LoopAnalysis.cpp
14.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
//===- LoopAnalysis.cpp - Misc loop analysis routines //-------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous loop analysis routines.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/NestedMatcher.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallString.h"
#include <type_traits>
using namespace mlir;
/// Returns the trip count of the loop as an affine expression if the latter is
/// expressible as an affine expression, and nullptr otherwise. The trip count
/// expression is simplified before returning. This method only utilizes map
/// composition to construct lower and upper bounds before computing the trip
/// count expressions.
void mlir::buildTripCountMapAndOperands(
AffineForOp forOp, AffineMap *tripCountMap,
SmallVectorImpl<Value> *tripCountOperands) {
int64_t loopSpan;
int64_t step = forOp.getStep();
OpBuilder b(forOp.getOperation());
if (forOp.hasConstantBounds()) {
int64_t lb = forOp.getConstantLowerBound();
int64_t ub = forOp.getConstantUpperBound();
loopSpan = ub - lb;
if (loopSpan < 0)
loopSpan = 0;
*tripCountMap = b.getConstantAffineMap(ceilDiv(loopSpan, step));
tripCountOperands->clear();
return;
}
auto lbMap = forOp.getLowerBoundMap();
auto ubMap = forOp.getUpperBoundMap();
if (lbMap.getNumResults() != 1) {
*tripCountMap = AffineMap();
return;
}
// Difference of each upper bound expression from the single lower bound
// expression (divided by the step) provides the expressions for the trip
// count map.
AffineValueMap ubValueMap(ubMap, forOp.getUpperBoundOperands());
SmallVector<AffineExpr, 4> lbSplatExpr(ubValueMap.getNumResults(),
lbMap.getResult(0));
auto lbMapSplat = AffineMap::get(lbMap.getNumDims(), lbMap.getNumSymbols(),
lbSplatExpr, b.getContext());
AffineValueMap lbSplatValueMap(lbMapSplat, forOp.getLowerBoundOperands());
AffineValueMap tripCountValueMap;
AffineValueMap::difference(ubValueMap, lbSplatValueMap, &tripCountValueMap);
for (unsigned i = 0, e = tripCountValueMap.getNumResults(); i < e; ++i)
tripCountValueMap.setResult(i,
tripCountValueMap.getResult(i).ceilDiv(step));
*tripCountMap = tripCountValueMap.getAffineMap();
tripCountOperands->assign(tripCountValueMap.getOperands().begin(),
tripCountValueMap.getOperands().end());
}
/// Returns the trip count of the loop if it's a constant, None otherwise. This
/// method uses affine expression analysis (in turn using getTripCount) and is
/// able to determine constant trip count in non-trivial cases.
// FIXME(mlir-team): this is really relying on buildTripCountMapAndOperands;
// being an analysis utility, it shouldn't. Replace with a version that just
// works with analysis structures (FlatAffineConstraints) and thus doesn't
// update the IR.
Optional<uint64_t> mlir::getConstantTripCount(AffineForOp forOp) {
SmallVector<Value, 4> operands;
AffineMap map;
buildTripCountMapAndOperands(forOp, &map, &operands);
if (!map)
return None;
// Take the min if all trip counts are constant.
Optional<uint64_t> tripCount;
for (auto resultExpr : map.getResults()) {
if (auto constExpr = resultExpr.dyn_cast<AffineConstantExpr>()) {
if (tripCount.hasValue())
tripCount = std::min(tripCount.getValue(),
static_cast<uint64_t>(constExpr.getValue()));
else
tripCount = constExpr.getValue();
} else
return None;
}
return tripCount;
}
/// Returns the greatest known integral divisor of the trip count. Affine
/// expression analysis is used (indirectly through getTripCount), and
/// this method is thus able to determine non-trivial divisors.
uint64_t mlir::getLargestDivisorOfTripCount(AffineForOp forOp) {
SmallVector<Value, 4> operands;
AffineMap map;
buildTripCountMapAndOperands(forOp, &map, &operands);
if (!map)
return 1;
// The largest divisor of the trip count is the GCD of the individual largest
// divisors.
assert(map.getNumResults() >= 1 && "expected one or more results");
Optional<uint64_t> gcd;
for (auto resultExpr : map.getResults()) {
uint64_t thisGcd;
if (auto constExpr = resultExpr.dyn_cast<AffineConstantExpr>()) {
uint64_t tripCount = constExpr.getValue();
// 0 iteration loops (greatest divisor is 2^64 - 1).
if (tripCount == 0)
thisGcd = std::numeric_limits<uint64_t>::max();
else
// The greatest divisor is the trip count.
thisGcd = tripCount;
} else {
// Trip count is not a known constant; return its largest known divisor.
thisGcd = resultExpr.getLargestKnownDivisor();
}
if (gcd.hasValue())
gcd = llvm::GreatestCommonDivisor64(gcd.getValue(), thisGcd);
else
gcd = thisGcd;
}
assert(gcd.hasValue() && "value expected per above logic");
return gcd.getValue();
}
/// Given an induction variable `iv` of type AffineForOp and an access `index`
/// of type index, returns `true` if `index` is independent of `iv` and
/// false otherwise. The determination supports composition with at most one
/// AffineApplyOp. The 'at most one AffineApplyOp' comes from the fact that
/// the composition of AffineApplyOp needs to be canonicalized by construction
/// to avoid writing code that composes arbitrary numbers of AffineApplyOps
/// everywhere. To achieve this, at the very least, the compose-affine-apply
/// pass must have been run.
///
/// Prerequisites:
/// 1. `iv` and `index` of the proper type;
/// 2. at most one reachable AffineApplyOp from index;
///
/// Returns false in cases with more than one AffineApplyOp, this is
/// conservative.
static bool isAccessIndexInvariant(Value iv, Value index) {
assert(isForInductionVar(iv) && "iv must be a AffineForOp");
assert(index.getType().isa<IndexType>() && "index must be of IndexType");
SmallVector<Operation *, 4> affineApplyOps;
getReachableAffineApplyOps({index}, affineApplyOps);
if (affineApplyOps.empty()) {
// Pointer equality test because of Value pointer semantics.
return index != iv;
}
if (affineApplyOps.size() > 1) {
affineApplyOps[0]->emitRemark(
"CompositionAffineMapsPass must have been run: there should be at most "
"one AffineApplyOp, returning false conservatively.");
return false;
}
auto composeOp = cast<AffineApplyOp>(affineApplyOps[0]);
// We need yet another level of indirection because the `dim` index of the
// access may not correspond to the `dim` index of composeOp.
return !composeOp.getAffineValueMap().isFunctionOf(0, iv);
}
DenseSet<Value> mlir::getInvariantAccesses(Value iv, ArrayRef<Value> indices) {
DenseSet<Value> res;
for (unsigned idx = 0, n = indices.size(); idx < n; ++idx) {
auto val = indices[idx];
if (isAccessIndexInvariant(iv, val)) {
res.insert(val);
}
}
return res;
}
/// Given:
/// 1. an induction variable `iv` of type AffineForOp;
/// 2. a `memoryOp` of type const LoadOp& or const StoreOp&;
/// determines whether `memoryOp` has a contiguous access along `iv`. Contiguous
/// is defined as either invariant or varying only along a unique MemRef dim.
/// Upon success, the unique MemRef dim is written in `memRefDim` (or -1 to
/// convey the memRef access is invariant along `iv`).
///
/// Prerequisites:
/// 1. `memRefDim` ~= nullptr;
/// 2. `iv` of the proper type;
/// 3. the MemRef accessed by `memoryOp` has no layout map or at most an
/// identity layout map.
///
/// Currently only supports no layoutMap or identity layoutMap in the MemRef.
/// Returns false if the MemRef has a non-identity layoutMap or more than 1
/// layoutMap. This is conservative.
///
// TODO: check strides.
template <typename LoadOrStoreOp>
static bool isContiguousAccess(Value iv, LoadOrStoreOp memoryOp,
int *memRefDim) {
static_assert(
llvm::is_one_of<LoadOrStoreOp, AffineLoadOp, AffineStoreOp>::value,
"Must be called on either LoadOp or StoreOp");
assert(memRefDim && "memRefDim == nullptr");
auto memRefType = memoryOp.getMemRefType();
auto layoutMap = memRefType.getAffineMaps();
// TODO: remove dependence on Builder once we support non-identity layout map.
Builder b(memoryOp.getContext());
if (layoutMap.size() >= 2 ||
(layoutMap.size() == 1 &&
!(layoutMap[0] ==
b.getMultiDimIdentityMap(layoutMap[0].getNumDims())))) {
return memoryOp.emitError("NYI: non-trivial layoutMap"), false;
}
int uniqueVaryingIndexAlongIv = -1;
auto accessMap = memoryOp.getAffineMap();
SmallVector<Value, 4> mapOperands(memoryOp.getMapOperands());
unsigned numDims = accessMap.getNumDims();
for (unsigned i = 0, e = memRefType.getRank(); i < e; ++i) {
// Gather map operands used result expr 'i' in 'exprOperands'.
SmallVector<Value, 4> exprOperands;
auto resultExpr = accessMap.getResult(i);
resultExpr.walk([&](AffineExpr expr) {
if (auto dimExpr = expr.dyn_cast<AffineDimExpr>())
exprOperands.push_back(mapOperands[dimExpr.getPosition()]);
else if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>())
exprOperands.push_back(mapOperands[numDims + symExpr.getPosition()]);
});
// Check access invariance of each operand in 'exprOperands'.
for (auto exprOperand : exprOperands) {
if (!isAccessIndexInvariant(iv, exprOperand)) {
if (uniqueVaryingIndexAlongIv != -1) {
// 2+ varying indices -> do not vectorize along iv.
return false;
}
uniqueVaryingIndexAlongIv = i;
}
}
}
if (uniqueVaryingIndexAlongIv == -1)
*memRefDim = -1;
else
*memRefDim = memRefType.getRank() - (uniqueVaryingIndexAlongIv + 1);
return true;
}
template <typename LoadOrStoreOp>
static bool isVectorElement(LoadOrStoreOp memoryOp) {
auto memRefType = memoryOp.getMemRefType();
return memRefType.getElementType().template isa<VectorType>();
}
using VectorizableOpFun = std::function<bool(AffineForOp, Operation &)>;
static bool
isVectorizableLoopBodyWithOpCond(AffineForOp loop,
VectorizableOpFun isVectorizableOp,
NestedPattern &vectorTransferMatcher) {
auto *forOp = loop.getOperation();
// No vectorization across conditionals for now.
auto conditionals = matcher::If();
SmallVector<NestedMatch, 8> conditionalsMatched;
conditionals.match(forOp, &conditionalsMatched);
if (!conditionalsMatched.empty()) {
return false;
}
// No vectorization across unknown regions.
auto regions = matcher::Op([](Operation &op) -> bool {
return op.getNumRegions() != 0 && !isa<AffineIfOp, AffineForOp>(op);
});
SmallVector<NestedMatch, 8> regionsMatched;
regions.match(forOp, ®ionsMatched);
if (!regionsMatched.empty()) {
return false;
}
SmallVector<NestedMatch, 8> vectorTransfersMatched;
vectorTransferMatcher.match(forOp, &vectorTransfersMatched);
if (!vectorTransfersMatched.empty()) {
return false;
}
auto loadAndStores = matcher::Op(matcher::isLoadOrStore);
SmallVector<NestedMatch, 8> loadAndStoresMatched;
loadAndStores.match(forOp, &loadAndStoresMatched);
for (auto ls : loadAndStoresMatched) {
auto *op = ls.getMatchedOperation();
auto load = dyn_cast<AffineLoadOp>(op);
auto store = dyn_cast<AffineStoreOp>(op);
// Only scalar types are considered vectorizable, all load/store must be
// vectorizable for a loop to qualify as vectorizable.
// TODO: ponder whether we want to be more general here.
bool vector = load ? isVectorElement(load) : isVectorElement(store);
if (vector) {
return false;
}
if (isVectorizableOp && !isVectorizableOp(loop, *op)) {
return false;
}
}
return true;
}
bool mlir::isVectorizableLoopBody(AffineForOp loop, int *memRefDim,
NestedPattern &vectorTransferMatcher) {
VectorizableOpFun fun([memRefDim](AffineForOp loop, Operation &op) {
auto load = dyn_cast<AffineLoadOp>(op);
auto store = dyn_cast<AffineStoreOp>(op);
return load ? isContiguousAccess(loop.getInductionVar(), load, memRefDim)
: isContiguousAccess(loop.getInductionVar(), store, memRefDim);
});
return isVectorizableLoopBodyWithOpCond(loop, fun, vectorTransferMatcher);
}
bool mlir::isVectorizableLoopBody(AffineForOp loop,
NestedPattern &vectorTransferMatcher) {
return isVectorizableLoopBodyWithOpCond(loop, nullptr, vectorTransferMatcher);
}
/// Checks whether SSA dominance would be violated if a for op's body
/// operations are shifted by the specified shifts. This method checks if a
/// 'def' and all its uses have the same shift factor.
// TODO: extend this to check for memory-based dependence violation when we have
// the support.
bool mlir::isOpwiseShiftValid(AffineForOp forOp, ArrayRef<uint64_t> shifts) {
auto *forBody = forOp.getBody();
assert(shifts.size() == forBody->getOperations().size());
// Work backwards over the body of the block so that the shift of a use's
// ancestor operation in the block gets recorded before it's looked up.
DenseMap<Operation *, uint64_t> forBodyShift;
for (auto it : llvm::enumerate(llvm::reverse(forBody->getOperations()))) {
auto &op = it.value();
// Get the index of the current operation, note that we are iterating in
// reverse so we need to fix it up.
size_t index = shifts.size() - it.index() - 1;
// Remember the shift of this operation.
uint64_t shift = shifts[index];
forBodyShift.try_emplace(&op, shift);
// Validate the results of this operation if it were to be shifted.
for (unsigned i = 0, e = op.getNumResults(); i < e; ++i) {
Value result = op.getResult(i);
for (auto *user : result.getUsers()) {
// If an ancestor operation doesn't lie in the block of forOp,
// there is no shift to check.
if (auto *ancOp = forBody->findAncestorOpInBlock(*user)) {
assert(forBodyShift.count(ancOp) > 0 && "ancestor expected in map");
if (shift != forBodyShift[ancOp])
return false;
}
}
}
}
return true;
}