Utils.cpp 17.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
//===- Utils.cpp - Utilities to support the Linalg dialect ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for the Linalg dialect.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/Utils/Utils.h"

#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/SCF/EDSC/Builders.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/FoldUtils.h"

using namespace mlir;
using namespace mlir::linalg;
using namespace mlir::scf;

Optional<RegionMatcher::BinaryOpKind>
RegionMatcher::matchAsScalarBinaryOp(GenericOp op) {
  auto &region = op.region();
  if (!llvm::hasSingleElement(region))
    return llvm::None;

  Block &block = region.front();
  if (block.getNumArguments() != 2 ||
      !block.getArgument(0).getType().isSignlessIntOrFloat() ||
      !block.getArgument(1).getType().isSignlessIntOrFloat())
    return llvm::None;

  auto &ops = block.getOperations();
  if (!llvm::hasSingleElement(block.without_terminator()))
    return llvm::None;

  using mlir::matchers::m_Val;
  auto a = m_Val(block.getArgument(0));
  auto b = m_Val(block.getArgument(1));

  auto addPattern = m_Op<linalg::YieldOp>(m_Op<AddIOp>(a, b));
  if (addPattern.match(&ops.back()))
    return BinaryOpKind::IAdd;

  return llvm::None;
}

static Value emitOrFoldComposedAffineApply(OpBuilder &b, Location loc,
                                           AffineMap map,
                                           ValueRange operandsRef,
                                           OperationFolder *folder) {
  SmallVector<Value, 4> operands(operandsRef.begin(), operandsRef.end());
  fullyComposeAffineMapAndOperands(&map, &operands);
  canonicalizeMapAndOperands(&map, &operands);
  return folder ? folder->create<AffineApplyOp>(b, loc, map, operands)
                : b.create<AffineApplyOp>(loc, map, operands);
}

SmallVector<Value, 4> mlir::linalg::applyMapToValues(OpBuilder &b, Location loc,
                                                     AffineMap map,
                                                     ValueRange values,
                                                     OperationFolder *folder) {
  SmallVector<Value, 4> res;
  res.reserve(map.getNumResults());
  unsigned numDims = map.getNumDims(), numSym = map.getNumSymbols();
  // For each `expr` in `map`, applies the `expr` to the values extracted from
  // ranges. If the resulting application can be folded into a Value, the
  // folding occurs eagerly. Otherwise, an affine.apply operation is emitted.
  for (auto expr : map.getResults()) {
    AffineMap map = AffineMap::get(numDims, numSym, expr);
    res.push_back(emitOrFoldComposedAffineApply(b, loc, map, values, folder));
  }
  return res;
}

/// Returns all the operands of `linalgOp` that are not views.
/// Asserts that these operands are value types to allow transformations like
/// tiling to just use the values when cloning `linalgOp`.
SmallVector<Value, 4>
mlir::linalg::getAssumedNonViewOperands(LinalgOp linalgOp) {
  auto *op = linalgOp.getOperation();
  unsigned numViews = linalgOp.getNumInputsAndOutputs();
  unsigned nOperands = op->getNumOperands() - numViews;
  SmallVector<Value, 4> res;
  res.reserve(nOperands);
  for (unsigned i = 0; i < nOperands; ++i) {
    res.push_back(op->getOperand(numViews + i));
    auto t = res.back().getType();
    (void)t;
    assert((t.isSignlessIntOrIndexOrFloat() || t.isa<VectorType>()) &&
           "expected scalar or vector type");
  }
  return res;
}

bool mlir::linalg::isParallelIteratorType(Attribute attr) {
  if (auto strAttr = attr.dyn_cast<StringAttr>()) {
    return strAttr.getValue() == getParallelIteratorTypeName();
  }
  return false;
}

bool mlir::linalg::isReductionIteratorType(Attribute attr) {
  if (auto strAttr = attr.dyn_cast<StringAttr>()) {
    return strAttr.getValue() == getReductionIteratorTypeName();
  }
  return false;
}

bool mlir::linalg::isWindowIteratorType(Attribute attr) {
  if (auto strAttr = attr.dyn_cast<StringAttr>()) {
    return strAttr.getValue() == getWindowIteratorTypeName();
  }
  return false;
}

/// Explicit instantiation of loop nest generator for different loop types.
template struct mlir::linalg::GenerateLoopNest<scf::ForOp>;
template struct mlir::linalg::GenerateLoopNest<scf::ParallelOp>;
template struct mlir::linalg::GenerateLoopNest<AffineForOp>;

/// Given a list of subview ranges, extract individual values for lower, upper
/// bounds and steps and put them into the corresponding vectors.
static void unpackRanges(ArrayRef<Range> ranges, SmallVectorImpl<Value> &lbs,
                         SmallVectorImpl<Value> &ubs,
                         SmallVectorImpl<Value> &steps) {
  for (Range range : ranges) {
    lbs.emplace_back(range.offset);
    ubs.emplace_back(range.size);
    steps.emplace_back(range.stride);
  }
}

namespace mlir {
namespace linalg {

/// Return the linearized list of all view dimensions in a linalgOp.
SmallVector<Value, 8> getViewSizes(OpBuilder &builder, LinalgOp linalgOp) {
  auto loc = linalgOp.getLoc();
  SmallVector<Value, 8> res;
  SmallVector<unsigned, 4> ranks;
  for (auto v : linalgOp.getInputsAndOutputBuffers()) {
    MemRefType t = v.getType().template cast<MemRefType>();
    ranks.push_back(t.getRank());
    for (unsigned i = 0; i < t.getRank(); ++i)
      res.push_back(builder.create<DimOp>(loc, v, i));
  }

  auto attr = linalgOp.template getAttrOfType<IntegerAttr>("symbol_source");
  if (attr) {
    // Find the correct position for inserting values for symbols.
    unsigned numSymb = ranks[attr.getInt()], symbolsPos = 0;
    for (unsigned idx = 0; idx < attr.getInt(); idx++)
      symbolsPos += ranks[idx];

    // Append the end of the value list that corresponds to the
    // values mapping to symbols. Since inside concatinated map symbols are
    // repeated we have to repeat the sizes as well.

    // Reserve is mandatory to avoid a potential undefined behavior with
    // pushing back to smallvector from itself.
    res.reserve(res.size() + ranks.size() * numSymb);
    for (unsigned idx = 0, s = ranks.size(); idx < s; ++idx)
      for (unsigned idx2 = 0; idx2 < numSymb; ++idx2)
        res.push_back(res[symbolsPos + idx2]);
  }
  return res;
}

Optional<SmallVector<Value, 4>>
getLoopRanges(OpBuilder &builder, LinalgOp linalgOp, OperationFolder *folder) {
  SmallVector<Value, 8> viewSizes = getViewSizes(builder, linalgOp);
  AffineMap invertedMap =
      inversePermutation(concatAffineMaps(linalgOp.getIndexingMaps()));
  if (!invertedMap)
    return {};
  return applyMapToValues(builder, linalgOp.getLoc(), invertedMap, viewSizes,
                          folder);
}

/// Specialization to build an scf "for" nest.
template <>
void GenerateLoopNest<scf::ForOp>::doit(
    ArrayRef<Range> loopRanges, ValueRange iterArgInitValues,
    ArrayRef<Attribute> iteratorTypes,
    function_ref<scf::ValueVector(ValueRange, ValueRange)> bodyBuilderFn,
    Optional<LinalgLoopDistributionOptions>) {
  SmallVector<Value, 4> lbs, ubs, steps;
  unpackRanges(loopRanges, lbs, ubs, steps);
  edsc::loopNestBuilder(lbs, ubs, steps, iterArgInitValues, bodyBuilderFn);
}

/// Specialization to build affine "for" nest.
template <>
void GenerateLoopNest<AffineForOp>::doit(
    ArrayRef<Range> loopRanges, ValueRange iterArgInitValues,
    ArrayRef<Attribute> iteratorTypes,
    function_ref<scf::ValueVector(ValueRange, ValueRange)> bodyBuilderFn,
    Optional<LinalgLoopDistributionOptions>) {
  assert(iterArgInitValues.empty() && "unexpected AffineForOp init values");
  SmallVector<Value, 4> lbs, ubs, steps;
  unpackRanges(loopRanges, lbs, ubs, steps);

  // Affine loops require constant steps.
  SmallVector<int64_t, 4> constantSteps;
  constantSteps.reserve(steps.size());
  for (Value v : steps) {
    auto op = v.getDefiningOp<ConstantIndexOp>();
    assert(op && "Affine loops require constant steps");
    constantSteps.push_back(op.getValue());
  }

  auto bodyBuilderWithoutIterArgsFn = [&](ValueRange ivs) {
    bodyBuilderFn(ivs, {});
  };
  edsc::affineLoopNestBuilder(lbs, ubs, constantSteps,
                              bodyBuilderWithoutIterArgsFn);
}

/// Update the `lb`, `ub` and `step` to get per processor `lb`, `ub` and `step`.
static void updateBoundsForCyclicDistribution(OpBuilder &builder, Location loc,
                                              Value procId, Value nprocs,
                                              Value &lb, Value &ub,
                                              Value &step) {
  using edsc::op::operator+;
  using edsc::op::operator*;
  lb = lb + (procId * step);
  step = nprocs * step;
}

/// Generates a loop nest consisting of scf.parallel and scf.for, depending
/// on the `iteratorTypes.` Consecutive parallel loops create a single
/// scf.parallel operation; each sequential loop creates a new scf.for
/// operation. The body of the innermost loop is populated by
/// `bodyBuilderFn` that accepts a range of induction variables for all
/// loops. `ivStorage` is used to store the partial list of induction
/// variables.
// TODO: this function can be made iterative instead. However, it
// will have at most as many recursive calls as nested loops, which rarely
// exceeds 10.
static void
generateParallelLoopNest(ValueRange lbs, ValueRange ubs, ValueRange steps,
                         ArrayRef<Attribute> iteratorTypes,
                         function_ref<void(ValueRange)> bodyBuilderFn,
                         SmallVectorImpl<Value> &ivStorage,
                         ArrayRef<DistributionMethod> distributionMethod = {}) {
  assert(lbs.size() == ubs.size());
  assert(lbs.size() == steps.size());
  assert(lbs.size() == iteratorTypes.size());

  // If there are no (more) loops to be generated, generate the body and be
  // done with it.
  if (iteratorTypes.empty())
    return bodyBuilderFn(ivStorage);

  // Find the outermost parallel loops and drop their types from the list.
  unsigned nLoops = iteratorTypes.size();
  unsigned nOuterPar =
      nLoops - iteratorTypes.drop_while(isParallelIteratorType).size();

  // If there are no outer parallel loops, generate one sequential loop and
  // recurse. Note that we wouldn't have dropped anything from `iteratorTypes`
  // in this case.
  if (nOuterPar == 0) {
    edsc::loopNestBuilder(lbs[0], ubs[0], steps[0], [&](Value iv) {
      ivStorage.push_back(iv);
      generateParallelLoopNest(lbs.drop_front(), ubs.drop_front(),
                               steps.drop_front(), iteratorTypes.drop_front(),
                               bodyBuilderFn, ivStorage, distributionMethod);
    });
    return;
  }
  if (distributionMethod.empty()) {
    // Generate a single parallel loop-nest operation for all outermost
    // parallel loops and recurse.
    edsc::OperationBuilder<scf::ParallelOp>(
        lbs.take_front(nOuterPar), ubs.take_front(nOuterPar),
        steps.take_front(nOuterPar),
        [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange localIvs) {
          edsc::ScopedContext context(nestedBuilder, nestedLoc);
          ivStorage.append(localIvs.begin(), localIvs.end());
          generateParallelLoopNest(
              lbs.drop_front(nOuterPar), ubs.drop_front(nOuterPar),
              steps.drop_front(nOuterPar), iteratorTypes.drop_front(nOuterPar),
              bodyBuilderFn, ivStorage,
              (distributionMethod.size() < nOuterPar)
                  ? ArrayRef<DistributionMethod>()
                  : distributionMethod.drop_front(nOuterPar));
        });
    return;
  }

  // Process all consecutive similarly distributed loops simultaneously.
  DistributionMethod methodToUse = distributionMethod[0];
  unsigned numProcessed = 1;
  for (unsigned i = 1; i < nOuterPar && i < distributionMethod.size(); ++i) {
    if (distributionMethod[i] != methodToUse)
      break;
    numProcessed++;
  }

  switch (methodToUse) {
  case DistributionMethod::Cyclic: {
    // Generate a single parallel loop-nest operation for all outermost
    // parallel loops and recurse.
    edsc::OperationBuilder<scf::ParallelOp>(
        lbs.take_front(numProcessed), ubs.take_front(numProcessed),
        steps.take_front(numProcessed),
        [&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange localIvs) {
          edsc::ScopedContext context(nestedBuilder, nestedLoc);
          ivStorage.append(localIvs.begin(), localIvs.end());
          generateParallelLoopNest(
              lbs.drop_front(numProcessed), ubs.drop_front(numProcessed),
              steps.drop_front(numProcessed),
              iteratorTypes.drop_front(numProcessed), bodyBuilderFn, ivStorage,
              (distributionMethod.size() < numProcessed)
                  ? ArrayRef<DistributionMethod>()
                  : distributionMethod.drop_front(numProcessed));
        });
    return;
  }
  case DistributionMethod::CyclicNumProcsGeNumIters: {
    // Check (for the processed loops) that the iteration is in-bounds.
    using edsc::op::slt;
    using edsc::op::operator&&;
    Value cond = slt(lbs[0], ubs[0]);
    for (unsigned i = 1; i < numProcessed; ++i)
      cond = cond && slt(lbs[i], ubs[i]);
    ivStorage.append(lbs.begin(), std::next(lbs.begin(), numProcessed));
    edsc::conditionBuilder(cond, [&]() {
      generateParallelLoopNest(
          lbs.drop_front(numProcessed), ubs.drop_front(numProcessed),
          steps.drop_front(numProcessed),
          iteratorTypes.drop_front(numProcessed), bodyBuilderFn, ivStorage,
          distributionMethod.drop_front(numProcessed));
    });
    return;
  }
  case DistributionMethod::CyclicNumProcsEqNumIters:
    // No check/loops needed here. Set the `%iv` to be the `%lb` and proceed
    // with inner loop generation.
    ivStorage.append(lbs.begin(), std::next(lbs.begin(), numProcessed));
    generateParallelLoopNest(
        lbs.drop_front(numProcessed), ubs.drop_front(numProcessed),
        steps.drop_front(numProcessed), iteratorTypes.drop_front(numProcessed),
        bodyBuilderFn, ivStorage, distributionMethod.drop_front(numProcessed));
    return;
  }
}

/// Specialization for generating a mix of parallel and sequential scf loops.
template <>
void GenerateLoopNest<scf::ParallelOp>::doit(
    ArrayRef<Range> loopRanges, ValueRange iterArgInitValues,
    ArrayRef<Attribute> iteratorTypes,
    function_ref<scf::ValueVector(ValueRange, ValueRange)> bodyBuilderFn,
    Optional<LinalgLoopDistributionOptions> distributionOptions) {
  assert(iterArgInitValues.empty() && "unexpected ParallelOp init values");
  // This function may be passed more iterator types than ranges.
  assert(iteratorTypes.size() >= loopRanges.size() &&
         "expected iterator type for all ranges");
  iteratorTypes = iteratorTypes.take_front(loopRanges.size());
  SmallVector<Value, 8> lbsStorage, ubsStorage, stepsStorage, ivs;
  unsigned numLoops = iteratorTypes.size();
  ivs.reserve(numLoops);
  lbsStorage.reserve(numLoops);
  ubsStorage.reserve(numLoops);
  stepsStorage.reserve(numLoops);

  // Get the loop lb, ub, and step.
  unpackRanges(loopRanges, lbsStorage, ubsStorage, stepsStorage);

  // Modify the lb, ub, and step based on the distribution options.
  SmallVector<DistributionMethod, 0> distributionMethod;
  if (distributionOptions) {
    auto &options = distributionOptions.getValue();
    OpBuilder &builder = edsc::ScopedContext::getBuilderRef();
    Location loc = edsc::ScopedContext::getLocation();
    distributionMethod.assign(distributionOptions->distributionMethod.begin(),
                              distributionOptions->distributionMethod.end());
    SmallVector<Range, 2> parallelLoopRanges;
    for (auto iteratorType : enumerate(iteratorTypes)) {
      if (isParallelIteratorType(iteratorType.value()))
        parallelLoopRanges.push_back(loopRanges[iteratorType.index()]);
    }
    if (distributionMethod.size() < parallelLoopRanges.size())
      parallelLoopRanges.resize(distributionMethod.size());
    SmallVector<ProcInfo, 2> procInfo =
        options.procInfo(builder, loc, parallelLoopRanges);
    unsigned index = 0;
    for (auto iteratorType : enumerate(iteratorTypes)) {
      if (index >= procInfo.size())
        break;
      if (isParallelIteratorType(iteratorType.value())) {
        unsigned i = iteratorType.index();
        updateBoundsForCyclicDistribution(builder, loc, procInfo[index].procId,
                                          procInfo[index].nprocs, lbsStorage[i],
                                          ubsStorage[i], stepsStorage[i]);
        index++;
      }
    }
  }
  ValueRange lbs(lbsStorage), ubs(ubsStorage), steps(stepsStorage);
  auto bodyBuilderWithoutIterArgsFn = [&](ValueRange ivs) {
    bodyBuilderFn(ivs, {});
  };
  generateParallelLoopNest(lbs, ubs, steps, iteratorTypes,
                           bodyBuilderWithoutIterArgsFn, ivs,
                           distributionMethod);

  assert(ivs.size() == iteratorTypes.size() && "did not generate enough loops");
}

} // namespace linalg
} // namespace mlir