Utils.cpp 41.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
//===- Utils.cpp ---- Misc utilities for analysis -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous analysis routines for non-loop IR
// structures.
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/Utils.h"

#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/IntegerSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "analysis-utils"

using namespace mlir;

using llvm::SmallDenseMap;

/// Populates 'loops' with IVs of the loops surrounding 'op' ordered from
/// the outermost 'affine.for' operation to the innermost one.
void mlir::getLoopIVs(Operation &op, SmallVectorImpl<AffineForOp> *loops) {
  auto *currOp = op.getParentOp();
  AffineForOp currAffineForOp;
  // Traverse up the hierarchy collecting all 'affine.for' operation while
  // skipping over 'affine.if' operations.
  while (currOp && ((currAffineForOp = dyn_cast<AffineForOp>(currOp)) ||
                    isa<AffineIfOp>(currOp))) {
    if (currAffineForOp)
      loops->push_back(currAffineForOp);
    currOp = currOp->getParentOp();
  }
  std::reverse(loops->begin(), loops->end());
}

/// Populates 'ops' with IVs of the loops surrounding `op`, along with
/// `affine.if` operations interleaved between these loops, ordered from the
/// outermost `affine.for` operation to the innermost one.
void mlir::getEnclosingAffineForAndIfOps(Operation &op,
                                         SmallVectorImpl<Operation *> *ops) {
  ops->clear();
  Operation *currOp = op.getParentOp();

  // Traverse up the hierarchy collecting all `affine.for` and `affine.if`
  // operations.
  while (currOp && (isa<AffineIfOp, AffineForOp>(currOp))) {
    ops->push_back(currOp);
    currOp = currOp->getParentOp();
  }
  std::reverse(ops->begin(), ops->end());
}

// Populates 'cst' with FlatAffineConstraints which represent slice bounds.
LogicalResult
ComputationSliceState::getAsConstraints(FlatAffineConstraints *cst) {
  assert(!lbOperands.empty());
  // Adds src 'ivs' as dimension identifiers in 'cst'.
  unsigned numDims = ivs.size();
  // Adds operands (dst ivs and symbols) as symbols in 'cst'.
  unsigned numSymbols = lbOperands[0].size();

  SmallVector<Value, 4> values(ivs);
  // Append 'ivs' then 'operands' to 'values'.
  values.append(lbOperands[0].begin(), lbOperands[0].end());
  cst->reset(numDims, numSymbols, 0, values);

  // Add loop bound constraints for values which are loop IVs and equality
  // constraints for symbols which are constants.
  for (const auto &value : values) {
    assert(cst->containsId(value) && "value expected to be present");
    if (isValidSymbol(value)) {
      // Check if the symbol is a constant.
      if (auto cOp = value.getDefiningOp<ConstantIndexOp>())
        cst->setIdToConstant(value, cOp.getValue());
    } else if (auto loop = getForInductionVarOwner(value)) {
      if (failed(cst->addAffineForOpDomain(loop)))
        return failure();
    }
  }

  // Add slices bounds on 'ivs' using maps 'lbs'/'ubs' with 'lbOperands[0]'
  LogicalResult ret = cst->addSliceBounds(ivs, lbs, ubs, lbOperands[0]);
  assert(succeeded(ret) &&
         "should not fail as we never have semi-affine slice maps");
  (void)ret;
  return success();
}

// Clears state bounds and operand state.
void ComputationSliceState::clearBounds() {
  lbs.clear();
  ubs.clear();
  lbOperands.clear();
  ubOperands.clear();
}

unsigned MemRefRegion::getRank() const {
  return memref.getType().cast<MemRefType>().getRank();
}

Optional<int64_t> MemRefRegion::getConstantBoundingSizeAndShape(
    SmallVectorImpl<int64_t> *shape, std::vector<SmallVector<int64_t, 4>> *lbs,
    SmallVectorImpl<int64_t> *lbDivisors) const {
  auto memRefType = memref.getType().cast<MemRefType>();
  unsigned rank = memRefType.getRank();
  if (shape)
    shape->reserve(rank);

  assert(rank == cst.getNumDimIds() && "inconsistent memref region");

  // Use a copy of the region constraints that has upper/lower bounds for each
  // memref dimension with static size added to guard against potential
  // over-approximation from projection or union bounding box. We may not add
  // this on the region itself since they might just be redundant constraints
  // that will need non-trivials means to eliminate.
  FlatAffineConstraints cstWithShapeBounds(cst);
  for (unsigned r = 0; r < rank; r++) {
    cstWithShapeBounds.addConstantLowerBound(r, 0);
    int64_t dimSize = memRefType.getDimSize(r);
    if (ShapedType::isDynamic(dimSize))
      continue;
    cstWithShapeBounds.addConstantUpperBound(r, dimSize - 1);
  }

  // Find a constant upper bound on the extent of this memref region along each
  // dimension.
  int64_t numElements = 1;
  int64_t diffConstant;
  int64_t lbDivisor;
  for (unsigned d = 0; d < rank; d++) {
    SmallVector<int64_t, 4> lb;
    Optional<int64_t> diff =
        cstWithShapeBounds.getConstantBoundOnDimSize(d, &lb, &lbDivisor);
    if (diff.hasValue()) {
      diffConstant = diff.getValue();
      assert(lbDivisor > 0);
    } else {
      // If no constant bound is found, then it can always be bound by the
      // memref's dim size if the latter has a constant size along this dim.
      auto dimSize = memRefType.getDimSize(d);
      if (dimSize == -1)
        return None;
      diffConstant = dimSize;
      // Lower bound becomes 0.
      lb.resize(cstWithShapeBounds.getNumSymbolIds() + 1, 0);
      lbDivisor = 1;
    }
    numElements *= diffConstant;
    if (lbs) {
      lbs->push_back(lb);
      assert(lbDivisors && "both lbs and lbDivisor or none");
      lbDivisors->push_back(lbDivisor);
    }
    if (shape) {
      shape->push_back(diffConstant);
    }
  }
  return numElements;
}

void MemRefRegion::getLowerAndUpperBound(unsigned pos, AffineMap &lbMap,
                                         AffineMap &ubMap) const {
  assert(pos < cst.getNumDimIds() && "invalid position");
  auto memRefType = memref.getType().cast<MemRefType>();
  unsigned rank = memRefType.getRank();

  assert(rank == cst.getNumDimIds() && "inconsistent memref region");

  auto boundPairs = cst.getLowerAndUpperBound(
      pos, /*offset=*/0, /*num=*/rank, cst.getNumDimAndSymbolIds(),
      /*localExprs=*/{}, memRefType.getContext());
  lbMap = boundPairs.first;
  ubMap = boundPairs.second;
  assert(lbMap && "lower bound for a region must exist");
  assert(ubMap && "upper bound for a region must exist");
  assert(lbMap.getNumInputs() == cst.getNumDimAndSymbolIds() - rank);
  assert(ubMap.getNumInputs() == cst.getNumDimAndSymbolIds() - rank);
}

LogicalResult MemRefRegion::unionBoundingBox(const MemRefRegion &other) {
  assert(memref == other.memref);
  return cst.unionBoundingBox(*other.getConstraints());
}

/// Computes the memory region accessed by this memref with the region
/// represented as constraints symbolic/parametric in 'loopDepth' loops
/// surrounding opInst and any additional Function symbols.
//  For example, the memref region for this load operation at loopDepth = 1 will
//  be as below:
//
//    affine.for %i = 0 to 32 {
//      affine.for %ii = %i to (d0) -> (d0 + 8) (%i) {
//        load %A[%ii]
//      }
//    }
//
// region:  {memref = %A, write = false, {%i <= m0 <= %i + 7} }
// The last field is a 2-d FlatAffineConstraints symbolic in %i.
//
// TODO: extend this to any other memref dereferencing ops
// (dma_start, dma_wait).
LogicalResult MemRefRegion::compute(Operation *op, unsigned loopDepth,
                                    ComputationSliceState *sliceState,
                                    bool addMemRefDimBounds) {
  assert((isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) &&
         "affine read/write op expected");

  MemRefAccess access(op);
  memref = access.memref;
  write = access.isStore();

  unsigned rank = access.getRank();

  LLVM_DEBUG(llvm::dbgs() << "MemRefRegion::compute: " << *op
                          << "depth: " << loopDepth << "\n";);

  // 0-d memrefs.
  if (rank == 0) {
    SmallVector<AffineForOp, 4> ivs;
    getLoopIVs(*op, &ivs);
    assert(loopDepth <= ivs.size() && "invalid 'loopDepth'");
    // The first 'loopDepth' IVs are symbols for this region.
    ivs.resize(loopDepth);
    SmallVector<Value, 4> regionSymbols;
    extractForInductionVars(ivs, &regionSymbols);
    // A 0-d memref has a 0-d region.
    cst.reset(rank, loopDepth, /*numLocals=*/0, regionSymbols);
    return success();
  }

  // Build the constraints for this region.
  AffineValueMap accessValueMap;
  access.getAccessMap(&accessValueMap);
  AffineMap accessMap = accessValueMap.getAffineMap();

  unsigned numDims = accessMap.getNumDims();
  unsigned numSymbols = accessMap.getNumSymbols();
  unsigned numOperands = accessValueMap.getNumOperands();
  // Merge operands with slice operands.
  SmallVector<Value, 4> operands;
  operands.resize(numOperands);
  for (unsigned i = 0; i < numOperands; ++i)
    operands[i] = accessValueMap.getOperand(i);

  if (sliceState != nullptr) {
    operands.reserve(operands.size() + sliceState->lbOperands[0].size());
    // Append slice operands to 'operands' as symbols.
    for (auto extraOperand : sliceState->lbOperands[0]) {
      if (!llvm::is_contained(operands, extraOperand)) {
        operands.push_back(extraOperand);
        numSymbols++;
      }
    }
  }
  // We'll first associate the dims and symbols of the access map to the dims
  // and symbols resp. of cst. This will change below once cst is
  // fully constructed out.
  cst.reset(numDims, numSymbols, 0, operands);

  // Add equality constraints.
  // Add inequalities for loop lower/upper bounds.
  for (unsigned i = 0; i < numDims + numSymbols; ++i) {
    auto operand = operands[i];
    if (auto loop = getForInductionVarOwner(operand)) {
      // Note that cst can now have more dimensions than accessMap if the
      // bounds expressions involve outer loops or other symbols.
      // TODO: rewrite this to use getInstIndexSet; this way
      // conditionals will be handled when the latter supports it.
      if (failed(cst.addAffineForOpDomain(loop)))
        return failure();
    } else {
      // Has to be a valid symbol.
      auto symbol = operand;
      assert(isValidSymbol(symbol));
      // Check if the symbol is a constant.
      if (auto *op = symbol.getDefiningOp()) {
        if (auto constOp = dyn_cast<ConstantIndexOp>(op)) {
          cst.setIdToConstant(symbol, constOp.getValue());
        }
      }
    }
  }

  // Add lower/upper bounds on loop IVs using bounds from 'sliceState'.
  if (sliceState != nullptr) {
    // Add dim and symbol slice operands.
    for (auto operand : sliceState->lbOperands[0]) {
      cst.addInductionVarOrTerminalSymbol(operand);
    }
    // Add upper/lower bounds from 'sliceState' to 'cst'.
    LogicalResult ret =
        cst.addSliceBounds(sliceState->ivs, sliceState->lbs, sliceState->ubs,
                           sliceState->lbOperands[0]);
    assert(succeeded(ret) &&
           "should not fail as we never have semi-affine slice maps");
    (void)ret;
  }

  // Add access function equalities to connect loop IVs to data dimensions.
  if (failed(cst.composeMap(&accessValueMap))) {
    op->emitError("getMemRefRegion: compose affine map failed");
    LLVM_DEBUG(accessValueMap.getAffineMap().dump());
    return failure();
  }

  // Set all identifiers appearing after the first 'rank' identifiers as
  // symbolic identifiers - so that the ones corresponding to the memref
  // dimensions are the dimensional identifiers for the memref region.
  cst.setDimSymbolSeparation(cst.getNumDimAndSymbolIds() - rank);

  // Eliminate any loop IVs other than the outermost 'loopDepth' IVs, on which
  // this memref region is symbolic.
  SmallVector<AffineForOp, 4> enclosingIVs;
  getLoopIVs(*op, &enclosingIVs);
  assert(loopDepth <= enclosingIVs.size() && "invalid loop depth");
  enclosingIVs.resize(loopDepth);
  SmallVector<Value, 4> ids;
  cst.getIdValues(cst.getNumDimIds(), cst.getNumDimAndSymbolIds(), &ids);
  for (auto id : ids) {
    AffineForOp iv;
    if ((iv = getForInductionVarOwner(id)) &&
        llvm::is_contained(enclosingIVs, iv) == false) {
      cst.projectOut(id);
    }
  }

  // Project out any local variables (these would have been added for any
  // mod/divs).
  cst.projectOut(cst.getNumDimAndSymbolIds(), cst.getNumLocalIds());

  // Constant fold any symbolic identifiers.
  cst.constantFoldIdRange(/*pos=*/cst.getNumDimIds(),
                          /*num=*/cst.getNumSymbolIds());

  assert(cst.getNumDimIds() == rank && "unexpected MemRefRegion format");

  // Add upper/lower bounds for each memref dimension with static size
  // to guard against potential over-approximation from projection.
  // TODO: Support dynamic memref dimensions.
  if (addMemRefDimBounds) {
    auto memRefType = memref.getType().cast<MemRefType>();
    for (unsigned r = 0; r < rank; r++) {
      cst.addConstantLowerBound(/*pos=*/r, /*lb=*/0);
      if (memRefType.isDynamicDim(r))
        continue;
      cst.addConstantUpperBound(/*pos=*/r, memRefType.getDimSize(r) - 1);
    }
  }
  cst.removeTrivialRedundancy();

  LLVM_DEBUG(llvm::dbgs() << "Memory region:\n");
  LLVM_DEBUG(cst.dump());
  return success();
}

static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
  auto elementType = memRefType.getElementType();

  unsigned sizeInBits;
  if (elementType.isIntOrFloat()) {
    sizeInBits = elementType.getIntOrFloatBitWidth();
  } else {
    auto vectorType = elementType.cast<VectorType>();
    sizeInBits =
        vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
  }
  return llvm::divideCeil(sizeInBits, 8);
}

// Returns the size of the region.
Optional<int64_t> MemRefRegion::getRegionSize() {
  auto memRefType = memref.getType().cast<MemRefType>();

  auto layoutMaps = memRefType.getAffineMaps();
  if (layoutMaps.size() > 1 ||
      (layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
    LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
    return false;
  }

  // Indices to use for the DmaStart op.
  // Indices for the original memref being DMAed from/to.
  SmallVector<Value, 4> memIndices;
  // Indices for the faster buffer being DMAed into/from.
  SmallVector<Value, 4> bufIndices;

  // Compute the extents of the buffer.
  Optional<int64_t> numElements = getConstantBoundingSizeAndShape();
  if (!numElements.hasValue()) {
    LLVM_DEBUG(llvm::dbgs() << "Dynamic shapes not yet supported\n");
    return None;
  }
  return getMemRefEltSizeInBytes(memRefType) * numElements.getValue();
}

/// Returns the size of memref data in bytes if it's statically shaped, None
/// otherwise.  If the element of the memref has vector type, takes into account
/// size of the vector as well.
//  TODO: improve/complete this when we have target data.
Optional<uint64_t> mlir::getMemRefSizeInBytes(MemRefType memRefType) {
  if (!memRefType.hasStaticShape())
    return None;
  auto elementType = memRefType.getElementType();
  if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>())
    return None;

  uint64_t sizeInBytes = getMemRefEltSizeInBytes(memRefType);
  for (unsigned i = 0, e = memRefType.getRank(); i < e; i++) {
    sizeInBytes = sizeInBytes * memRefType.getDimSize(i);
  }
  return sizeInBytes;
}

template <typename LoadOrStoreOp>
LogicalResult mlir::boundCheckLoadOrStoreOp(LoadOrStoreOp loadOrStoreOp,
                                            bool emitError) {
  static_assert(llvm::is_one_of<LoadOrStoreOp, AffineReadOpInterface,
                                AffineWriteOpInterface>::value,
                "argument should be either a AffineReadOpInterface or a "
                "AffineWriteOpInterface");

  Operation *op = loadOrStoreOp.getOperation();
  MemRefRegion region(op->getLoc());
  if (failed(region.compute(op, /*loopDepth=*/0, /*sliceState=*/nullptr,
                            /*addMemRefDimBounds=*/false)))
    return success();

  LLVM_DEBUG(llvm::dbgs() << "Memory region");
  LLVM_DEBUG(region.getConstraints()->dump());

  bool outOfBounds = false;
  unsigned rank = loadOrStoreOp.getMemRefType().getRank();

  // For each dimension, check for out of bounds.
  for (unsigned r = 0; r < rank; r++) {
    FlatAffineConstraints ucst(*region.getConstraints());

    // Intersect memory region with constraint capturing out of bounds (both out
    // of upper and out of lower), and check if the constraint system is
    // feasible. If it is, there is at least one point out of bounds.
    SmallVector<int64_t, 4> ineq(rank + 1, 0);
    int64_t dimSize = loadOrStoreOp.getMemRefType().getDimSize(r);
    // TODO: handle dynamic dim sizes.
    if (dimSize == -1)
      continue;

    // Check for overflow: d_i >= memref dim size.
    ucst.addConstantLowerBound(r, dimSize);
    outOfBounds = !ucst.isEmpty();
    if (outOfBounds && emitError) {
      loadOrStoreOp.emitOpError()
          << "memref out of upper bound access along dimension #" << (r + 1);
    }

    // Check for a negative index.
    FlatAffineConstraints lcst(*region.getConstraints());
    std::fill(ineq.begin(), ineq.end(), 0);
    // d_i <= -1;
    lcst.addConstantUpperBound(r, -1);
    outOfBounds = !lcst.isEmpty();
    if (outOfBounds && emitError) {
      loadOrStoreOp.emitOpError()
          << "memref out of lower bound access along dimension #" << (r + 1);
    }
  }
  return failure(outOfBounds);
}

// Explicitly instantiate the template so that the compiler knows we need them!
template LogicalResult
mlir::boundCheckLoadOrStoreOp(AffineReadOpInterface loadOp, bool emitError);
template LogicalResult
mlir::boundCheckLoadOrStoreOp(AffineWriteOpInterface storeOp, bool emitError);

// Returns in 'positions' the Block positions of 'op' in each ancestor
// Block from the Block containing operation, stopping at 'limitBlock'.
static void findInstPosition(Operation *op, Block *limitBlock,
                             SmallVectorImpl<unsigned> *positions) {
  Block *block = op->getBlock();
  while (block != limitBlock) {
    // FIXME: This algorithm is unnecessarily O(n) and should be improved to not
    // rely on linear scans.
    int instPosInBlock = std::distance(block->begin(), op->getIterator());
    positions->push_back(instPosInBlock);
    op = block->getParentOp();
    block = op->getBlock();
  }
  std::reverse(positions->begin(), positions->end());
}

// Returns the Operation in a possibly nested set of Blocks, where the
// position of the operation is represented by 'positions', which has a
// Block position for each level of nesting.
static Operation *getInstAtPosition(ArrayRef<unsigned> positions,
                                    unsigned level, Block *block) {
  unsigned i = 0;
  for (auto &op : *block) {
    if (i != positions[level]) {
      ++i;
      continue;
    }
    if (level == positions.size() - 1)
      return &op;
    if (auto childAffineForOp = dyn_cast<AffineForOp>(op))
      return getInstAtPosition(positions, level + 1,
                               childAffineForOp.getBody());

    for (auto &region : op.getRegions()) {
      for (auto &b : region)
        if (auto *ret = getInstAtPosition(positions, level + 1, &b))
          return ret;
    }
    return nullptr;
  }
  return nullptr;
}

// Adds loop IV bounds to 'cst' for loop IVs not found in 'ivs'.
static LogicalResult addMissingLoopIVBounds(SmallPtrSet<Value, 8> &ivs,
                                            FlatAffineConstraints *cst) {
  for (unsigned i = 0, e = cst->getNumDimIds(); i < e; ++i) {
    auto value = cst->getIdValue(i);
    if (ivs.count(value) == 0) {
      assert(isForInductionVar(value));
      auto loop = getForInductionVarOwner(value);
      if (failed(cst->addAffineForOpDomain(loop)))
        return failure();
    }
  }
  return success();
}

// Returns the innermost common loop depth for the set of operations in 'ops'.
// TODO: Move this to LoopUtils.
static unsigned
getInnermostCommonLoopDepth(ArrayRef<Operation *> ops,
                            SmallVectorImpl<AffineForOp> &surroundingLoops) {
  unsigned numOps = ops.size();
  assert(numOps > 0);

  std::vector<SmallVector<AffineForOp, 4>> loops(numOps);
  unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
  for (unsigned i = 0; i < numOps; ++i) {
    getLoopIVs(*ops[i], &loops[i]);
    loopDepthLimit =
        std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
  }

  unsigned loopDepth = 0;
  for (unsigned d = 0; d < loopDepthLimit; ++d) {
    unsigned i;
    for (i = 1; i < numOps; ++i) {
      if (loops[i - 1][d] != loops[i][d])
        return loopDepth;
    }
    surroundingLoops.push_back(loops[i - 1][d]);
    ++loopDepth;
  }
  return loopDepth;
}

/// Computes in 'sliceUnion' the union of all slice bounds computed at
/// 'loopDepth' between all dependent pairs of ops in 'opsA' and 'opsB'.
/// Returns 'Success' if union was computed, 'failure' otherwise.
LogicalResult mlir::computeSliceUnion(ArrayRef<Operation *> opsA,
                                      ArrayRef<Operation *> opsB,
                                      unsigned loopDepth,
                                      unsigned numCommonLoops,
                                      bool isBackwardSlice,
                                      ComputationSliceState *sliceUnion) {
  // Compute the union of slice bounds between all pairs in 'opsA' and
  // 'opsB' in 'sliceUnionCst'.
  FlatAffineConstraints sliceUnionCst;
  assert(sliceUnionCst.getNumDimAndSymbolIds() == 0);
  std::vector<std::pair<Operation *, Operation *>> dependentOpPairs;
  for (unsigned i = 0, numOpsA = opsA.size(); i < numOpsA; ++i) {
    MemRefAccess srcAccess(opsA[i]);
    for (unsigned j = 0, numOpsB = opsB.size(); j < numOpsB; ++j) {
      MemRefAccess dstAccess(opsB[j]);
      if (srcAccess.memref != dstAccess.memref)
        continue;
      // Check if 'loopDepth' exceeds nesting depth of src/dst ops.
      if ((!isBackwardSlice && loopDepth > getNestingDepth(opsA[i])) ||
          (isBackwardSlice && loopDepth > getNestingDepth(opsB[j]))) {
        LLVM_DEBUG(llvm::dbgs() << "Invalid loop depth\n");
        return failure();
      }

      bool readReadAccesses = isa<AffineReadOpInterface>(srcAccess.opInst) &&
                              isa<AffineReadOpInterface>(dstAccess.opInst);
      FlatAffineConstraints dependenceConstraints;
      // Check dependence between 'srcAccess' and 'dstAccess'.
      DependenceResult result = checkMemrefAccessDependence(
          srcAccess, dstAccess, /*loopDepth=*/numCommonLoops + 1,
          &dependenceConstraints, /*dependenceComponents=*/nullptr,
          /*allowRAR=*/readReadAccesses);
      if (result.value == DependenceResult::Failure) {
        LLVM_DEBUG(llvm::dbgs() << "Dependence check failed\n");
        return failure();
      }
      if (result.value == DependenceResult::NoDependence)
        continue;
      dependentOpPairs.push_back({opsA[i], opsB[j]});

      // Compute slice bounds for 'srcAccess' and 'dstAccess'.
      ComputationSliceState tmpSliceState;
      mlir::getComputationSliceState(opsA[i], opsB[j], &dependenceConstraints,
                                     loopDepth, isBackwardSlice,
                                     &tmpSliceState);

      if (sliceUnionCst.getNumDimAndSymbolIds() == 0) {
        // Initialize 'sliceUnionCst' with the bounds computed in previous step.
        if (failed(tmpSliceState.getAsConstraints(&sliceUnionCst))) {
          LLVM_DEBUG(llvm::dbgs()
                     << "Unable to compute slice bound constraints\n");
          return failure();
        }
        assert(sliceUnionCst.getNumDimAndSymbolIds() > 0);
        continue;
      }

      // Compute constraints for 'tmpSliceState' in 'tmpSliceCst'.
      FlatAffineConstraints tmpSliceCst;
      if (failed(tmpSliceState.getAsConstraints(&tmpSliceCst))) {
        LLVM_DEBUG(llvm::dbgs()
                   << "Unable to compute slice bound constraints\n");
        return failure();
      }

      // Align coordinate spaces of 'sliceUnionCst' and 'tmpSliceCst' if needed.
      if (!sliceUnionCst.areIdsAlignedWithOther(tmpSliceCst)) {

        // Pre-constraint id alignment: record loop IVs used in each constraint
        // system.
        SmallPtrSet<Value, 8> sliceUnionIVs;
        for (unsigned k = 0, l = sliceUnionCst.getNumDimIds(); k < l; ++k)
          sliceUnionIVs.insert(sliceUnionCst.getIdValue(k));
        SmallPtrSet<Value, 8> tmpSliceIVs;
        for (unsigned k = 0, l = tmpSliceCst.getNumDimIds(); k < l; ++k)
          tmpSliceIVs.insert(tmpSliceCst.getIdValue(k));

        sliceUnionCst.mergeAndAlignIdsWithOther(/*offset=*/0, &tmpSliceCst);

        // Post-constraint id alignment: add loop IV bounds missing after
        // id alignment to constraint systems. This can occur if one constraint
        // system uses an loop IV that is not used by the other. The call
        // to unionBoundingBox below expects constraints for each Loop IV, even
        // if they are the unsliced full loop bounds added here.
        if (failed(addMissingLoopIVBounds(sliceUnionIVs, &sliceUnionCst)))
          return failure();
        if (failed(addMissingLoopIVBounds(tmpSliceIVs, &tmpSliceCst)))
          return failure();
      }
      // Compute union bounding box of 'sliceUnionCst' and 'tmpSliceCst'.
      if (sliceUnionCst.getNumLocalIds() > 0 ||
          tmpSliceCst.getNumLocalIds() > 0 ||
          failed(sliceUnionCst.unionBoundingBox(tmpSliceCst))) {
        LLVM_DEBUG(llvm::dbgs()
                   << "Unable to compute union bounding box of slice bounds\n");
        return failure();
      }
    }
  }

  // Empty union.
  if (sliceUnionCst.getNumDimAndSymbolIds() == 0)
    return failure();

  // Gather loops surrounding ops from loop nest where slice will be inserted.
  SmallVector<Operation *, 4> ops;
  for (auto &dep : dependentOpPairs) {
    ops.push_back(isBackwardSlice ? dep.second : dep.first);
  }
  SmallVector<AffineForOp, 4> surroundingLoops;
  unsigned innermostCommonLoopDepth =
      getInnermostCommonLoopDepth(ops, surroundingLoops);
  if (loopDepth > innermostCommonLoopDepth) {
    LLVM_DEBUG(llvm::dbgs() << "Exceeds max loop depth\n");
    return failure();
  }

  // Store 'numSliceLoopIVs' before converting dst loop IVs to dims.
  unsigned numSliceLoopIVs = sliceUnionCst.getNumDimIds();

  // Convert any dst loop IVs which are symbol identifiers to dim identifiers.
  sliceUnionCst.convertLoopIVSymbolsToDims();
  sliceUnion->clearBounds();
  sliceUnion->lbs.resize(numSliceLoopIVs, AffineMap());
  sliceUnion->ubs.resize(numSliceLoopIVs, AffineMap());

  // Get slice bounds from slice union constraints 'sliceUnionCst'.
  sliceUnionCst.getSliceBounds(/*offset=*/0, numSliceLoopIVs,
                               opsA[0]->getContext(), &sliceUnion->lbs,
                               &sliceUnion->ubs);

  // Add slice bound operands of union.
  SmallVector<Value, 4> sliceBoundOperands;
  sliceUnionCst.getIdValues(numSliceLoopIVs,
                            sliceUnionCst.getNumDimAndSymbolIds(),
                            &sliceBoundOperands);

  // Copy src loop IVs from 'sliceUnionCst' to 'sliceUnion'.
  sliceUnion->ivs.clear();
  sliceUnionCst.getIdValues(0, numSliceLoopIVs, &sliceUnion->ivs);

  // Set loop nest insertion point to block start at 'loopDepth'.
  sliceUnion->insertPoint =
      isBackwardSlice
          ? surroundingLoops[loopDepth - 1].getBody()->begin()
          : std::prev(surroundingLoops[loopDepth - 1].getBody()->end());

  // Give each bound its own copy of 'sliceBoundOperands' for subsequent
  // canonicalization.
  sliceUnion->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
  sliceUnion->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
  return success();
}

const char *const kSliceFusionBarrierAttrName = "slice_fusion_barrier";
// Computes slice bounds by projecting out any loop IVs from
// 'dependenceConstraints' at depth greater than 'loopDepth', and computes slice
// bounds in 'sliceState' which represent the one loop nest's IVs in terms of
// the other loop nest's IVs, symbols and constants (using 'isBackwardsSlice').
void mlir::getComputationSliceState(
    Operation *depSourceOp, Operation *depSinkOp,
    FlatAffineConstraints *dependenceConstraints, unsigned loopDepth,
    bool isBackwardSlice, ComputationSliceState *sliceState) {
  // Get loop nest surrounding src operation.
  SmallVector<AffineForOp, 4> srcLoopIVs;
  getLoopIVs(*depSourceOp, &srcLoopIVs);
  unsigned numSrcLoopIVs = srcLoopIVs.size();

  // Get loop nest surrounding dst operation.
  SmallVector<AffineForOp, 4> dstLoopIVs;
  getLoopIVs(*depSinkOp, &dstLoopIVs);
  unsigned numDstLoopIVs = dstLoopIVs.size();

  assert((!isBackwardSlice && loopDepth <= numSrcLoopIVs) ||
         (isBackwardSlice && loopDepth <= numDstLoopIVs));

  // Project out dimensions other than those up to 'loopDepth'.
  unsigned pos = isBackwardSlice ? numSrcLoopIVs + loopDepth : loopDepth;
  unsigned num =
      isBackwardSlice ? numDstLoopIVs - loopDepth : numSrcLoopIVs - loopDepth;
  dependenceConstraints->projectOut(pos, num);

  // Add slice loop IV values to 'sliceState'.
  unsigned offset = isBackwardSlice ? 0 : loopDepth;
  unsigned numSliceLoopIVs = isBackwardSlice ? numSrcLoopIVs : numDstLoopIVs;
  dependenceConstraints->getIdValues(offset, offset + numSliceLoopIVs,
                                     &sliceState->ivs);

  // Set up lower/upper bound affine maps for the slice.
  sliceState->lbs.resize(numSliceLoopIVs, AffineMap());
  sliceState->ubs.resize(numSliceLoopIVs, AffineMap());

  // Get bounds for slice IVs in terms of other IVs, symbols, and constants.
  dependenceConstraints->getSliceBounds(offset, numSliceLoopIVs,
                                        depSourceOp->getContext(),
                                        &sliceState->lbs, &sliceState->ubs);

  // Set up bound operands for the slice's lower and upper bounds.
  SmallVector<Value, 4> sliceBoundOperands;
  unsigned numDimsAndSymbols = dependenceConstraints->getNumDimAndSymbolIds();
  for (unsigned i = 0; i < numDimsAndSymbols; ++i) {
    if (i < offset || i >= offset + numSliceLoopIVs) {
      sliceBoundOperands.push_back(dependenceConstraints->getIdValue(i));
    }
  }

  // Give each bound its own copy of 'sliceBoundOperands' for subsequent
  // canonicalization.
  sliceState->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
  sliceState->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);

  // Set destination loop nest insertion point to block start at 'dstLoopDepth'.
  sliceState->insertPoint =
      isBackwardSlice ? dstLoopIVs[loopDepth - 1].getBody()->begin()
                      : std::prev(srcLoopIVs[loopDepth - 1].getBody()->end());

  llvm::SmallDenseSet<Value, 8> sequentialLoops;
  if (isa<AffineReadOpInterface>(depSourceOp) &&
      isa<AffineReadOpInterface>(depSinkOp)) {
    // For read-read access pairs, clear any slice bounds on sequential loops.
    // Get sequential loops in loop nest rooted at 'srcLoopIVs[0]'.
    getSequentialLoops(isBackwardSlice ? srcLoopIVs[0] : dstLoopIVs[0],
                       &sequentialLoops);
  }
  // Clear all sliced loop bounds beginning at the first sequential loop, or
  // first loop with a slice fusion barrier attribute..
  // TODO: Use MemRef read/write regions instead of
  // using 'kSliceFusionBarrierAttrName'.
  auto getSliceLoop = [&](unsigned i) {
    return isBackwardSlice ? srcLoopIVs[i] : dstLoopIVs[i];
  };
  for (unsigned i = 0; i < numSliceLoopIVs; ++i) {
    Value iv = getSliceLoop(i).getInductionVar();
    if (sequentialLoops.count(iv) == 0 &&
        getSliceLoop(i).getAttr(kSliceFusionBarrierAttrName) == nullptr)
      continue;
    for (unsigned j = i; j < numSliceLoopIVs; ++j) {
      sliceState->lbs[j] = AffineMap();
      sliceState->ubs[j] = AffineMap();
    }
    break;
  }
}

/// Creates a computation slice of the loop nest surrounding 'srcOpInst',
/// updates the slice loop bounds with any non-null bound maps specified in
/// 'sliceState', and inserts this slice into the loop nest surrounding
/// 'dstOpInst' at loop depth 'dstLoopDepth'.
// TODO: extend the slicing utility to compute slices that
// aren't necessarily a one-to-one relation b/w the source and destination. The
// relation between the source and destination could be many-to-many in general.
// TODO: the slice computation is incorrect in the cases
// where the dependence from the source to the destination does not cover the
// entire destination index set. Subtract out the dependent destination
// iterations from destination index set and check for emptiness --- this is one
// solution.
AffineForOp
mlir::insertBackwardComputationSlice(Operation *srcOpInst, Operation *dstOpInst,
                                     unsigned dstLoopDepth,
                                     ComputationSliceState *sliceState) {
  // Get loop nest surrounding src operation.
  SmallVector<AffineForOp, 4> srcLoopIVs;
  getLoopIVs(*srcOpInst, &srcLoopIVs);
  unsigned numSrcLoopIVs = srcLoopIVs.size();

  // Get loop nest surrounding dst operation.
  SmallVector<AffineForOp, 4> dstLoopIVs;
  getLoopIVs(*dstOpInst, &dstLoopIVs);
  unsigned dstLoopIVsSize = dstLoopIVs.size();
  if (dstLoopDepth > dstLoopIVsSize) {
    dstOpInst->emitError("invalid destination loop depth");
    return AffineForOp();
  }

  // Find the op block positions of 'srcOpInst' within 'srcLoopIVs'.
  SmallVector<unsigned, 4> positions;
  // TODO: This code is incorrect since srcLoopIVs can be 0-d.
  findInstPosition(srcOpInst, srcLoopIVs[0].getOperation()->getBlock(),
                   &positions);

  // Clone src loop nest and insert it a the beginning of the operation block
  // of the loop at 'dstLoopDepth' in 'dstLoopIVs'.
  auto dstAffineForOp = dstLoopIVs[dstLoopDepth - 1];
  OpBuilder b(dstAffineForOp.getBody(), dstAffineForOp.getBody()->begin());
  auto sliceLoopNest =
      cast<AffineForOp>(b.clone(*srcLoopIVs[0].getOperation()));

  Operation *sliceInst =
      getInstAtPosition(positions, /*level=*/0, sliceLoopNest.getBody());
  // Get loop nest surrounding 'sliceInst'.
  SmallVector<AffineForOp, 4> sliceSurroundingLoops;
  getLoopIVs(*sliceInst, &sliceSurroundingLoops);

  // Sanity check.
  unsigned sliceSurroundingLoopsSize = sliceSurroundingLoops.size();
  (void)sliceSurroundingLoopsSize;
  assert(dstLoopDepth + numSrcLoopIVs >= sliceSurroundingLoopsSize);
  unsigned sliceLoopLimit = dstLoopDepth + numSrcLoopIVs;
  (void)sliceLoopLimit;
  assert(sliceLoopLimit >= sliceSurroundingLoopsSize);

  // Update loop bounds for loops in 'sliceLoopNest'.
  for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
    auto forOp = sliceSurroundingLoops[dstLoopDepth + i];
    if (AffineMap lbMap = sliceState->lbs[i])
      forOp.setLowerBound(sliceState->lbOperands[i], lbMap);
    if (AffineMap ubMap = sliceState->ubs[i])
      forOp.setUpperBound(sliceState->ubOperands[i], ubMap);
  }
  return sliceLoopNest;
}

// Constructs  MemRefAccess populating it with the memref, its indices and
// opinst from 'loadOrStoreOpInst'.
MemRefAccess::MemRefAccess(Operation *loadOrStoreOpInst) {
  if (auto loadOp = dyn_cast<AffineReadOpInterface>(loadOrStoreOpInst)) {
    memref = loadOp.getMemRef();
    opInst = loadOrStoreOpInst;
    auto loadMemrefType = loadOp.getMemRefType();
    indices.reserve(loadMemrefType.getRank());
    for (auto index : loadOp.getMapOperands()) {
      indices.push_back(index);
    }
  } else {
    assert(isa<AffineWriteOpInterface>(loadOrStoreOpInst) &&
           "Affine read/write op expected");
    auto storeOp = cast<AffineWriteOpInterface>(loadOrStoreOpInst);
    opInst = loadOrStoreOpInst;
    memref = storeOp.getMemRef();
    auto storeMemrefType = storeOp.getMemRefType();
    indices.reserve(storeMemrefType.getRank());
    for (auto index : storeOp.getMapOperands()) {
      indices.push_back(index);
    }
  }
}

unsigned MemRefAccess::getRank() const {
  return memref.getType().cast<MemRefType>().getRank();
}

bool MemRefAccess::isStore() const {
  return isa<AffineWriteOpInterface>(opInst);
}

/// Returns the nesting depth of this statement, i.e., the number of loops
/// surrounding this statement.
unsigned mlir::getNestingDepth(Operation *op) {
  Operation *currOp = op;
  unsigned depth = 0;
  while ((currOp = currOp->getParentOp())) {
    if (isa<AffineForOp>(currOp))
      depth++;
  }
  return depth;
}

/// Equal if both affine accesses are provably equivalent (at compile
/// time) when considering the memref, the affine maps and their respective
/// operands. The equality of access functions + operands is checked by
/// subtracting fully composed value maps, and then simplifying the difference
/// using the expression flattener.
/// TODO: this does not account for aliasing of memrefs.
bool MemRefAccess::operator==(const MemRefAccess &rhs) const {
  if (memref != rhs.memref)
    return false;

  AffineValueMap diff, thisMap, rhsMap;
  getAccessMap(&thisMap);
  rhs.getAccessMap(&rhsMap);
  AffineValueMap::difference(thisMap, rhsMap, &diff);
  return llvm::all_of(diff.getAffineMap().getResults(),
                      [](AffineExpr e) { return e == 0; });
}

/// Returns the number of surrounding loops common to 'loopsA' and 'loopsB',
/// where each lists loops from outer-most to inner-most in loop nest.
unsigned mlir::getNumCommonSurroundingLoops(Operation &A, Operation &B) {
  SmallVector<AffineForOp, 4> loopsA, loopsB;
  getLoopIVs(A, &loopsA);
  getLoopIVs(B, &loopsB);

  unsigned minNumLoops = std::min(loopsA.size(), loopsB.size());
  unsigned numCommonLoops = 0;
  for (unsigned i = 0; i < minNumLoops; ++i) {
    if (loopsA[i].getOperation() != loopsB[i].getOperation())
      break;
    ++numCommonLoops;
  }
  return numCommonLoops;
}

static Optional<int64_t> getMemoryFootprintBytes(Block &block,
                                                 Block::iterator start,
                                                 Block::iterator end,
                                                 int memorySpace) {
  SmallDenseMap<Value, std::unique_ptr<MemRefRegion>, 4> regions;

  // Walk this 'affine.for' operation to gather all memory regions.
  auto result = block.walk(start, end, [&](Operation *opInst) -> WalkResult {
    if (!isa<AffineReadOpInterface, AffineWriteOpInterface>(opInst)) {
      // Neither load nor a store op.
      return WalkResult::advance();
    }

    // Compute the memref region symbolic in any IVs enclosing this block.
    auto region = std::make_unique<MemRefRegion>(opInst->getLoc());
    if (failed(
            region->compute(opInst,
                            /*loopDepth=*/getNestingDepth(&*block.begin())))) {
      return opInst->emitError("error obtaining memory region\n");
    }

    auto it = regions.find(region->memref);
    if (it == regions.end()) {
      regions[region->memref] = std::move(region);
    } else if (failed(it->second->unionBoundingBox(*region))) {
      return opInst->emitWarning(
          "getMemoryFootprintBytes: unable to perform a union on a memory "
          "region");
    }
    return WalkResult::advance();
  });
  if (result.wasInterrupted())
    return None;

  int64_t totalSizeInBytes = 0;
  for (const auto &region : regions) {
    Optional<int64_t> size = region.second->getRegionSize();
    if (!size.hasValue())
      return None;
    totalSizeInBytes += size.getValue();
  }
  return totalSizeInBytes;
}

Optional<int64_t> mlir::getMemoryFootprintBytes(AffineForOp forOp,
                                                int memorySpace) {
  auto *forInst = forOp.getOperation();
  return ::getMemoryFootprintBytes(
      *forInst->getBlock(), Block::iterator(forInst),
      std::next(Block::iterator(forInst)), memorySpace);
}

/// Returns in 'sequentialLoops' all sequential loops in loop nest rooted
/// at 'forOp'.
void mlir::getSequentialLoops(AffineForOp forOp,
                              llvm::SmallDenseSet<Value, 8> *sequentialLoops) {
  forOp.getOperation()->walk([&](Operation *op) {
    if (auto innerFor = dyn_cast<AffineForOp>(op))
      if (!isLoopParallel(innerFor))
        sequentialLoops->insert(innerFor.getInductionVar());
  });
}

/// Returns true if 'forOp' is parallel.
bool mlir::isLoopParallel(AffineForOp forOp) {
  // Collect all load and store ops in loop nest rooted at 'forOp'.
  SmallVector<Operation *, 8> loadAndStoreOpInsts;
  auto walkResult = forOp.walk([&](Operation *opInst) -> WalkResult {
    if (isa<AffineReadOpInterface, AffineWriteOpInterface>(opInst))
      loadAndStoreOpInsts.push_back(opInst);
    else if (!isa<AffineForOp, AffineYieldOp, AffineIfOp>(opInst) &&
             !MemoryEffectOpInterface::hasNoEffect(opInst))
      return WalkResult::interrupt();

    return WalkResult::advance();
  });

  // Stop early if the loop has unknown ops with side effects.
  if (walkResult.wasInterrupted())
    return false;

  // Dep check depth would be number of enclosing loops + 1.
  unsigned depth = getNestingDepth(forOp) + 1;

  // Check dependences between all pairs of ops in 'loadAndStoreOpInsts'.
  for (auto *srcOpInst : loadAndStoreOpInsts) {
    MemRefAccess srcAccess(srcOpInst);
    for (auto *dstOpInst : loadAndStoreOpInsts) {
      MemRefAccess dstAccess(dstOpInst);
      FlatAffineConstraints dependenceConstraints;
      DependenceResult result = checkMemrefAccessDependence(
          srcAccess, dstAccess, depth, &dependenceConstraints,
          /*dependenceComponents=*/nullptr);
      if (result.value != DependenceResult::NoDependence)
        return false;
    }
  }
  return true;
}

IntegerSet mlir::simplifyIntegerSet(IntegerSet set) {
  FlatAffineConstraints fac(set);
  if (fac.isEmpty())
    return IntegerSet::getEmptySet(set.getNumDims(), set.getNumSymbols(),
                                   set.getContext());
  fac.removeTrivialRedundancy();

  auto simplifiedSet = fac.getAsIntegerSet(set.getContext());
  assert(simplifiedSet && "guaranteed to succeed while roundtripping");
  return simplifiedSet;
}