GPUDialect.cpp 30.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
//===- GPUDialect.cpp - MLIR Dialect for GPU Kernels implementation -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the GPU kernel-related dialect and its operations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/GPU/GPUDialect.h"

#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/FunctionImplementation.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"

using namespace mlir;
using namespace mlir::gpu;

//===----------------------------------------------------------------------===//
// GPUDialect
//===----------------------------------------------------------------------===//

bool GPUDialect::isKernel(Operation *op) {
  UnitAttr isKernelAttr = op->getAttrOfType<UnitAttr>(getKernelFuncAttrName());
  return static_cast<bool>(isKernelAttr);
}

void GPUDialect::initialize() {
  addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/GPU/GPUOps.cpp.inc"
      >();
}

LogicalResult GPUDialect::verifyOperationAttribute(Operation *op,
                                                   NamedAttribute attr) {
  if (!attr.second.isa<UnitAttr>() ||
      attr.first != getContainerModuleAttrName())
    return success();

  auto module = dyn_cast<ModuleOp>(op);
  if (!module)
    return op->emitError("expected '")
           << getContainerModuleAttrName() << "' attribute to be attached to '"
           << ModuleOp::getOperationName() << '\'';

  auto walkResult = module.walk([&module](LaunchFuncOp launchOp) -> WalkResult {
    // Ignore launches that are nested more or less deep than functions in the
    // module we are currently checking.
    if (!launchOp.getParentOp() ||
        launchOp.getParentOp()->getParentOp() != module)
      return success();

    // Ignore launch ops with missing attributes here. The errors will be
    // reported by the verifiers of those ops.
    if (!launchOp.getAttrOfType<SymbolRefAttr>(
            LaunchFuncOp::getKernelAttrName()))
      return success();

    // Check that `launch_func` refers to a well-formed GPU kernel module.
    StringRef kernelModuleName = launchOp.getKernelModuleName();
    auto kernelModule = module.lookupSymbol<GPUModuleOp>(kernelModuleName);
    if (!kernelModule)
      return launchOp.emitOpError()
             << "kernel module '" << kernelModuleName << "' is undefined";

    // Check that `launch_func` refers to a well-formed kernel function.
    Operation *kernelFunc = module.lookupSymbol(launchOp.kernel());
    auto kernelGPUFunction = dyn_cast_or_null<gpu::GPUFuncOp>(kernelFunc);
    auto kernelLLVMFunction = dyn_cast_or_null<LLVM::LLVMFuncOp>(kernelFunc);
    if (!kernelGPUFunction && !kernelLLVMFunction)
      return launchOp.emitOpError("kernel function '")
             << launchOp.kernel() << "' is undefined";
    if (!kernelFunc->getAttrOfType<mlir::UnitAttr>(
            GPUDialect::getKernelFuncAttrName()))
      return launchOp.emitOpError("kernel function is missing the '")
             << GPUDialect::getKernelFuncAttrName() << "' attribute";

    // TODO: if the kernel function has been converted to
    // the LLVM dialect but the caller hasn't (which happens during the
    // separate compilation), do not check type correspondence as it would
    // require the verifier to be aware of the LLVM type conversion.
    if (kernelLLVMFunction)
      return success();

    unsigned actualNumArguments = launchOp.getNumKernelOperands();
    unsigned expectedNumArguments = kernelGPUFunction.getNumArguments();
    if (expectedNumArguments != actualNumArguments)
      return launchOp.emitOpError("got ")
             << actualNumArguments << " kernel operands but expected "
             << expectedNumArguments;

    auto functionType = kernelGPUFunction.getType();
    for (unsigned i = 0; i < expectedNumArguments; ++i) {
      if (launchOp.getKernelOperand(i).getType() != functionType.getInput(i)) {
        return launchOp.emitOpError("type of function argument ")
               << i << " does not match";
      }
    }

    return success();
  });

  return walkResult.wasInterrupted() ? failure() : success();
}

template <typename T> static LogicalResult verifyIndexOp(T op) {
  auto dimension = op.dimension();
  if (dimension != "x" && dimension != "y" && dimension != "z")
    return op.emitError("dimension \"") << dimension << "\" is invalid";
  return success();
}

static LogicalResult verifyAllReduce(gpu::AllReduceOp allReduce) {
  if (allReduce.body().empty() != allReduce.op().hasValue())
    return allReduce.emitError(
        "expected either an op attribute or a non-empty body");
  if (!allReduce.body().empty()) {
    if (allReduce.body().getNumArguments() != 2)
      return allReduce.emitError("expected two region arguments");
    for (auto argument : allReduce.body().getArguments()) {
      if (argument.getType() != allReduce.getType())
        return allReduce.emitError("incorrect region argument type");
    }
    unsigned yieldCount = 0;
    for (Block &block : allReduce.body()) {
      if (auto yield = dyn_cast<gpu::YieldOp>(block.getTerminator())) {
        if (yield.getNumOperands() != 1)
          return allReduce.emitError("expected one gpu.yield operand");
        if (yield.getOperand(0).getType() != allReduce.getType())
          return allReduce.emitError("incorrect gpu.yield type");
        ++yieldCount;
      }
    }
    if (yieldCount == 0)
      return allReduce.emitError("expected gpu.yield op in region");
  } else {
    StringRef opName = *allReduce.op();
    if ((opName == "and" || opName == "or" || opName == "xor") &&
        !allReduce.getType().isa<IntegerType>()) {
      return allReduce.emitError()
             << '`' << opName << '`'
             << " accumulator is only compatible with Integer type";
    }
  }
  return success();
}

static LogicalResult verifyShuffleOp(gpu::ShuffleOp shuffleOp) {
  auto type = shuffleOp.value().getType();
  if (shuffleOp.result().getType() != type) {
    return shuffleOp.emitOpError()
           << "requires the same type for value operand and result";
  }
  if (!type.isSignlessIntOrFloat() || type.getIntOrFloatBitWidth() != 32) {
    return shuffleOp.emitOpError()
           << "requires value operand type to be f32 or i32";
  }
  return success();
}

static void printShuffleOp(OpAsmPrinter &p, ShuffleOp op) {
  p << ShuffleOp::getOperationName() << ' ' << op.getOperands() << ' '
    << op.mode() << " : " << op.value().getType();
}

static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &state) {
  SmallVector<OpAsmParser::OperandType, 3> operandInfo;
  if (parser.parseOperandList(operandInfo, 3))
    return failure();

  StringRef mode;
  if (parser.parseKeyword(&mode))
    return failure();
  state.addAttribute("mode", parser.getBuilder().getStringAttr(mode));

  Type valueType;
  Type int32Type = parser.getBuilder().getIntegerType(32);
  Type int1Type = parser.getBuilder().getI1Type();
  if (parser.parseColonType(valueType) ||
      parser.resolveOperands(operandInfo, {valueType, int32Type, int32Type},
                             parser.getCurrentLocation(), state.operands) ||
      parser.addTypesToList({valueType, int1Type}, state.types))
    return failure();
  return success();
}

//===----------------------------------------------------------------------===//
// LaunchOp
//===----------------------------------------------------------------------===//

void LaunchOp::build(OpBuilder &builder, OperationState &result,
                     Value gridSizeX, Value gridSizeY, Value gridSizeZ,
                     Value blockSizeX, Value blockSizeY, Value blockSizeZ) {
  // Add grid and block sizes as op operands, followed by the data operands.
  result.addOperands(
      {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ});

  // Create a kernel body region with kNumConfigRegionAttributes + N arguments,
  // where the first kNumConfigRegionAttributes arguments have `index` type and
  // the rest have the same types as the data operands.
  Region *kernelRegion = result.addRegion();
  Block *body = new Block();
  body->addArguments(
      std::vector<Type>(kNumConfigRegionAttributes, builder.getIndexType()));
  kernelRegion->push_back(body);
}

KernelDim3 LaunchOp::getBlockIds() {
  assert(!body().empty() && "LaunchOp body must not be empty.");
  auto args = body().getArguments();
  return KernelDim3{args[0], args[1], args[2]};
}

KernelDim3 LaunchOp::getThreadIds() {
  assert(!body().empty() && "LaunchOp body must not be empty.");
  auto args = body().getArguments();
  return KernelDim3{args[3], args[4], args[5]};
}

KernelDim3 LaunchOp::getGridSize() {
  assert(!body().empty() && "LaunchOp body must not be empty.");
  auto args = body().getArguments();
  return KernelDim3{args[6], args[7], args[8]};
}

KernelDim3 LaunchOp::getBlockSize() {
  assert(!body().empty() && "LaunchOp body must not be empty.");
  auto args = body().getArguments();
  return KernelDim3{args[9], args[10], args[11]};
}

KernelDim3 LaunchOp::getGridSizeOperandValues() {
  return KernelDim3{getOperand(0), getOperand(1), getOperand(2)};
}

KernelDim3 LaunchOp::getBlockSizeOperandValues() {
  return KernelDim3{getOperand(3), getOperand(4), getOperand(5)};
}

static LogicalResult verify(LaunchOp op) {
  // Kernel launch takes kNumConfigOperands leading operands for grid/block
  // sizes and transforms them into kNumConfigRegionAttributes region arguments
  // for block/thread identifiers and grid/block sizes.
  if (!op.body().empty()) {
    if (op.body().getNumArguments() !=
        LaunchOp::kNumConfigOperands + op.getNumOperands())
      return op.emitOpError("unexpected number of region arguments");
  }

  // Block terminators without successors are expected to exit the kernel region
  // and must be `gpu.terminator`.
  for (Block &block : op.body()) {
    if (block.empty())
      continue;
    if (block.back().getNumSuccessors() != 0)
      continue;
    if (!isa<gpu::TerminatorOp>(&block.back())) {
      return block.back()
          .emitError()
          .append("expected '", gpu::TerminatorOp::getOperationName(),
                  "' or a terminator with successors")
          .attachNote(op.getLoc())
          .append("in '", LaunchOp::getOperationName(), "' body region");
    }
  }

  return success();
}

// Pretty-print the kernel grid/block size assignment as
//   (%iter-x, %iter-y, %iter-z) in
//   (%size-x = %ssa-use, %size-y = %ssa-use, %size-z = %ssa-use)
// where %size-* and %iter-* will correspond to the body region arguments.
static void printSizeAssignment(OpAsmPrinter &p, KernelDim3 size,
                                ValueRange operands, KernelDim3 ids) {
  p << '(' << ids.x << ", " << ids.y << ", " << ids.z << ") in (";
  p << size.x << " = " << operands[0] << ", ";
  p << size.y << " = " << operands[1] << ", ";
  p << size.z << " = " << operands[2] << ')';
}

static void printLaunchOp(OpAsmPrinter &p, LaunchOp op) {
  ValueRange operands = op.getOperands();

  // Print the launch configuration.
  p << LaunchOp::getOperationName() << ' ' << op.getBlocksKeyword();
  printSizeAssignment(p, op.getGridSize(), operands.take_front(3),
                      op.getBlockIds());
  p << ' ' << op.getThreadsKeyword();
  printSizeAssignment(p, op.getBlockSize(), operands.slice(3, 3),
                      op.getThreadIds());

  p.printRegion(op.body(), /*printEntryBlockArgs=*/false);
  p.printOptionalAttrDict(op.getAttrs());
}

// Parse the size assignment blocks for blocks and threads.  These have the form
//   (%region_arg, %region_arg, %region_arg) in
//   (%region_arg = %operand, %region_arg = %operand, %region_arg = %operand)
// where %region_arg are percent-identifiers for the region arguments to be
// introduced further (SSA defs), and %operand are percent-identifiers for the
// SSA value uses.
static ParseResult
parseSizeAssignment(OpAsmParser &parser,
                    MutableArrayRef<OpAsmParser::OperandType> sizes,
                    MutableArrayRef<OpAsmParser::OperandType> regionSizes,
                    MutableArrayRef<OpAsmParser::OperandType> indices) {
  assert(indices.size() == 3 && "space for three indices expected");
  SmallVector<OpAsmParser::OperandType, 3> args;
  if (parser.parseRegionArgumentList(args, /*requiredOperandCount=*/3,
                                     OpAsmParser::Delimiter::Paren) ||
      parser.parseKeyword("in") || parser.parseLParen())
    return failure();
  std::move(args.begin(), args.end(), indices.begin());

  for (int i = 0; i < 3; ++i) {
    if (i != 0 && parser.parseComma())
      return failure();
    if (parser.parseRegionArgument(regionSizes[i]) || parser.parseEqual() ||
        parser.parseOperand(sizes[i]))
      return failure();
  }

  return parser.parseRParen();
}

// Parses a Launch operation.
// operation ::= `gpu.launch` `blocks` `(` ssa-id-list `)` `in` ssa-reassignment
//                           `threads` `(` ssa-id-list `)` `in` ssa-reassignment
//                            region attr-dict?
// ssa-reassignment ::= `(` ssa-id `=` ssa-use (`,` ssa-id `=` ssa-use)* `)`
static ParseResult parseLaunchOp(OpAsmParser &parser, OperationState &result) {
  // Sizes of the grid and block.
  SmallVector<OpAsmParser::OperandType, LaunchOp::kNumConfigOperands> sizes(
      LaunchOp::kNumConfigOperands);
  MutableArrayRef<OpAsmParser::OperandType> sizesRef(sizes);

  // Actual (data) operands passed to the kernel.
  SmallVector<OpAsmParser::OperandType, 4> dataOperands;

  // Region arguments to be created.
  SmallVector<OpAsmParser::OperandType, 16> regionArgs(
      LaunchOp::kNumConfigRegionAttributes);
  MutableArrayRef<OpAsmParser::OperandType> regionArgsRef(regionArgs);

  // Parse the size assignment segments: the first segment assigns grid sizes
  // and defines values for block identifiers; the second segment assigns block
  // sizes and defines values for thread identifiers.  In the region argument
  // list, identifiers precede sizes, and block-related values precede
  // thread-related values.
  if (parser.parseKeyword(LaunchOp::getBlocksKeyword().data()) ||
      parseSizeAssignment(parser, sizesRef.take_front(3),
                          regionArgsRef.slice(6, 3),
                          regionArgsRef.slice(0, 3)) ||
      parser.parseKeyword(LaunchOp::getThreadsKeyword().data()) ||
      parseSizeAssignment(parser, sizesRef.drop_front(3),
                          regionArgsRef.slice(9, 3),
                          regionArgsRef.slice(3, 3)) ||
      parser.resolveOperands(sizes, parser.getBuilder().getIndexType(),
                             result.operands))
    return failure();

  // Introduce the body region and parse it. The region has
  // kNumConfigRegionAttributes arguments that correspond to
  // block/thread identifiers and grid/block sizes, all of the `index` type.
  Type index = parser.getBuilder().getIndexType();
  SmallVector<Type, LaunchOp::kNumConfigRegionAttributes> dataTypes(
      LaunchOp::kNumConfigRegionAttributes, index);
  Region *body = result.addRegion();
  return failure(parser.parseRegion(*body, regionArgs, dataTypes) ||
                 parser.parseOptionalAttrDict(result.attributes));
}

//===----------------------------------------------------------------------===//
// LaunchFuncOp
//===----------------------------------------------------------------------===//

void LaunchFuncOp::build(OpBuilder &builder, OperationState &result,
                         GPUFuncOp kernelFunc, Value gridSizeX, Value gridSizeY,
                         Value gridSizeZ, Value blockSizeX, Value blockSizeY,
                         Value blockSizeZ, ValueRange kernelOperands) {
  // Add grid and block sizes as op operands, followed by the data operands.
  result.addOperands(
      {gridSizeX, gridSizeY, gridSizeZ, blockSizeX, blockSizeY, blockSizeZ});
  result.addOperands(kernelOperands);
  auto kernelModule = kernelFunc.getParentOfType<GPUModuleOp>();
  auto kernelSymbol = builder.getSymbolRefAttr(
      kernelModule.getName(), {builder.getSymbolRefAttr(kernelFunc.getName())});
  result.addAttribute(getKernelAttrName(), kernelSymbol);
}

void LaunchFuncOp::build(OpBuilder &builder, OperationState &result,
                         GPUFuncOp kernelFunc, KernelDim3 gridSize,
                         KernelDim3 blockSize, ValueRange kernelOperands) {
  build(builder, result, kernelFunc, gridSize.x, gridSize.y, gridSize.z,
        blockSize.x, blockSize.y, blockSize.z, kernelOperands);
}

SymbolRefAttr LaunchFuncOp::kernel() {
  return getAttrOfType<SymbolRefAttr>(getKernelAttrName());
}

unsigned LaunchFuncOp::getNumKernelOperands() {
  return getNumOperands() - kNumConfigOperands;
}

StringRef LaunchFuncOp::getKernelModuleName() {
  return kernel().getRootReference();
}

StringRef LaunchFuncOp::getKernelName() { return kernel().getLeafReference(); }

Value LaunchFuncOp::getKernelOperand(unsigned i) {
  return getOperation()->getOperand(i + kNumConfigOperands);
}

KernelDim3 LaunchFuncOp::getGridSizeOperandValues() {
  return KernelDim3{getOperand(0), getOperand(1), getOperand(2)};
}

KernelDim3 LaunchFuncOp::getBlockSizeOperandValues() {
  return KernelDim3{getOperand(3), getOperand(4), getOperand(5)};
}

static LogicalResult verify(LaunchFuncOp op) {
  auto module = op.getParentOfType<ModuleOp>();
  if (!module)
    return op.emitOpError("expected to belong to a module");

  if (!module.getAttrOfType<UnitAttr>(GPUDialect::getContainerModuleAttrName()))
    return op.emitOpError(
        "expected the closest surrounding module to have the '" +
        GPUDialect::getContainerModuleAttrName() + "' attribute");

  auto kernelAttr = op.getAttrOfType<SymbolRefAttr>(op.getKernelAttrName());
  if (!kernelAttr)
    return op.emitOpError("symbol reference attribute '" +
                          op.getKernelAttrName() + "' must be specified");

  return success();
}

//===----------------------------------------------------------------------===//
// GPUFuncOp
//===----------------------------------------------------------------------===//

/// Adds a new block argument that corresponds to buffers located in
/// workgroup memory.
BlockArgument GPUFuncOp::addWorkgroupAttribution(Type type) {
  auto attrName = getNumWorkgroupAttributionsAttrName();
  auto attr = getAttrOfType<IntegerAttr>(attrName);
  setAttr(attrName, IntegerAttr::get(attr.getType(), attr.getValue() + 1));
  return getBody().insertArgument(getType().getNumInputs() + attr.getInt(),
                                  type);
}

/// Adds a new block argument that corresponds to buffers located in
/// private memory.
BlockArgument GPUFuncOp::addPrivateAttribution(Type type) {
  // Buffers on the private memory always come after buffers on the workgroup
  // memory.
  return getBody().addArgument(type);
}

void GPUFuncOp::build(OpBuilder &builder, OperationState &result,
                      StringRef name, FunctionType type,
                      TypeRange workgroupAttributions,
                      TypeRange privateAttributions,
                      ArrayRef<NamedAttribute> attrs) {
  result.addAttribute(SymbolTable::getSymbolAttrName(),
                      builder.getStringAttr(name));
  result.addAttribute(getTypeAttrName(), TypeAttr::get(type));
  result.addAttribute(getNumWorkgroupAttributionsAttrName(),
                      builder.getI64IntegerAttr(workgroupAttributions.size()));
  result.addAttributes(attrs);
  Region *body = result.addRegion();
  Block *entryBlock = new Block;
  entryBlock->addArguments(type.getInputs());
  entryBlock->addArguments(workgroupAttributions);
  entryBlock->addArguments(privateAttributions);

  body->getBlocks().push_back(entryBlock);
}

/// Parses a GPU function memory attribution.
///
/// memory-attribution ::= (`workgroup` `(` ssa-id-and-type-list `)`)?
///                        (`private` `(` ssa-id-and-type-list `)`)?
///
/// Note that this function parses only one of the two similar parts, with the
/// keyword provided as argument.
static ParseResult
parseAttributions(OpAsmParser &parser, StringRef keyword,
                  SmallVectorImpl<OpAsmParser::OperandType> &args,
                  SmallVectorImpl<Type> &argTypes) {
  // If we could not parse the keyword, just assume empty list and succeed.
  if (failed(parser.parseOptionalKeyword(keyword)))
    return success();

  if (failed(parser.parseLParen()))
    return failure();

  // Early exit for an empty list.
  if (succeeded(parser.parseOptionalRParen()))
    return success();

  do {
    OpAsmParser::OperandType arg;
    Type type;

    if (parser.parseRegionArgument(arg) || parser.parseColonType(type))
      return failure();

    args.push_back(arg);
    argTypes.push_back(type);
  } while (succeeded(parser.parseOptionalComma()));

  return parser.parseRParen();
}

/// Parses a GPU function.
///
/// <operation> ::= `gpu.func` symbol-ref-id `(` argument-list `)`
///                 (`->` function-result-list)? memory-attribution `kernel`?
///                 function-attributes? region
static ParseResult parseGPUFuncOp(OpAsmParser &parser, OperationState &result) {
  SmallVector<OpAsmParser::OperandType, 8> entryArgs;
  SmallVector<NamedAttrList, 1> argAttrs;
  SmallVector<NamedAttrList, 1> resultAttrs;
  SmallVector<Type, 8> argTypes;
  SmallVector<Type, 4> resultTypes;
  bool isVariadic;

  // Parse the function name.
  StringAttr nameAttr;
  if (parser.parseSymbolName(nameAttr, ::mlir::SymbolTable::getSymbolAttrName(),
                             result.attributes))
    return failure();

  auto signatureLocation = parser.getCurrentLocation();
  if (failed(impl::parseFunctionSignature(
          parser, /*allowVariadic=*/false, entryArgs, argTypes, argAttrs,
          isVariadic, resultTypes, resultAttrs)))
    return failure();

  if (entryArgs.empty() && !argTypes.empty())
    return parser.emitError(signatureLocation)
           << "gpu.func requires named arguments";

  // Construct the function type. More types will be added to the region, but
  // not to the function type.
  Builder &builder = parser.getBuilder();
  auto type = builder.getFunctionType(argTypes, resultTypes);
  result.addAttribute(GPUFuncOp::getTypeAttrName(), TypeAttr::get(type));

  // Parse workgroup memory attributions.
  if (failed(parseAttributions(parser, GPUFuncOp::getWorkgroupKeyword(),
                               entryArgs, argTypes)))
    return failure();

  // Store the number of operands we just parsed as the number of workgroup
  // memory attributions.
  unsigned numWorkgroupAttrs = argTypes.size() - type.getNumInputs();
  result.addAttribute(GPUFuncOp::getNumWorkgroupAttributionsAttrName(),
                      builder.getI64IntegerAttr(numWorkgroupAttrs));

  // Parse private memory attributions.
  if (failed(parseAttributions(parser, GPUFuncOp::getPrivateKeyword(),
                               entryArgs, argTypes)))
    return failure();

  // Parse the kernel attribute if present.
  if (succeeded(parser.parseOptionalKeyword(GPUFuncOp::getKernelKeyword())))
    result.addAttribute(GPUDialect::getKernelFuncAttrName(),
                        builder.getUnitAttr());

  // Parse attributes.
  if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
    return failure();
  mlir::impl::addArgAndResultAttrs(builder, result, argAttrs, resultAttrs);

  // Parse the region. If no argument names were provided, take all names
  // (including those of attributions) from the entry block.
  auto *body = result.addRegion();
  return parser.parseRegion(*body, entryArgs, argTypes);
}

static void printAttributions(OpAsmPrinter &p, StringRef keyword,
                              ArrayRef<BlockArgument> values) {
  if (values.empty())
    return;

  p << ' ' << keyword << '(';
  llvm::interleaveComma(
      values, p, [&p](BlockArgument v) { p << v << " : " << v.getType(); });
  p << ')';
}

/// Prints a GPU Func op.
static void printGPUFuncOp(OpAsmPrinter &p, GPUFuncOp op) {
  p << GPUFuncOp::getOperationName() << ' ';
  p.printSymbolName(op.getName());

  FunctionType type = op.getType();
  impl::printFunctionSignature(p, op.getOperation(), type.getInputs(),
                               /*isVariadic=*/false, type.getResults());

  printAttributions(p, op.getWorkgroupKeyword(), op.getWorkgroupAttributions());
  printAttributions(p, op.getPrivateKeyword(), op.getPrivateAttributions());
  if (op.isKernel())
    p << ' ' << op.getKernelKeyword();

  impl::printFunctionAttributes(p, op.getOperation(), type.getNumInputs(),
                                type.getNumResults(),
                                {op.getNumWorkgroupAttributionsAttrName(),
                                 GPUDialect::getKernelFuncAttrName()});
  p.printRegion(op.getBody(), /*printEntryBlockArgs=*/false);
}

void GPUFuncOp::setType(FunctionType newType) {
  auto oldType = getType();
  assert(newType.getNumResults() == oldType.getNumResults() &&
         "unimplemented: changes to the number of results");

  SmallVector<char, 16> nameBuf;
  for (int i = newType.getNumInputs(), e = oldType.getNumInputs(); i < e; i++)
    removeAttr(getArgAttrName(i, nameBuf));

  setAttr(getTypeAttrName(), TypeAttr::get(newType));
}

/// Hook for FunctionLike verifier.
LogicalResult GPUFuncOp::verifyType() {
  Type type = getTypeAttr().getValue();
  if (!type.isa<FunctionType>())
    return emitOpError("requires '" + getTypeAttrName() +
                       "' attribute of function type");

  if (isKernel() && getType().getNumResults() != 0)
    return emitOpError() << "expected void return type for kernel function";

  return success();
}

static LogicalResult verifyAttributions(Operation *op,
                                        ArrayRef<BlockArgument> attributions,
                                        unsigned memorySpace) {
  for (Value v : attributions) {
    auto type = v.getType().dyn_cast<MemRefType>();
    if (!type)
      return op->emitOpError() << "expected memref type in attribution";

    if (type.getMemorySpace() != memorySpace) {
      return op->emitOpError()
             << "expected memory space " << memorySpace << " in attribution";
    }
  }
  return success();
}

/// Verifies the body of the function.
LogicalResult GPUFuncOp::verifyBody() {
  unsigned numFuncArguments = getNumArguments();
  unsigned numWorkgroupAttributions = getNumWorkgroupAttributions();
  unsigned numBlockArguments = front().getNumArguments();
  if (numBlockArguments < numFuncArguments + numWorkgroupAttributions)
    return emitOpError() << "expected at least "
                         << numFuncArguments + numWorkgroupAttributions
                         << " arguments to body region";

  ArrayRef<Type> funcArgTypes = getType().getInputs();
  for (unsigned i = 0; i < numFuncArguments; ++i) {
    Type blockArgType = front().getArgument(i).getType();
    if (funcArgTypes[i] != blockArgType)
      return emitOpError() << "expected body region argument #" << i
                           << " to be of type " << funcArgTypes[i] << ", got "
                           << blockArgType;
  }

  if (failed(verifyAttributions(getOperation(), getWorkgroupAttributions(),
                                GPUDialect::getWorkgroupAddressSpace())) ||
      failed(verifyAttributions(getOperation(), getPrivateAttributions(),
                                GPUDialect::getPrivateAddressSpace())))
    return failure();

  return success();
}

//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//

static ParseResult parseReturnOp(OpAsmParser &parser, OperationState &result) {
  llvm::SmallVector<OpAsmParser::OperandType, 4> operands;
  llvm::SmallVector<Type, 4> types;
  if (parser.parseOperandList(operands) ||
      parser.parseOptionalColonTypeList(types) ||
      parser.resolveOperands(operands, types, parser.getCurrentLocation(),
                             result.operands))
    return failure();

  return success();
}

static LogicalResult verify(gpu::ReturnOp returnOp) {
  GPUFuncOp function = returnOp.getParentOfType<GPUFuncOp>();

  FunctionType funType = function.getType();

  if (funType.getNumResults() != returnOp.operands().size())
    return returnOp.emitOpError()
        .append("expected ", funType.getNumResults(), " result operands")
        .attachNote(function.getLoc())
        .append("return type declared here");

  for (auto pair : llvm::enumerate(
           llvm::zip(function.getType().getResults(), returnOp.operands()))) {
    Type type;
    Value operand;
    std::tie(type, operand) = pair.value();
    if (type != operand.getType())
      return returnOp.emitOpError() << "unexpected type `" << operand.getType()
                                    << "' for operand #" << pair.index();
  }
  return success();
}

//===----------------------------------------------------------------------===//
// GPUModuleOp
//===----------------------------------------------------------------------===//

void GPUModuleOp::build(OpBuilder &builder, OperationState &result,
                        StringRef name) {
  ensureTerminator(*result.addRegion(), builder, result.location);
  result.attributes.push_back(builder.getNamedAttr(
      ::mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)));
}

static ParseResult parseGPUModuleOp(OpAsmParser &parser,
                                    OperationState &result) {
  StringAttr nameAttr;
  if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(),
                             result.attributes))
    return failure();

  // If module attributes are present, parse them.
  if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
    return failure();

  // Parse the module body.
  auto *body = result.addRegion();
  if (parser.parseRegion(*body, None, None))
    return failure();

  // Ensure that this module has a valid terminator.
  GPUModuleOp::ensureTerminator(*body, parser.getBuilder(), result.location);
  return success();
}

static void print(OpAsmPrinter &p, GPUModuleOp op) {
  p << op.getOperationName() << ' ';
  p.printSymbolName(op.getName());
  p.printOptionalAttrDictWithKeyword(op.getAttrs(),
                                     {SymbolTable::getSymbolAttrName()});
  p.printRegion(op.getOperation()->getRegion(0), /*printEntryBlockArgs=*/false,
                /*printBlockTerminators=*/false);
}

#define GET_OP_CLASSES
#include "mlir/Dialect/GPU/GPUOps.cpp.inc"