto cap = spirv::symbolizeCapability(operands[0]);
  if (!cap)
    return emitError(unknownLoc, "unknown capability: ") << operands[0];

  capabilities.insert(*cap);
  return success();
}

LogicalResult Deserializer::processExtension(ArrayRef<uint32_t> words) {
  if (words.empty()) {
    return emitError(
        unknownLoc,
        "OpExtension must have a literal string for the extension name");
  }

  unsigned wordIndex = 0;
  StringRef extName = decodeStringLiteral(words, wordIndex);
  if (wordIndex != words.size())
    return emitError(unknownLoc,
                     "unexpected trailing words in OpExtension instruction");
  auto ext = spirv::symbolizeExtension(extName);
  if (!ext)
    return emitError(unknownLoc, "unknown extension: ") << extName;

  extensions.insert(*ext);
  return success();
}

LogicalResult Deserializer::processExtInstImport(ArrayRef<uint32_t> words) {
  if (words.size() < 2) {
    return emitError(unknownLoc,
                     "OpExtInstImport must have a result <id> and a literal "
                     "string for the extended instruction set name");
  }

  unsigned wordIndex = 1;
  extendedInstSets[words[0]] = decodeStringLiteral(words, wordIndex);
  if (wordIndex != words.size()) {
    return emitError(unknownLoc,
                     "unexpected trailing words in OpExtInstImport");
  }
  return success();
}

void Deserializer::attachVCETriple() {
  module->setAttr(spirv::ModuleOp::getVCETripleAttrName(),
                  spirv::VerCapExtAttr::get(version, capabilities.getArrayRef(),
                                            extensions.getArrayRef(), context));
}

LogicalResult Deserializer::processMemoryModel(ArrayRef<uint32_t> operands) {
  if (operands.size() != 2)
    return emitError(unknownLoc, "OpMemoryModel must have two operands");

  module->setAttr(
      "addressing_model",
      opBuilder.getI32IntegerAttr(llvm::bit_cast<int32_t>(operands.front())));
  module->setAttr(
      "memory_model",
      opBuilder.getI32IntegerAttr(llvm::bit_cast<int32_t>(operands.back())));

  return success();
}

LogicalResult Deserializer::processDecoration(ArrayRef<uint32_t> words) {
  // TODO: This function should also be auto-generated. For now, since only a
  // few decorations are processed/handled in a meaningful manner, going with a
  // manual implementation.
  if (words.size() < 2) {
    return emitError(
        unknownLoc, "OpDecorate must have at least result <id> and Decoration");
  }
  auto decorationName =
      stringifyDecoration(static_cast<spirv::Decoration>(words[1]));
  if (decorationName.empty()) {
    return emitError(unknownLoc, "invalid Decoration code : ") << words[1];
  }
  auto attrName = llvm::convertToSnakeFromCamelCase(decorationName);
  auto symbol = opBuilder.getIdentifier(attrName);
  switch (static_cast<spirv::Decoration>(words[1])) {
  case spirv::Decoration::DescriptorSet:
  case spirv::Decoration::Binding:
    if (words.size() != 3) {
      return emitError(unknownLoc, "OpDecorate with ")
             << decorationName << " needs a single integer literal";
    }
    decorations[words[0]].set(
        symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2])));
    break;
  case spirv::Decoration::BuiltIn:
    if (words.size() != 3) {
      return emitError(unknownLoc, "OpDecorate with ")
             << decorationName << " needs a single integer literal";
    }
    decorations[words[0]].set(
        symbol, opBuilder.getStringAttr(
                    stringifyBuiltIn(static_cast<spirv::BuiltIn>(words[2]))));
    break;
  case spirv::Decoration::ArrayStride:
    if (words.size() != 3) {
      return emitError(unknownLoc, "OpDecorate with ")
             << decorationName << " needs a single integer literal";
    }
    typeDecorations[words[0]] = words[2];
    break;
  case spirv::Decoration::Block:
  case spirv::Decoration::BufferBlock:
  case spirv::Decoration::Flat:
  case spirv::Decoration::NoPerspective:
    if (words.size() != 2) {
      return emitError(unknownLoc, "OpDecoration with ")
             << decorationName << "needs a single target <id>";
    }
    // Block decoration does not affect spv.struct type, but is still stored for
    // verification.
    // TODO: Update StructType to contain this information since
    // it is needed for many validation rules.
    decorations[words[0]].set(symbol, opBuilder.getUnitAttr());
    break;
  case spirv::Decoration::Location:
  case spirv::Decoration::SpecId:
    if (words.size() != 3) {
      return emitError(unknownLoc, "OpDecoration with ")
             << decorationName << "needs a single integer literal";
    }
    decorations[words[0]].set(
        symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2])));
    break;
  default:
    return emitError(unknownLoc, "unhandled Decoration : '") << decorationName;
  }
  return success();
}

LogicalResult Deserializer::processMemberDecoration(ArrayRef<uint32_t> words) {
  // The binary layout of OpMemberDecorate is different comparing to OpDecorate
  if (words.size() < 3) {
    return emitError(unknownLoc,
                     "OpMemberDecorate must have at least 3 operands");
  }

  auto decoration = static_cast<spirv::Decoration>(words[2]);
  if (decoration == spirv::Decoration::Offset && words.size() != 4) {
    return emitError(unknownLoc,
                     " missing offset specification in OpMemberDecorate with "
                     "Offset decoration");
  }
  ArrayRef<uint32_t> decorationOperands;
  if (words.size() > 3) {
    decorationOperands = words.slice(3);
  }
  memberDecorationMap[words[0]][words[1]][decoration] = decorationOperands;
  return success();
}

LogicalResult Deserializer::processMemberName(ArrayRef<uint32_t> words) {
  if (words.size() < 3) {
    return emitError(unknownLoc, "OpMemberName must have at least 3 operands");
  }
  unsigned wordIndex = 2;
  auto name = decodeStringLiteral(words, wordIndex);
  if (wordIndex != words.size()) {
    return emitError(unknownLoc,
                     "unexpected trailing words in OpMemberName instruction");
  }
  memberNameMap[words[0]][words[1]] = name;
  return success();
}

LogicalResult Deserializer::processFunction(ArrayRef<uint32_t> operands) {
  if (curFunction) {
    return emitError(unknownLoc, "found function inside function");
  }

  // Get the result type
  if (operands.size() != 4) {
    return emitError(unknownLoc, "OpFunction must have 4 parameters");
  }
  Type resultType = getType(operands[0]);
  if (!resultType) {
    return emitError(unknownLoc, "undefined result type from <id> ")
           << operands[0];
  }

  if (funcMap.count(operands[1])) {
    return emitError(unknownLoc, "duplicate function definition/declaration");
  }

  auto fnControl = spirv::symbolizeFunctionControl(operands[2]);
  if (!fnControl) {
    return emitError(unknownLoc, "unknown Function Control: ") << operands[2];
  }

  Type fnType = getType(operands[3]);
  if (!fnType || !fnType.isa<FunctionType>()) {
    return emitError(unknownLoc, "unknown function type from <id> ")
           << operands[3];
  }
  auto functionType = fnType.cast<FunctionType>();

  if ((isVoidType(resultType) && functionType.getNumResults() != 0) ||
      (functionType.getNumResults() == 1 &&
       functionType.getResult(0) != resultType)) {
    return emitError(unknownLoc, "mismatch in function type ")
           << functionType << " and return type " << resultType << " specified";
  }

  std::string fnName = getFunctionSymbol(operands[1]);
  auto funcOp = opBuilder.create<spirv::FuncOp>(
      unknownLoc, fnName, functionType, fnControl.getValue());
  curFunction = funcMap[operands[1]] = funcOp;
  LLVM_DEBUG(llvm::dbgs() << "-- start function " << fnName << " (type = "
                          << fnType << ", id = " << operands[1] << ") --\n");
  auto *entryBlock = funcOp.addEntryBlock();
  LLVM_DEBUG(llvm::dbgs() << "[block] created entry block " << entryBlock
                          << "\n");

  // Parse the op argument instructions
  if (functionType.getNumInputs()) {
    for (size_t i = 0, e = functionType.getNumInputs(); i != e; ++i) {
      auto argType = functionType.getInput(i);
      spirv::Opcode opcode = spirv::Opcode::OpNop;
      ArrayRef<uint32_t> operands;
      if (failed(sliceInstruction(opcode, operands,
                                  spirv::Opcode::OpFunctionParameter))) {
        return failure();
      }
      if (opcode != spirv::Opcode::OpFunctionParameter) {
        return emitError(
                   unknownLoc,
                   "missing OpFunctionParameter instruction for argument ")
               << i;
      }
      if (operands.size() != 2) {
        return emitError(
            unknownLoc,
            "expected result type and result <id> for OpFunctionParameter");
      }
      auto argDefinedType = getType(operands[0]);
      if (!argDefinedType || argDefinedType != argType) {
        return emitError(unknownLoc,
                         "mismatch in argument type between function type "
                         "definition ")
               << functionType << " and argument type definition "
               << argDefinedType << " at argument " << i;
      }
      if (getValue(operands[1])) {
        return emitError(unknownLoc, "duplicate definition of result <id> '")
               << operands[1];
      }
      auto argValue = funcOp.getArgument(i);
      valueMap[operands[1]] = argValue;
    }
  }

  // RAII guard to reset the insertion point to the module's region after
  // deserializing the body of this function.
  OpBuilder::InsertionGuard moduleInsertionGuard(opBuilder);

  spirv::Opcode opcode = spirv::Opcode::OpNop;
  ArrayRef<uint32_t> instOperands;

  // Special handling for the entry block. We need to make sure it starts with
  // an OpLabel instruction. The entry block takes the same parameters as the
  // function. All other blocks do not take any parameter. We have already
  // created the entry block, here we need to register it to the correct label
  // <id>.
  if (failed(sliceInstruction(opcode, instOperands,
                              spirv::Opcode::OpFunctionEnd))) {
    return failure();
  }
  if (opcode == spirv::Opcode::OpFunctionEnd) {
    LLVM_DEBUG(llvm::dbgs()
               << "-- completed function '" << fnName << "' (type = " << fnType
               << ", id = " << operands[1] << ") --\n");
    return processFunctionEnd(instOperands);
  }
  if (opcode != spirv::Opcode::OpLabel) {
    return emitError(unknownLoc, "a basic block must start with OpLabel");
  }
  if (instOperands.size() != 1) {
    return emitError(unknownLoc, "OpLabel should only have result <id>");
  }
  blockMap[instOperands[0]] = entryBlock;
  if (failed(processLabel(instOperands))) {
    return failure();
  }

  // Then process all the other instructions in the function until we hit
  // OpFunctionEnd.
  while (succeeded(sliceInstruction(opcode, instOperands,
                                    spirv::Opcode::OpFunctionEnd)) &&
         opcode != spirv::Opcode::OpFunctionEnd) {
    if (failed(processInstruction(opcode, instOperands))) {
      return failure();
    }
  }
  if (opcode != spirv::Opcode::OpFunctionEnd) {
    return failure();
  }

  LLVM_DEBUG(llvm::dbgs() << "-- completed function '" << fnName << "' (type = "
                          << fnType << ", id = " << operands[1] << ") --\n");
  return processFunctionEnd(instOperands);
}

LogicalResult Deserializer::processFunctionEnd(ArrayRef<uint32_t> operands) {
  // Process OpFunctionEnd.
  if (!operands.empty()) {
    return emitError(unknownLoc, "unexpected operands for OpFunctionEnd");
  }

  // Wire up block arguments from OpPhi instructions.
  // Put all structured control flow in spv.selection/spv.loop ops.
  if (failed(wireUpBlockArgument()) || failed(structurizeControlFlow())) {
    return failure();
  }

  curBlock = nullptr;
  curFunction = llvm::None;

  return success();
}

Optional<std::pair<Attribute, Type>> Deserializer::getConstant(uint32_t id) {
  auto constIt = constantMap.find(id);
  if (constIt == constantMap.end())
    return llvm::None;
  return constIt->getSecond();
}

std::string Deserializer::getFunctionSymbol(uint32_t id) {
  auto funcName = nameMap.lookup(id).str();
  if (funcName.empty()) {
    funcName = "spirv_fn_" + std::to_string(id);
  }
  return funcName;
}

std::string Deserializer::getSpecConstantSymbol(uint32_t id) {
  auto constName = nameMap.lookup(id).str();
  if (constName.empty()) {
    constName = "spirv_spec_const_" + std::to_string(id);
  }
  return constName;
}

spirv::SpecConstantOp Deserializer::createSpecConstant(Location loc,
                                                       uint32_t resultID,
                                                       Attribute defaultValue) {
  auto symName = opBuilder.getStringAttr(getSpecConstantSymbol(resultID));
  auto op = opBuilder.create<spirv::SpecConstantOp>(unknownLoc, symName,
                                                    defaultValue);
  if (decorations.count(resultID)) {
    for (auto attr : decorations[resultID].getAttrs())
      op.setAttr(attr.first, attr.second);
  }
  specConstMap[resultID] = op;
  return op;
}

LogicalResult Deserializer::processGlobalVariable(ArrayRef<uint32_t> operands) {
  unsigned wordIndex = 0;
  if (operands.size() < 3) {
    return emitError(
        unknownLoc,
        "OpVariable needs at least 3 operands, type, <id> and storage class");
  }

  // Result Type.
  auto type = getType(operands[wordIndex]);
  if (!type) {
    return emitError(unknownLoc, "unknown result type <id> : ")
           << operands[wordIndex];
  }
  auto ptrType = type.dyn_cast<spirv::PointerType>();
  if (!ptrType) {
    return emitError(unknownLoc,
                     "expected a result type <id> to be a spv.ptr, found : ")
           << type;
  }
  wordIndex++;

  // Result <id>.
  auto variableID = operands[wordIndex];
  auto variableName = nameMap.lookup(variableID).str();
  if (variableName.empty()) {
    variableName = "spirv_var_" + std::to_string(variableID);
  }
  wordIndex++;

  // Storage class.
  auto storageClass = static_cast<spirv::StorageClass>(operands[wordIndex]);
  if (ptrType.getStorageClass() != storageClass) {
    return emitError(unknownLoc, "mismatch in storage class of pointer type ")
           << type << " and that specified in OpVariable instruction  : "
           << stringifyStorageClass(storageClass);
  }
  wordIndex++;

  // Initializer.
  FlatSymbolRefAttr initializer = nullptr;
  if (wordIndex < operands.size()) {
    auto initializerOp = getGlobalVariable(operands[wordIndex]);
    if (!initializerOp) {
      return emitError(unknownLoc, "unknown <id> ")
             << operands[wordIndex] << "used as initializer";
    }
    wordIndex++;
    initializer = opBuilder.getSymbolRefAttr(initializerOp.getOperation());
  }
  if (wordIndex != operands.size()) {
    return emitError(unknownLoc,
                     "found more operands than expected when deserializing "
                     "OpVariable instruction, only ")
           << wordIndex << " of " << operands.size() << " processed";
  }
  auto loc = createFileLineColLoc(opBuilder);
  auto varOp = opBuilder.create<spirv::GlobalVariableOp>(
      loc, TypeAttr::get(type), opBuilder.getStringAttr(variableName),
      initializer);

  // Decorations.
  if (decorations.count(variableID)) {
    for (auto attr : decorations[variableID].getAttrs()) {
      varOp.setAttr(attr.first, attr.second);
    }
  }
  globalVariableMap[variableID] = varOp;
  return success();
}

IntegerAttr Deserializer::getConstantInt(uint32_t id) {
  auto constInfo = getConstant(id);
  if (!constInfo) {
    return nullptr;
  }
  return constInfo->first.dyn_cast<IntegerAttr>();
}

LogicalResult Deserializer::processName(ArrayRef<uint32_t> operands) {
  if (operands.size() < 2) {
    return emitError(unknownLoc, "OpName needs at least 2 operands");
  }
  if (!nameMap.lookup(operands[0]).empty()) {
    return emitError(unknownLoc, "duplicate name found for result <id> ")
           << operands[0];
  }
  unsigned wordIndex = 1;
  StringRef name = decodeStringLiteral(operands, wordIndex);
  if (wordIndex != operands.size()) {
    return emitError(unknownLoc,
                     "unexpected trailing words in OpName instruction");
  }
  nameMap[operands[0]] = name;
  return success();
}

//===----------------------------------------------------------------------===//
// Type
//===----------------------------------------------------------------------===//

LogicalResult Deserializer::processType(spirv::Opcode opcode,
                                        ArrayRef<uint32_t> operands) {
  if (operands.empty()) {
    return emitError(unknownLoc, "type instruction with opcode ")
           << spirv::stringifyOpcode(opcode) << " needs at least one <id>";
  }

  /// TODO: Types might be forward declared in some instructions and need to be
  /// handled appropriately.
  if (typeMap.count(operands[0])) {
    return emitError(unknownLoc, "duplicate definition for result <id> ")
           << operands[0];
  }

  switch (opcode) {
  case spirv::Opcode::OpTypeVoid:
    if (operands.size() != 1)
      return emitError(unknownLoc, "OpTypeVoid must have no parameters");
    typeMap[operands[0]] = opBuilder.getNoneType();
    break;
  case spirv::Opcode::OpTypeBool:
    if (operands.size() != 1)
      return emitError(unknownLoc, "OpTypeBool must have no parameters");
    typeMap[operands[0]] = opBuilder.getI1Type();
    break;
  case spirv::Opcode::OpTypeInt: {
    if (operands.size() != 3)
      return emitError(
          unknownLoc, "OpTypeInt must have bitwidth and signedness parameters");

    // SPIR-V OpTypeInt "Signedness specifies whether there are signed semantics
    // to preserve or validate.
    // 0 indicates unsigned, or no signedness semantics
    // 1 indicates signed semantics."
    //
    // So we cannot differentiate signless and unsigned integers; always use
    // signless semantics for such cases.
    auto sign = operands[2] == 1 ? IntegerType::SignednessSemantics::Signed
                                 : IntegerType::SignednessSemantics::Signless;
    typeMap[operands[0]] = IntegerType::get(operands[1], sign, context);
  } break;
  case spirv::Opcode::OpTypeFloat: {
    if (operands.size() != 2)
      return emitError(unknownLoc, "OpTypeFloat must have bitwidth parameter");

    Type floatTy;
    switch (operands[1]) {
    case 16:
      floatTy = opBuilder.getF16Type();
      break;
    case 32:
      floatTy = opBuilder.getF32Type();
      break;
    case 64:
      floatTy = opBuilder.getF64Type();
      break;
    default:
      return emitError(unknownLoc, "unsupported OpTypeFloat bitwidth: ")
             << operands[1];
    }
    typeMap[operands[0]] = floatTy;
  } break;
  case spirv::Opcode::OpTypeVector: {
    if (operands.size() != 3) {
      return emitError(
          unknownLoc,
          "OpTypeVector must have element type and count parameters");
    }
    Type elementTy = getType(operands[1]);
    if (!elementTy) {
      return emitError(unknownLoc, "OpTypeVector references undefined <id> ")
             << operands[1];
    }
    typeMap[operands[0]] = VectorType::get({operands[2]}, elementTy);
  } break;
  case spirv::Opcode::OpTypePointer: {
    if (operands.size() != 3) {
      return emitError(unknownLoc, "OpTypePointer must have two parameters");
    }
    auto pointeeType = getType(operands[2]);
    if (!pointeeType) {
      return emitError(unknownLoc, "unknown OpTypePointer pointee type <id> ")
             << operands[2];
    }
    auto storageClass = static_cast<spirv::StorageClass>(operands[1]);
    typeMap[operands[0]] = spirv::PointerType::get(pointeeType, storageClass);
  } break;
  case spirv::Opcode::OpTypeArray:
    return processArrayType(operands);
  case spirv::Opcode::OpTypeCooperativeMatrixNV:
    return processCooperativeMatrixType(operands);
  case spirv::Opcode::OpTypeFunction:
    return processFunctionType(operands);
  case spirv::Opcode::OpTypeRuntimeArray:
    return processRuntimeArrayType(operands);
  case spirv::Opcode::OpTypeStruct:
    return processStructType(operands);
  case spirv::Opcode::OpTypeMatrix:
    return processMatrixType(operands);
  default:
    return emitError(unknownLoc, "unhandled type instruction");
  }
  return success();
}

LogicalResult Deserializer::processArrayType(ArrayRef<uint32_t> operands) {
  if (operands.size() != 3) {
    return emitError(unknownLoc,
                     "OpTypeArray must have element type and count parameters");
  }

  Type elementTy = getType(operands[1]);
  if (!elementTy) {
    return emitError(unknownLoc, "OpTypeArray references undefined <id> ")
           << operands[1];
  }

  unsigned count = 0;
  // TODO: The count can also come frome a specialization constant.
  auto countInfo = getConstant(operands[2]);
  if (!countInfo) {
    return emitError(unknownLoc, "OpTypeArray count <id> ")
           << operands[2] << "can only come from normal constant right now";
  }

  if (auto intVal = countInfo->first.dyn_cast<IntegerAttr>()) {
    count = intVal.getValue().getZExtValue();
  } else {
    return emitError(unknownLoc, "OpTypeArray count must come from a "
                                 "scalar integer constant instruction");
  }

  typeMap[operands[0]] = spirv::ArrayType::get(
      elementTy, count, typeDecorations.lookup(operands[0]));
  return success();
}

LogicalResult Deserializer::processFunctionType(ArrayRef<uint32_t> operands) {
  assert(!operands.empty() && "No operands for processing function type");
  if (operands.size() == 1) {
    return emitError(unknownLoc, "missing return type for OpTypeFunction");
  }
  auto returnType = getType(operands[1]);
  if (!returnType) {
    return emitError(unknownLoc, "unknown return type in OpTypeFunction");
  }
  SmallVector<Type, 1> argTypes;
  for (size_t i = 2, e = operands.size(); i < e; ++i) {
    auto ty = getType(operands[i]);
    if (!ty) {
      return emitError(unknownLoc, "unknown argument type in OpTypeFunction");
    }
    argTypes.push_back(ty);
  }
  ArrayRef<Type> returnTypes;
  if (!isVoidType(returnType)) {
    returnTypes = llvm::makeArrayRef(returnType);
  }
  typeMap[operands[0]] = FunctionType::get(argTypes, returnTypes, context);
  return success();
}

LogicalResult
Deserializer::processCooperativeMatrixType(ArrayRef<uint32_t> operands) {
  if (operands.size() != 5) {
    return emitError(unknownLoc, "OpTypeCooperativeMatrix must have element "
                                 "type and row x column parameters");
  }

  Type elementTy = getType(operands[1]);
  if (!elementTy) {
    return emitError(unknownLoc,
                     "OpTypeCooperativeMatrix references undefined <id> ")
           << operands[1];
  }

  auto scope = spirv::symbolizeScope(getConstantInt(operands[2]).getInt());
  if (!scope) {
    return emitError(unknownLoc,
                     "OpTypeCooperativeMatrix references undefined scope <id> ")
           << operands[2];
  }

  unsigned rows = getConstantInt(operands[3]).getInt();
  unsigned columns = getConstantInt(operands[4]).getInt();

  typeMap[operands[0]] = spirv::CooperativeMatrixNVType::get(
      elementTy, scope.getValue(), rows, columns);
  return success();
}

LogicalResult
Deserializer::processRuntimeArrayType(ArrayRef<uint32_t> operands) {
  if (operands.size() != 2) {
    return emitError(unknownLoc, "OpTypeRuntimeArray must have two operands");
  }
  Type memberType = getType(operands[1]);
  if (!memberType) {
    return emitError(unknownLoc,
                     "OpTypeRuntimeArray references undefined <id> ")
           << operands[1];
  }
  typeMap[operands[0]] = spirv::RuntimeArrayType::get(
      memberType, typeDecorations.lookup(operands[0]));
  return success();
}

LogicalResult Deserializer::processStructType(ArrayRef<uint32_t> operands) {
  if (operands.empty()) {
    return emitError(unknownLoc, "OpTypeStruct must have at least result <id>");
  }
  if (operands.size() == 1) {
    // Handle empty struct.
    typeMap[operands[0]] = spirv::StructType::getEmpty(context);
    return success();
  }

  SmallVector<Type, 0> memberTypes;
  for (auto op : llvm::drop_begin(operands, 1)) {
    Type memberType = getType(op);
    if (!memberType) {
      return emitError(unknownLoc, "OpTypeStruct references undefined <id> ")
             << op;
    }
    memberTypes.push_back(memberType);
  }

  SmallVector<spirv::StructType::OffsetInfo, 0> offsetInfo;
  SmallVector<spirv::StructType::MemberDecorationInfo, 0> memberDecorationsInfo;
  if (memberDecorationMap.count(operands[0])) {
    auto &allMemberDecorations = memberDecorationMap[operands[0]];
    for (auto memberIndex : llvm::seq<uint32_t>(0, memberTypes.size())) {
      if (allMemberDecorations.count(memberIndex)) {
        for (auto &memberDecoration : allMemberDecorations[memberIndex]) {
          // Check for offset.
          if (memberDecoration.first == spirv::Decoration::Offset) {
            // If offset info is empty, resize to the number of members;
            if (offsetInfo.empty()) {
              offsetInfo.resize(memberTypes.size());
            }
            offsetInfo[memberIndex] = memberDecoration.second[0];
          } else {
            if (!memberDecoration.second.empty()) {
              memberDecorationsInfo.emplace_back(memberIndex, /*hasValue=*/1,
                                                 memberDecoration.first,
                                                 memberDecoration.second[0]);
            } else {
              memberDecorationsInfo.emplace_back(memberIndex, /*hasValue=*/0,
                                                 memberDecoration.first, 0);
            }
          }
        }
      }
    }
  }
  typeMap[operands[0]] =
      spirv::StructType::get(memberTypes, offsetInfo, memberDecorationsInfo);
  // TODO: Update StructType to have member name as attribute as
  // well.
  return success();
}

LogicalResult Deserializer::processMatrixType(ArrayRef<uint32_t> operands) {
  if (operands.size() != 3) {
    // Three operands are needed: result_id, column_type, and column_count
    return emitError(unknownLoc, "OpTypeMatrix must have 3 operands"
                                 " (result_id, column_type, and column_count)");
  }
  // Matrix columns must be of vector type
  Type elementTy = getType(operands[1]);
  if (!elementTy) {
    return emitError(unknownLoc,
                     "OpTypeMatrix references undefined column type.")
           << operands[1];
  }

  uint32_t colsCount = operands[2];
  typeMap[operands[0]] = spirv::MatrixType::get(elementTy, colsCount);
  return success();
}

//===----------------------------------------------------------------------===//
// Constant
//===----------------------------------------------------------------------===//

LogicalResult Deserializer::processConstant(ArrayRef<uint32_t> operands,
                                            bool isSpec) {
  StringRef opname = isSpec ? "OpSpecConstant" : "OpConstant";

  if (operands.size() < 2) {
    return emitError(unknownLoc)
           << opname << " must have type <id> and result <id>";
  }
  if (operands.size() < 3) {
    return emitError(unknownLoc)
           << opname << " must have at least 1 more parameter";
  }

  Type resultType = getType(operands[0]);
  if (!resultType) {
    return emitError(unknownLoc, "undefined result type from <id> ")
           << operands[0];
  }

  auto checkOperandSizeForBitwidth = [&](unsigned bitwidth) -> LogicalResult {
    if (bitwidth == 64) {
      if (operands.size() == 4) {
        return success();
      }
      return emitError(unknownLoc)
             << opname << " should have 2 parameters for 64-bit values";
    }
    if (bitwidth <= 32) {
      if (operands.size() == 3) {
        return success();
      }

      return emitError(unknownLoc)
             << opname
             << " should have 1 parameter for values with no more than 32 bits";
    }
    return emitError(unknownLoc, "unsupported OpConstant bitwidth: ")
           << bitwidth;
  };

  auto resultID = operands[1];

  if (auto intType = resultType.dyn_cast<IntegerType>()) {
    auto bitwidth = intType.getWidth();
    if (failed(checkOperandSizeForBitwidth(bitwidth))) {
      return failure();
    }

    APInt value;
    if (bitwidth == 64) {
      // 64-bit integers are represented with two SPIR-V words. According to
      // SPIR-V spec: "When the type’s bit width is larger than one word, the
      // literal’s low-order words appear first."
      struct DoubleWord {
        uint32_t word1;
        uint32_t word2;
      } words = {operands[2], operands[3]};
      value = APInt(64, llvm::bit_cast<uint64_t>(words), /*isSigned=*/true);
    } else if (bitwidth <= 32) {
      value = APInt(bitwidth, operands[2], /*isSigned=*/true);
    }

    auto attr = opBuilder.getIntegerAttr(intType, value);

    if (isSpec) {
      createSpecConstant(unknownLoc, resultID, attr);
    } else {
      // For normal constants, we just record the attribute (and its type) for
      // later materialization at use sites.
      constantMap.try_emplace(resultID, attr, intType);
    }

    return success();
  }

  if (auto floatType = resultType.dyn_cast<FloatType>()) {
    auto bitwidth = floatType.getWidth();
    if (failed(checkOperandSizeForBitwidth(bitwidth))) {
      return failure();
    }

    APFloat value(0.f);
    if (floatType.isF64()) {
      // Double values are represented with two SPIR-V words. According to
      // SPIR-V spec: "When the type’s bit width is larger than one word, the
      // literal’s low-order words appear first."
      struct DoubleWord {
        uint32_t word1;
        uint32_t word2;
      } words = {operands[2], operands[3]};
      value = APFloat(llvm::bit_cast<double>(words));
    } else if (floatType.isF32()) {
      value = APFloat(llvm::bit_cast<float>(operands[2]));
    } else if (floatType.isF16()) {
      APInt data(16, operands[2]);
      value = APFloat(APFloat::IEEEhalf(), data);
    }

    auto attr = opBuilder.getFloatAttr(floatType, value);
    if (isSpec) {
      createSpecConstant(unknownLoc, resultID, attr);
    } else {
      // For normal constants, we just record the attribute (and its type) for
      // later materialization at use sites.
      constantMap.try_emplace(resultID, attr, floatType);
    }

    return success();
  }

  return emitError(unknownLoc, "OpConstant can only generate values of "
                               "scalar integer or floating-point type");
}

LogicalResult Deserializer::processConstantBool(bool isTrue,
                                                ArrayRef<uint32_t> operands,
                                                bool isSpec) {
  if (operands.size() != 2) {
    return emitError(unknownLoc, "Op")
           << (isSpec ? "Spec" : "") << "Constant"
           << (isTrue ? "True" : "False")
           << " must have type <id> and result <id>";
  }

  auto attr = opBuilder.getBoolAttr(isTrue);
  auto resultID = operands[1];
  if (isSpec) {
    createSpecConstant(unknownLoc, resultID, attr);
  } else {
    // For normal constants, we just record the attribute (and its type) for
    // later materialization at use sites.
    constantMap.try_emplace(resultID, attr, opBuilder.getI1Type());
  }

  return success();
}

LogicalResult
Deserializer::processConstantComposite(ArrayRef<uint32_t> operands) {
  if (operands.size() < 2) {
    return emitError(unknownLoc,
                     "OpConstantComposite must have type <id> and result <id>");
  }
  if (operands.size() < 3) {
    return emitError(unknownLoc,
                     "OpConstantComposite must have at least 1 parameter");
  }

  Type resultType = getType(operands[0]);
  if (!resultType) {
    return emitError(unknownLoc, "undefined result type from <id> ")
           << operands[0];
  }

  SmallVector<Attribute, 4> elements;
  elements.reserve(operands.size() - 2);
  for (unsigned i = 2, e = operands.size(); i < e; ++i) {
    auto elementInfo = getConstant(operands[i]);
    if (!elementInfo) {
      return emitError(unknownLoc, "OpConstantComposite component <id> ")
             << operands[i] << " must come from a normal constant";
    }
    elements.push_back(elementInfo->first);
  }

  auto resultID = operands[1];
  if (auto vectorType = resultType.dyn_cast<VectorType>()) {
    auto attr = DenseElementsAttr::get(vectorType, elements);
    // For normal constants, we just record the attribute (and its type) for
    // later materialization at use sites.
    constantMap.try_emplace(resultID, attr, resultType);
  } else if (auto arrayType = resultType.dyn_cast<spirv::ArrayType>()) {
    auto attr = opBuilder.getArrayAttr(elements);
    constantMap.try_emplace(resultID, attr, resultType);
  } else {
    return emitError(unknownLoc, "unsupported OpConstantComposite type: ")
           << resultType;
  }

  return success();
}

LogicalResult
Deserializer::processSpecConstantComposite(ArrayRef<uint32_t> operands) {
  if (operands.size() < 2) {
    return emitError(unknownLoc,
                     "OpConstantComposite must have type <id> and result <id>");
  }
  if (operands.size() < 3) {
    return emitError(unknownLoc,
                     "OpConstantComposite must have at least 1 parameter");
  }

  Type resultType = getType(operands[0]);
  if (!resultType) {
    return emitError(unknownLoc, "undefined result type from <id> ")
           << operands[0];
  }

  auto symName = opBuilder.getStringAttr(getSpecConstantSymbol(operands[1]));

  SmallVector<Attribute, 4> elements;
  elements.reserve(operands.size() - 2);
  for (unsigned i = 2, e = operands.size(); i < e; ++i) {
    auto elementInfo = getSpecConstant(operands[i]);
    elements.push_back(opBuilder.getSymbolRefAttr(elementInfo));
  }

  opBuilder.create<spirv::SpecConstantCompositeOp>(
      unknownLoc, TypeAttr::get(resultType), symName,
      opBuilder.getArrayAttr(elements));

  return success();
}

LogicalResult Deserializer::processConstantNull(ArrayRef<uint32_t> operands) {
  if (operands.size() != 2) {
    return emitError(unknownLoc,
                     "OpConstantNull must have type <id> and result <id>");
  }

  Type resultType = getType(operands[0]);
  if (!resultType) {
    return emitError(unknownLoc, "undefined result type from <id> ")
           << operands[0];
  }

  auto resultID = operands[1];
  if (resultType.isIntOrFloat() || resultType.isa<VectorType>()) {
    auto attr = opBuilder.getZeroAttr(resultType);
    // For normal constants, we just record the attribute (and its type) for
    // later materialization at use sites.
    constantMap.try_emplace(resultID, attr, resultType);
    return success();
  }

  return emitError(unknownLoc, "unsupported OpConstantNull type: ")
         << resultType;
}

//===----------------------------------------------------------------------===//
// Control flow
//===----------------------------------------------------------------------===//

Block *Deserializer::getOrCreateBlock(uint32_t id) {
  if (auto *block = getBlock(id)) {
    LLVM_DEBUG(llvm::dbgs() << "[block] got exiting block for id = " << id
                            << " @ " << block << "\n");
    return block;
  }

  // We don't know where this block will be placed finally (in a spv.selection
  // or spv.loop or function). Create it into the function for now and sort
  // out the proper place later.
  auto *block = curFunction->addBlock();
  LLVM_DEBUG(llvm::dbgs() << "[block] created block for id = " << id << " @ "
                          << block << "\n");
  return blockMap[id] = block;
}

LogicalResult Deserializer::processBranch(ArrayRef<uint32_t> operands) {
  if (!curBlock) {
    return emitError(unknownLoc, "OpBranch must appear inside a block");
  }

  if (operands.size() != 1) {
    return emitError(unknownLoc, "OpBranch must take exactly one target label");
  }

  auto *target = getOrCreateBlock(operands[0]);
  auto loc = createFileLineColLoc(opBuilder);
  // The preceding instruction for the OpBranch instruction could be an
  // OpLoopMerge or an OpSelectionMerge instruction, in this case they will have
  // the same OpLine information.
  opBuilder.create<spirv::BranchOp>(loc, target);

  clearDebugLine();
  return success();
}

LogicalResult
Deserializer::processBranchConditional(ArrayRef<uint32_t> operands) {
  if (!curBlock) {
    return emitError(unknownLoc,
                     "OpBranchConditional must appear inside a block");
  }

  if (operands.size() != 3 && operands.size() != 5) {
    return emitError(unknownLoc,
                     "OpBranchConditional must have condition, true label, "
                     "false label, and optionally two branch weights");
  }

  auto condition = getValue(operands[0]);
  auto *trueBlock = getOrCreateBlock(operands[1]);
  auto *falseBlock = getOrCreateBlock(operands[2]);

  Optional<std::pair<uint32_t, uint32_t>> weights;
  if (operands.size() == 5) {
    weights = std::make_pair(operands[3], operands[4]);
  }
  // The preceding instruction for the OpBranchConditional instruction could be
  // an OpSelectionMerge instruction, in this case they will have the same
  // OpLine information.
  auto loc = createFileLineColLoc(opBuilder);
  opBuilder.create<spirv::BranchConditionalOp>(
      loc, condition, trueBlock,
      /*trueArguments=*/ArrayRef<Value>(), falseBlock,
      /*falseArguments=*/ArrayRef<Value>(), weights);

  clearDebugLine();
  return success();
}

LogicalResult Deserializer::processLabel(ArrayRef<uint32_t> operands) {
  if (!curFunction) {
    return emitError(unknownLoc, "OpLabel must appear inside a function");
  }

  if (operands.size() != 1) {
    return emitError(unknownLoc, "OpLabel should only have result <id>");
  }

  auto labelID = operands[0];
  // We may have forward declared this block.
  auto *block = getOrCreateBlock(labelID);
  LLVM_DEBUG(llvm::dbgs() << "[block] populating block " << block << "\n");
  // If we have seen this block, make sure it was just a forward declaration.
  assert(block->empty() && "re-deserialize the same block!");

  opBuilder.setInsertionPointToStart(block);
  blockMap[labelID] = curBlock = block;

  return success();
}

LogicalResult Deserializer::processSelectionMerge(ArrayRef<uint32_t> operands) {
  if (!curBlock) {
    return emitError(unknownLoc, "OpSelectionMerge must appear in a block");
  }

  if (operands.size() < 2) {
    return emitError(
        unknownLoc,
        "OpSelectionMerge must specify merge target and selection control");
  }

  auto *mergeBlock = getOrCreateBlock(operands[0]);
  auto loc = createFileLineColLoc(opBuilder);
  auto selectionControl = operands[1];

  if (!blockMergeInfo.try_emplace(curBlock, loc, selectionControl, mergeBlock)
           .second) {
    return emitError(
        unknownLoc,
        "a block cannot have more than one OpSelectionMerge instruction");
  }

  return success();
}

LogicalResult Deserializer::processLoopMerge(ArrayRef<uint32_t> operands) {
  if (!curBlock) {
    return emitError(unknownLoc, "OpLoopMerge must appear in a block");
  }

  if (operands.size() < 3) {
    return emitError(unknownLoc, "OpLoopMerge must specify merge target, "
                                 "continue target and loop control");
  }

  auto *mergeBlock = getOrCreateBlock(operands[0]);
  auto *continueBlock = getOrCreateBlock(operands[1]);
  auto loc = createFileLineColLoc(opBuilder);
  uint32_t loopControl = operands[2];

  if (!blockMergeInfo
           .try_emplace(curBlock, loc, loopControl, mergeBlock, continueBlock)
           .second) {
    return emitError(
        unknownLoc,
        "a block cannot have more than one OpLoopMerge instruction");
  }

  return success();
}

LogicalResult Deserializer::processPhi(ArrayRef<uint32_t> operands) {
  if (!curBlock) {
    return emitError(unknownLoc, "OpPhi must appear in a block");
  }

  if (operands.size() < 4) {
    return emitError(unknownLoc, "OpPhi must specify result type, result <id>, "
                                 "and variable-parent pairs");
  }

  // Create a block argument for this OpPhi instruction.
  Type blockArgType = getType(operands[0]);
  BlockArgument blockArg = curBlock->addArgument(blockArgType);
  valueMap[operands[1]] = blockArg;
  LLVM_DEBUG(llvm::dbgs() << "[phi] created block argument " << blockArg
                          << " id = " << operands[1] << " of type "
                          << blockArgType << '\n');

  // For each (value, predecessor) pair, insert the value to the predecessor's
  // blockPhiInfo entry so later we can fix the block argument there.
  for (unsigned i = 2, e = operands.size(); i < e; i += 2) {
    uint32_t value = operands[i];
    Block *predecessor = getOrCreateBlock(operands[i + 1]);
    blockPhiInfo[predecessor].push_back(value);
    LLVM_DEBUG(llvm::dbgs() << "[phi] predecessor @ " << predecessor
                            << " with arg id = " << value << '\n');
  }

  return success();
}

namespace {
/// A class for putting all blocks in a structured selection/loop in a
/// spv.selection/spv.loop op.
class ControlFlowStructurizer {
public:
  /// Structurizes the loop at the given `headerBlock`.
  ///
  /// This method will create an spv.loop op in the `mergeBlock` and move all
  /// blocks in the structured loop into the spv.loop's region. All branches to
  /// the `headerBlock` will be redirected to the `mergeBlock`.
  /// This method will also update `mergeInfo` by remapping all blocks inside to
  /// the newly cloned ones inside structured control flow op's regions.
  static LogicalResult structurize(Location loc, uint32_t control,
                                   BlockMergeInfoMap &mergeInfo,
                                   Block *headerBlock, Block *mergeBlock,
                                   Block *continueBlock) {
    return ControlFlowStructurizer(loc, control, mergeInfo, headerBlock,
                                   mergeBlock, continueBlock)
        .structurizeImpl();
  }

private:
  ControlFlowStructurizer(Location loc, uint32_t control,
                          BlockMergeInfoMap &mergeInfo, Block *header,
                          Block *merge, Block *cont)
      : location(loc), control(control), blockMergeInfo(mergeInfo),
        headerBlock(header), mergeBlock(merge), continueBlock(cont) {}

  /// Creates a new spv.selection op at the beginning of the `mergeBlock`.
  spirv::SelectionOp createSelectionOp(uint32_t selectionControl);

  /// Creates a new spv.loop op at the beginning of the `mergeBlock`.
  spirv::LoopOp createLoopOp(uint32_t loopControl);

  /// Collects all blocks reachable from `headerBlock` except `mergeBlock`.
  void collectBlocksInConstruct();

  LogicalResult structurizeImpl();

  Location location;
  uint32_t control;

  BlockMergeInfoMap &blockMergeInfo;

  Block *headerBlock;
  Block *mergeBlock;
  Block *continueBlock; // nullptr for spv.selection

  llvm::SetVector<Block *> constructBlocks;
};
} // namespace

spirv::SelectionOp
ControlFlowStructurizer::createSelectionOp(uint32_t selectionControl) {
  // Create a builder and set the insertion point to the beginning of the
  // merge block so that the newly created SelectionOp will be inserted there.
  OpBuilder builder(&mergeBlock->front());

  auto control = builder.getI32IntegerAttr(selectionControl);
  auto selectionOp = builder.create<spirv::SelectionOp>(location, control);
  selectionOp.addMergeBlock();

  return selectionOp;
}

spirv::LoopOp ControlFlowStructurizer::createLoopOp(uint32_t loopControl) {
  // Create a builder and set the insertion point to the beginning of the
  // merge block so that the newly created LoopOp will be inserted there.
  OpBuilder builder(&mergeBlock->front());

  auto control = builder.getI32IntegerAttr(loopControl);
  auto loopOp = builder.create<spirv::LoopOp>(location, control);
  loopOp.addEntryAndMergeBlock();

  return loopOp;
}

void ControlFlowStructurizer::collectBlocksInConstruct() {
  assert(constructBlocks.empty() && "expected empty constructBlocks");

  // Put the header block in the work list first.
  constructBlocks.insert(headerBlock);

  // For each item in the work list, add its successors excluding the merge
  // block.
  for (unsigned i = 0; i < constructBlocks.size(); ++i) {
    for (auto *successor : constructBlocks[i]->getSuccessors())
      if (successor != mergeBlock)
        constructBlocks.insert(successor);
  }
}

LogicalResult ControlFlowStructurizer::structurizeImpl() {
  Operation *op = nullptr;
  bool isLoop = continueBlock != nullptr;
  if (isLoop) {
    if (auto loopOp = createLoopOp(control))
      op = loopOp.getOperation();
  } else {
    if (auto selectionOp = createSelectionOp(control))
      op = selectionOp.getOperation();
  }
  if (!op)
    return failure();
  Region &body = op->getRegion(0);

  BlockAndValueMapping mapper;
  // All references to the old merge block should be directed to the
  // selection/loop merge block in the SelectionOp/LoopOp's region.
  mapper.map(mergeBlock, &body.back());

  collectBlocksInConstruct();

  // We've identified all blocks belonging to the selection/loop's region. Now
  // need to "move" them into the selection/loop. Instead of really moving the
  // blocks, in the following we copy them and remap all values and branches.
  // This is because:
  // * Inserting a block into a region requires the block not in any region
  //   before. But selections/loops can nest so we can create selection/loop ops
  //   in a nested manner, which means some blocks may already be in a
  //   selection/loop region when to be moved again.
  // * It's much trickier to fix up the branches into and out of the loop's
  //   region: we need to treat not-moved blocks and moved blocks differently:
  //   Not-moved blocks jumping to the loop header block need to jump to the
  //   merge point containing the new loop op but not the loop continue block's
  //   back edge. Moved blocks jumping out of the loop need to jump to the
  //   merge block inside the loop region but not other not-moved blocks.
  //   We cannot use replaceAllUsesWith clearly and it's harder to follow the
  //   logic.

  // Create a corresponding block in the SelectionOp/LoopOp's region for each
  // block in this loop construct.
  OpBuilder builder(body);
  for (auto *block : constructBlocks) {
    // Create a block and insert it before the selection/loop merge block in the
    // SelectionOp/LoopOp's region.
    auto *newBlock = builder.createBlock(&body.back());
    mapper.map(block, newBlock);
    LLVM_DEBUG(llvm::dbgs() << "[cf] cloned block " << newBlock
                            << " from block " << block << "\n");
    if (!isFnEntryBlock(block)) {
      for (BlockArgument blockArg : block->getArguments()) {
        auto newArg = newBlock->addArgument(blockArg.getType());
        mapper.map(blockArg, newArg);
        LLVM_DEBUG(llvm::dbgs() << "[cf] remapped block argument " << blockArg
                                << " to " << newArg << '\n');
      }
    } else {
      LLVM_DEBUG(llvm::dbgs()
                 << "[cf] block " << block << " is a function entry block\n");
    }
    for (auto &op : *block)
      newBlock->push_back(op.clone(mapper));
  }

  // Go through all ops and remap the operands.
  auto remapOperands = [&](Operation *op) {
    for (auto &operand : op->getOpOperands())
      if (Value mappedOp = mapper.lookupOrNull(operand.get()))
        operand.set(mappedOp);
    for (auto &succOp : op->getBlockOperands())
      if (Block *mappedOp = mapper.lookupOrNull(succOp.get()))
        succOp.set(mappedOp);
  };
  for (auto &block : body) {
    block.walk(remapOperands);
  }

  // We have created the SelectionOp/LoopOp and "moved" all blocks belonging to
  // the selection/loop construct into its region. Next we need to fix the
  // connections between this new SelectionOp/LoopOp with existing blocks.

  // All existing incoming branches should go to the merge block, where the
  // SelectionOp/LoopOp resides right now.
  headerBlock->replaceAllUsesWith(mergeBlock);

  if (isLoop) {
    // The loop selection/loop header block may have block arguments. Since now
    // we place the selection/loop op inside the old merge block, we need to
    // make sure the old merge block has the same block argument list.
    assert(mergeBlock->args_empty() && "OpPhi in loop merge block unsupported");
    for (BlockArgument blockArg : headerBlock->getArguments()) {
      mergeBlock->addArgument(blockArg.getType());
    }

    // If the loop header block has block arguments, make sure the spv.branch op
    // matches.
    SmallVector<Value, 4> blockArgs;
    if (!headerBlock->args_empty())
      blockArgs = {mergeBlock->args_begin(), mergeBlock->args_end()};

    // The loop entry block should have a unconditional branch jumping to the
    // loop header block.
    builder.setInsertionPointToEnd(&body.front());
    builder.create<spirv::BranchOp>(location, mapper.lookupOrNull(headerBlock),
                                    ArrayRef<Value>(blockArgs));
  }

  // All the blocks cloned into the SelectionOp/LoopOp's region can now be
  // cleaned up.
  LLVM_DEBUG(llvm::dbgs() << "[cf] cleaning up blocks after clone\n");
  // First we need to drop all operands' references inside all blocks. This is
  // needed because we can have blocks referencing SSA values from one another.
  for (auto *block : constructBlocks)
    block->dropAllReferences();

  // Then erase all old blocks.
  for (auto *block : constructBlocks) {
    // We've cloned all blocks belonging to this construct into the structured
    // control flow op's region. Among these blocks, some may compose another
    // selection/loop. If so, they will be recorded within blockMergeInfo.
    // We need to update the pointers there to the newly remapped ones so we can
    // continue structurizing them later.
    // TODO: The asserts in the following assumes input SPIR-V blob
    // forms correctly nested selection/loop constructs. We should relax this
    // and support error cases better.
    auto it = blockMergeInfo.find(block);
    if (it != blockMergeInfo.end()) {
      Block *newHeader = mapper.lookupOrNull(block);
      assert(newHeader && "nested loop header block should be remapped!");

      Block *newContinue = it->second.continueBlock;
      if (newContinue) {
        newContinue = mapper.lookupOrNull(newContinue);
        assert(newContinue && "nested loop continue block should be remapped!");
      }

      Block *newMerge = it->second.mergeBlock;
      if (Block *mappedTo = mapper.lookupOrNull(newMerge))
        newMerge = mappedTo;

      // Keep original location for nested selection/loop ops.
      Location loc = it->second.loc;
      // The iterator should be erased before adding a new entry into
      // blockMergeInfo to avoid iterator invalidation.
      blockMergeInfo.erase(it);
      blockMergeInfo.try_emplace(newHeader, loc, it->second.control, newMerge,
                                 newContinue);
    }

    // The structured selection/loop's entry block does not have arguments.
    // If the function's header block is also part of the structured control
    // flow, we cannot just simply erase it because it may contain arguments
    // matching the function signature and used by the cloned blocks.
    if (isFnEntryBlock(block)) {
      LLVM_DEBUG(llvm::dbgs() << "[cf] changing entry block " << block
                              << " to only contain a spv.Branch op\n");
      // Still keep the function entry block for the potential block arguments,
      // but replace all ops inside with a branch to the merge block.
      block->clear();
      builder.setInsertionPointToEnd(block);
      builder.create<spirv::BranchOp>(location, mergeBlock);
    } else {
      LLVM_DEBUG(llvm::dbgs() << "[cf] erasing block " << block << "\n");
      block->erase();
    }
  }

  LLVM_DEBUG(
      llvm::dbgs() << "[cf] after structurizing construct with header block "
                   << headerBlock << ":\n"
                   << *op << '\n');

  return success();
}

LogicalResult Deserializer::wireUpBlockArgument() {
  LLVM_DEBUG(llvm::dbgs() << "[phi] start wiring up block arguments\n");

  OpBuilder::InsertionGuard guard(opBuilder);

  for (const auto &info : blockPhiInfo) {
    Block *block = info.first;
    const BlockPhiInfo &phiInfo = info.second;
    LLVM_DEBUG(llvm::dbgs() << "[phi] block " << block << "\n");
    LLVM_DEBUG(llvm::dbgs() << "[phi] before creating block argument:\n");
    LLVM_DEBUG(block->getParentOp()->print(llvm::dbgs()));
    LLVM_DEBUG(llvm::dbgs() << '\n');

    // Set insertion point to before this block's terminator early because we
    // may materialize ops via getValue() call.
    auto *op = block->getTerminator();
    opBuilder.setInsertionPoint(op);

    SmallVector<Value, 4> blockArgs;
    blockArgs.reserve(phiInfo.size());
    for (uint32_t valueId : phiInfo) {
      if (Value value = getValue(valueId)) {
        blockArgs.push_back(value);
        LLVM_DEBUG(llvm::dbgs() << "[phi] block argument " << value
                                << " id = " << valueId << '\n');
      } else {
        return emitError(unknownLoc, "OpPhi references undefined value!");
      }
    }

    if (auto branchOp = dyn_cast<spirv::BranchOp>(op)) {
      // Replace the previous branch op with a new one with block arguments.
      opBuilder.create<spirv::BranchOp>(branchOp.getLoc(), branchOp.getTarget(),
                                        blockArgs);
      branchOp.erase();
    } else {
      return emitError(unknownLoc, "unimplemented terminator for Phi creation");
    }

    LLVM_DEBUG(llvm::dbgs() << "[phi] after creating block argument:\n");
    LLVM_DEBUG(block->getParentOp()->print(llvm::dbgs()));
    LLVM_DEBUG(llvm::dbgs() << '\n');
  }
  blockPhiInfo.clear();

  LLVM_DEBUG(llvm::dbgs() << "[phi] completed wiring up block arguments\n");
  return success();
}

LogicalResult Deserializer::structurizeControlFlow() {
  LLVM_DEBUG(llvm::dbgs() << "[cf] start structurizing control flow\n");

  while (!blockMergeInfo.empty()) {
    Block *headerBlock = blockMergeInfo.begin()->first;
    BlockMergeInfo mergeInfo = blockMergeInfo.begin()->second;

    LLVM_DEBUG(llvm::dbgs() << "[cf] header block " << headerBlock << ":\n");
    LLVM_DEBUG(headerBlock->print(llvm::dbgs()));

    auto *mergeBlock = mergeInfo.mergeBlock;
    assert(mergeBlock && "merge block cannot be nullptr");
    if (!mergeBlock->args_empty())
      return emitError(unknownLoc, "OpPhi in loop merge block unimplemented");
    LLVM_DEBUG(llvm::dbgs() << "[cf] merge block " << mergeBlock << ":\n");
    LLVM_DEBUG(mergeBlock->print(llvm::dbgs()));

    auto *continueBlock = mergeInfo.continueBlock;
    if (continueBlock) {
      LLVM_DEBUG(llvm::dbgs()
                 << "[cf] continue block " << continueBlock << ":\n");
      LLVM_DEBUG(continueBlock->print(llvm::dbgs()));
    }
    // Erase this case before calling into structurizer, who will update
    // blockMergeInfo.
    blockMergeInfo.erase(blockMergeInfo.begin());
    if (failed(ControlFlowStructurizer::structurize(
            mergeInfo.loc, mergeInfo.control, blockMergeInfo, headerBlock,
            mergeBlock, continueBlock)))
      return failure();
  }

  LLVM_DEBUG(llvm::dbgs() << "[cf] completed structurizing control flow\n");
  return success();
}

//===----------------------------------------------------------------------===//
// Debug
//===----------------------------------------------------------------------===//

Location Deserializer::createFileLineColLoc(OpBuilder opBuilder) {
  if (!debugLine)
    return unknownLoc;

  auto fileName = debugInfoMap.lookup(debugLine->fileID).str();
  if (fileName.empty())
    fileName = "<unknown>";
  return opBuilder.getFileLineColLoc(opBuilder.getIdentifier(fileName),
                                     debugLine->line, debugLine->col);
}

LogicalResult Deserializer::processDebugLine(ArrayRef<uint32_t> operands) {
  // According to SPIR-V spec:
  // "This location information applies to the instructions physically
  // following this instruction, up to the first occurrence of any of the
  // following: the next end of block, the next OpLine instruction, or the next
  // OpNoLine instruction."
  if (operands.size() != 3)
    return emitError(unknownLoc, "OpLine must have 3 operands");
  debugLine = DebugLine(operands[0], operands[1], operands[2]);
  return success();
}

LogicalResult Deserializer::clearDebugLine() {
  debugLine = llvm::None;
  return success();
}

LogicalResult Deserializer::processDebugString(ArrayRef<uint32_t> operands) {
  if (operands.size() < 2)
    return emitError(unknownLoc, "OpString needs at least 2 operands");

  if (!debugInfoMap.lookup(operands[0]).empty())
    return emitError(unknownLoc,
                     "duplicate debug string found for result <id> ")
           << operands[0];

  unsigned wordIndex = 1;
  StringRef debugString = decodeStringLiteral(operands, wordIndex);
  if (wordIndex != operands.size())
    return emitError(unknownLoc,
                     "unexpected trailing words in OpString instruction");

  debugInfoMap[operands[0]] = debugString;
  return success();
}

//===----------------------------------------------------------------------===//
// Instruction
//===----------------------------------------------------------------------===//

Value Deserializer::getValue(uint32_t id) {
  if (auto constInfo = getConstant(id)) {
    // Materialize a `spv.constant` op at every use site.
    return opBuilder.create<spirv::ConstantOp>(unknownLoc, constInfo->second,
                                               constInfo->first);
  }
  if (auto varOp = getGlobalVariable(id)) {
    auto addressOfOp = opBuilder.create<spirv::AddressOfOp>(
        unknownLoc, varOp.type(),
        opBuilder.getSymbolRefAttr(varOp.getOperation()));
    return addressOfOp.pointer();
  }
  if (auto constOp = getSpecConstant(id)) {
    auto referenceOfOp = opBuilder.create<spirv::ReferenceOfOp>(
        unknownLoc, constOp.default_value().getType(),
        opBuilder.getSymbolRefAttr(constOp.getOperation()));
    return referenceOfOp.reference();
  }
  if (auto undef = getUndefType(id)) {
    return opBuilder.create<spirv::UndefOp>(unknownLoc, undef);
  }
  return valueMap.lookup(id);
}

LogicalResult
Deserializer::sliceInstruction(spirv::Opcode &opcode,
                               ArrayRef<uint32_t> &operands,
                               Optional<spirv::Opcode> expectedOpcode) {
  auto binarySize = binary.size();
  if (curOffset >= binarySize) {
    return emitError(unknownLoc, "expected ")
           << (expectedOpcode ? spirv::stringifyOpcode(*expectedOpcode)
                              : "more")
           << " instruction";
  }

  // For each instruction, get its word count from the first word to slice it
  // from the stream properly, and then dispatch to the instruction handler.

  uint32_t wordCount = binary[curOffset] >> 16;

  if (wordCount == 0)
    return emitError(unknownLoc, "word count cannot be zero");

  uint32_t nextOffset = curOffset + wordCount;
  if (nextOffset > binarySize)
    return emitError(unknownLoc, "insufficient words for the last instruction");

  opcode = extractOpcode(binary[curOffset]);
  operands = binary.slice(curOffset + 1, wordCount - 1);
  curOffset = nextOffset;
  return success();
}

LogicalResult Deserializer::processInstruction(spirv::Opcode opcode,
                                               ArrayRef<uint32_t> operands,
                                               bool deferInstructions) {
  LLVM_DEBUG(llvm::dbgs() << "[inst] processing instruction "
                          << spirv::stringifyOpcode(opcode) << "\n");

  // First dispatch all the instructions whose opcode does not correspond to
  // those that have a direct mirror in the SPIR-V dialect
  switch (opcode) {
  case spirv::Opcode::OpCapability:
    return processCapability(operands);
  case spirv::Opcode::OpExtension:
    return processExtension(operands);
  case spirv::Opcode::OpExtInst:
    return processExtInst(operands);
  case spirv::Opcode::OpExtInstImport:
    return processExtInstImport(operands);
  case spirv::Opcode::OpMemberName:
    return processMemberName(operands);
  case spirv::Opcode::OpMemoryModel:
    return processMemoryModel(operands);
  case spirv::Opcode::OpEntryPoint:
  case spirv::Opcode::OpExecutionMode:
    if (deferInstructions) {
      deferredInstructions.emplace_back(opcode, operands);
      return success();
    }
    break;
  case spirv::Opcode::OpVariable:
    if (isa<spirv::ModuleOp>(opBuilder.getBlock()->getParentOp())) {
      return processGlobalVariable(operands);
    }
    break;
  case spirv::Opcode::OpLine:
    return processDebugLine(operands);
  case spirv::Opcode::OpNoLine:
    return clearDebugLine();
  case spirv::Opcode::OpName:
    return processName(operands);
  case spirv::Opcode::OpString:
    return processDebugString(operands);
  case spirv::Opcode::OpModuleProcessed:
  case spirv::Opcode::OpSource:
  case spirv::Opcode::OpSourceContinued:
  case spirv::Opcode::OpSourceExtension:
    // TODO: This is debug information embedded in the binary which should be
    // translated into the spv.module.
    return success();
  case spirv::Opcode::OpTypeVoid:
  case spirv::Opcode::OpTypeBool:
  case spirv::Opcode::OpTypeInt:
  case spirv::Opcode::OpTypeFloat:
  case spirv::Opcode::OpTypeVector:
  case spirv::Opcode::OpTypeMatrix:
  case spirv::Opcode::OpTypeArray:
  case spirv::Opcode::OpTypeFunction:
  case spirv::Opcode::OpTypeRuntimeArray:
  case spirv::Opcode::OpTypeStruct:
  case spirv::Opcode::OpTypePointer:
  case spirv::Opcode::OpTypeCooperativeMatrixNV:
    return processType(opcode, operands);
  case spirv::Opcode::OpConstant:
    return processConstant(operands, /*isSpec=*/false);
  case spirv::Opcode::OpSpecConstant:
    return processConstant(operands, /*isSpec=*/true);
  case spirv::Opcode::OpConstantComposite:
    return processConstantComposite(operands);
  case spirv::Opcode::OpSpecConstantComposite:
    return processSpecConstantComposite(operands);
  case spirv::Opcode::OpConstantTrue:
    return processConstantBool(/*isTrue=*/true, operands, /*isSpec=*/false);
  case spirv::Opcode::OpSpecConstantTrue:
    return processConstantBool(/*isTrue=*/true, operands, /*isSpec=*/true);
  case spirv::Opcode::OpConstantFalse:
    return processConstantBool(/*isTrue=*/false, operands, /*isSpec=*/false);
  case spirv::Opcode::OpSpecConstantFalse:
    return processConstantBool(/*isTrue=*/false, operands, /*isSpec=*/true);
  case spirv::Opcode::OpConstantNull:
    return processConstantNull(operands);
  case spirv::Opcode::OpDecorate:
    return processDecoration(operands);
  case spirv::Opcode::OpMemberDecorate:
    return processMemberDecoration(operands);
  case spirv::Opcode::OpFunction:
    return processFunction(operands);
  case spirv::Opcode::OpLabel:
    return processLabel(operands);
  case spirv::Opcode::OpBranch:
    return processBranch(operands);
  case spirv::Opcode::OpBranchConditional:
    return processBranchConditional(operands);
  case spirv::Opcode::OpSelectionMerge:
    return processSelectionMerge(operands);
  case spirv::Opcode::OpLoopMerge:
    return processLoopMerge(operands);
  case spirv::Opcode::OpPhi:
    return processPhi(operands);
  case spirv::Opcode::OpUndef:
    return processUndef(operands);
  default:
    break;
  }
  return dispatchToAutogenDeserialization(opcode, operands);
}

LogicalResult Deserializer::processUndef(ArrayRef<uint32_t> operands) {
  if (operands.size() != 2) {
    return emitError(unknownLoc, "OpUndef instruction must have two operands");
  }
  auto type = getType(operands[0]);
  if (!type) {
    return emitError(unknownLoc, "unknown type <id> with OpUndef instruction");
  }
  undefMap[operands[1]] = type;
  return success();
}

LogicalResult Deserializer::processExtInst(ArrayRef<uint32_t> operands) {
  if (operands.size() < 4) {
    return emitError(unknownLoc,
                     "OpExtInst must have at least 4 operands, result type "
                     "<id>, result <id>, set <id> and instruction opcode");
  }
  if (!extendedInstSets.count(operands[2])) {
    return emitError(unknownLoc, "undefined set <id> in OpExtInst");
  }
  SmallVector<uint32_t, 4> slicedOperands;
  slicedOperands.append(operands.begin(), std::next(operands.begin(), 2));
  slicedOperands.append(std::next(operands.begin(), 4), operands.end());
  return dispatchToExtensionSetAutogenDeserialization(
      extendedInstSets[operands[2]], operands[3], slicedOperands);
}

namespace {

template <>
LogicalResult
Deserializer::processOp<spirv::EntryPointOp>(ArrayRef<uint32_t> words) {
  unsigned wordIndex = 0;
  if (wordIndex >= words.size()) {
    return emitError(unknownLoc,
                     "missing Execution Model specification in OpEntryPoint");
  }
  auto execModel = opBuilder.getI32IntegerAttr(words[wordIndex++]);
  if (wordIndex >= words.size()) {
    return emitError(unknownLoc, "missing <id> in OpEntryPoint");
  }
  // Get the function <id>
  auto fnID = words[wordIndex++];
  // Get the function name
  auto fnName = decodeStringLiteral(words, wordIndex);
  // Verify that the function <id> matches the fnName
  auto parsedFunc = getFunction(fnID);
  if (!parsedFunc) {
    return emitError(unknownLoc, "no function matching <id> ") << fnID;
  }
  if (parsedFunc.getName() != fnName) {
    return emitError(unknownLoc, "function name mismatch between OpEntryPoint "
                                 "and OpFunction with <id> ")
           << fnID << ": " << fnName << " vs. " << parsedFunc.getName();
  }
  SmallVector<Attribute, 4> interface;
  while (wordIndex < words.size()) {
    auto arg = getGlobalVariable(words[wordIndex]);
    if (!arg) {
      return emitError(unknownLoc, "undefined result <id> ")
             << words[wordIndex] << " while decoding OpEntryPoint";
    }
    interface.push_back(opBuilder.getSymbolRefAttr(arg.getOperation()));
    wordIndex++;
  }
  opBuilder.create<spirv::EntryPointOp>(unknownLoc, execModel,
                                        opBuilder.getSymbolRefAttr(fnName),
                                        opBuilder.getArrayAttr(interface));
  return success();
}

template <>
LogicalResult
Deserializer::processOp<spirv::ExecutionModeOp>(ArrayRef<uint32_t> words) {
  unsigned wordIndex = 0;
  if (wordIndex >= words.size()) {
    return emitError(unknownLoc,
                     "missing function result <id> in OpExecutionMode");
  }
  // Get the function <id> to get the name of the function
  auto fnID = words[wordIndex++];
  auto fn = getFunction(fnID);
  if (!fn) {
    return emitError(unknownLoc, "no function matching <id> ") << fnID;
  }
  // Get the Execution mode
  if (wordIndex >= words.size()) {
    return emitError(unknownLoc, "missing Execution Mode in OpExecutionMode");
  }
  auto execMode = opBuilder.getI32IntegerAttr(words[wordIndex++]);

  // Get the values
  SmallVector<Attribute, 4> attrListElems;
  while (wordIndex < words.size()) {
    attrListElems.push_back(opBuilder.getI32IntegerAttr(words[wordIndex++]));
  }
  auto values = opBuilder.getArrayAttr(attrListElems);
  opBuilder.create<spirv::ExecutionModeOp>(
      unknownLoc, opBuilder.getSymbolRefAttr(fn.getName()), execMode, values);
  return success();
}

template <>
LogicalResult
Deserializer::processOp<spirv::ControlBarrierOp>(ArrayRef<uint32_t> operands) {
  if (operands.size() != 3) {
    return emitError(
        unknownLoc,
        "OpControlBarrier must have execution scope <id>, memory scope <id> "
        "and memory semantics <id>");
  }

  SmallVector<IntegerAttr, 3> argAttrs;
  for (auto operand : operands) {
    auto argAttr = getConstantInt(operand);
    if (!argAttr) {
      return emitError(unknownLoc,
                       "expected 32-bit integer constant from <id> ")
             << operand << " for OpControlBarrier";
    }
    argAttrs.push_back(argAttr);
  }

  opBuilder.create<spirv::ControlBarrierOp>(unknownLoc, argAttrs[0],
                                            argAttrs[1], argAttrs[2]);
  return success();
}

template <>
LogicalResult
Deserializer::processOp<spirv::FunctionCallOp>(ArrayRef<uint32_t> operands) {
  if (operands.size() < 3) {
    return emitError(unknownLoc,
                     "OpFunctionCall must have at least 3 operands");
  }

  Type resultType = getType(operands[0]);
  if (!resultType) {
    return emitError(unknownLoc, "undefined result type from <id> ")
           << operands[0];
  }

  // Use null type to mean no result type.
  if (isVoidType(resultType))
    resultType = nullptr;

  auto resultID = operands[1];
  auto functionID = operands[2];

  auto functionName = getFunctionSymbol(functionID);

  SmallVector<Value, 4> arguments;
  for (auto operand : llvm::drop_begin(operands, 3)) {
    auto value = getValue(operand);
    if (!value) {
      return emitError(unknownLoc, "unknown <id> ")
             << operand << " used by OpFunctionCall";
    }
    arguments.push_back(value);
  }

  auto opFunctionCall = opBuilder.create<spirv::FunctionCallOp>(
      unknownLoc, resultType, opBuilder.getSymbolRefAttr(functionName),
      arguments);

  if (resultType)
    valueMap[resultID] = opFunctionCall.getResult(0);
  return success();
}

template <>
LogicalResult
Deserializer::processOp<spirv::MemoryBarrierOp>(ArrayRef<uint32_t> operands) {
  if (operands.size() != 2) {
    return emitError(unknownLoc, "OpMemoryBarrier must have memory scope <id> "
                                 "and memory semantics <id>");
  }

  SmallVector<IntegerAttr, 2> argAttrs;
  for (auto operand : operands) {
    auto argAttr = getConstantInt(operand);
    if (!argAttr) {
      return emitError(unknownLoc,
                       "expected 32-bit integer constant from <id> ")
             << operand << " for OpMemoryBarrier";
    }
    argAttrs.push_back(argAttr);
  }

  opBuilder.create<spirv::MemoryBarrierOp>(unknownLoc, argAttrs[0],
                                           argAttrs[1]);
  return success();
}

template <>
LogicalResult
Deserializer::processOp<spirv::CopyMemoryOp>(ArrayRef<uint32_t> words) {
  SmallVector<Type, 1> resultTypes;
  size_t wordIndex = 0;
  SmallVector<Value, 4> operands;
  SmallVector<NamedAttribute, 4> attributes;

  if (wordIndex < words.size()) {
    auto arg = getValue(words[wordIndex]);

    if (!arg) {
      return emitError(unknownLoc, "unknown result <id> : ")
             << words[wordIndex];
    }

    operands.push_back(arg);
    wordIndex++;
  }

  if (wordIndex < words.size()) {
    auto arg = getValue(words[wordIndex]);

    if (!arg) {
      return emitError(unknownLoc, "unknown result <id> : ")
             << words[wordIndex];
    }

    operands.push_back(arg);
    wordIndex++;
  }

  bool isAlignedAttr = false;

  if (wordIndex < words.size()) {
    auto attrValue = words[wordIndex++];
    attributes.push_back(opBuilder.getNamedAttr(
        "memory_access", opBuilder.getI32IntegerAttr(attrValue)));
    isAlignedAttr = (attrValue == 2);
  }

  if (isAlignedAttr && wordIndex < words.size()) {
    attributes.push_back(opBuilder.getNamedAttr(
        "alignment", opBuilder.getI32IntegerAttr(words[wordIndex++])));
  }

  if (wordIndex < words.size()) {
    attributes.push_back(opBuilder.getNamedAttr(
        "source_memory_access",
        opBuilder.getI32IntegerAttr(words[wordIndex++])));
  }

  if (wordIndex < words.size()) {
    attributes.push_back(opBuilder.getNamedAttr(
        "source_alignment", opBuilder.getI32IntegerAttr(words[wordIndex++])));
  }

  if (wordIndex != words.size()) {
    return emitError(unknownLoc,
                     "found more operands than expected when deserializing "
                     "spirv::CopyMemoryOp, only ")
           << wordIndex << " of " << words.size() << " processed";
  }

  Location loc = createFileLineColLoc(opBuilder);
  opBuilder.create<spirv::CopyMemoryOp>(loc, resultTypes, operands, attributes);

  return success();
}

// Pull in auto-generated Deserializer::dispatchToAutogenDeserialization() and
// various Deserializer::processOp<...>() specializations.
#define GET_DESERIALIZATION_FNS
#include "mlir/Dialect/SPIRV/SPIRVSerialization.inc"
} // namespace

spirv::OwningSPIRVModuleRef spirv::deserialize(ArrayRef<uint32_t> binary,
                                               MLIRContext *context) {
  Deserializer deserializer(binary, context);

  if (failed(deserializer.deserialize()))
    return nullptr;

  return deserializer.collect();
}