GIMatchTree.h
25.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
//===- GIMatchTree.h - A decision tree to match GIMatchDag's --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_UTILS_TABLEGEN_GIMATCHTREE_H
#define LLVM_UTILS_TABLEGEN_GIMATCHTREE_H
#include "GIMatchDag.h"
#include "llvm/ADT/BitVector.h"
namespace llvm {
class raw_ostream;
class GIMatchTreeBuilder;
class GIMatchTreePartitioner;
/// Describes the binding of a variable to the matched MIR
class GIMatchTreeVariableBinding {
/// The name of the variable described by this binding.
StringRef Name;
// The matched instruction it is bound to.
unsigned InstrID;
// The matched operand (if appropriate) it is bound to.
Optional<unsigned> OpIdx;
public:
GIMatchTreeVariableBinding(StringRef Name, unsigned InstrID,
Optional<unsigned> OpIdx = None)
: Name(Name), InstrID(InstrID), OpIdx(OpIdx) {}
bool isInstr() const { return !OpIdx.hasValue(); }
StringRef getName() const { return Name; }
unsigned getInstrID() const { return InstrID; }
unsigned getOpIdx() const {
assert(OpIdx.hasValue() && "Is not an operand binding");
return *OpIdx;
}
};
/// Associates a matchable with a leaf of the decision tree.
class GIMatchTreeLeafInfo {
public:
using const_var_binding_iterator =
std::vector<GIMatchTreeVariableBinding>::const_iterator;
using UntestedPredicatesTy = SmallVector<const GIMatchDagPredicate *, 1>;
using const_untested_predicates_iterator = UntestedPredicatesTy::const_iterator;
protected:
/// A name for the matchable. This is primarily for debugging.
StringRef Name;
/// Where rules have multiple roots, this is which root we're starting from.
unsigned RootIdx;
/// Opaque data the caller of the tree building code understands.
void *Data;
/// Has the decision tree covered every edge traversal? If it hasn't then this
/// is an unrecoverable error indicating there's something wrong with the
/// partitioners.
bool IsFullyTraversed;
/// Has the decision tree covered every predicate test? If it has, then
/// subsequent matchables on the same leaf are unreachable. If it hasn't, the
/// code that requested the GIMatchTree is responsible for finishing off any
/// remaining predicates.
bool IsFullyTested;
/// The variable bindings associated with this leaf so far.
std::vector<GIMatchTreeVariableBinding> VarBindings;
/// Any predicates left untested by the time we reach this leaf.
UntestedPredicatesTy UntestedPredicates;
public:
GIMatchTreeLeafInfo() { llvm_unreachable("Cannot default-construct"); }
GIMatchTreeLeafInfo(StringRef Name, unsigned RootIdx, void *Data)
: Name(Name), RootIdx(RootIdx), Data(Data), IsFullyTraversed(false),
IsFullyTested(false) {}
StringRef getName() const { return Name; }
unsigned getRootIdx() const { return RootIdx; }
template <class Ty> Ty *getTargetData() const {
return static_cast<Ty *>(Data);
}
bool isFullyTraversed() const { return IsFullyTraversed; }
void setIsFullyTraversed(bool V) { IsFullyTraversed = V; }
bool isFullyTested() const { return IsFullyTested; }
void setIsFullyTested(bool V) { IsFullyTested = V; }
void bindInstrVariable(StringRef Name, unsigned InstrID) {
VarBindings.emplace_back(Name, InstrID);
}
void bindOperandVariable(StringRef Name, unsigned InstrID, unsigned OpIdx) {
VarBindings.emplace_back(Name, InstrID, OpIdx);
}
const_var_binding_iterator var_bindings_begin() const {
return VarBindings.begin();
}
const_var_binding_iterator var_bindings_end() const {
return VarBindings.end();
}
iterator_range<const_var_binding_iterator> var_bindings() const {
return make_range(VarBindings.begin(), VarBindings.end());
}
iterator_range<const_untested_predicates_iterator> untested_predicates() const {
return make_range(UntestedPredicates.begin(), UntestedPredicates.end());
}
void addUntestedPredicate(const GIMatchDagPredicate *P) {
UntestedPredicates.push_back(P);
}
};
/// The nodes of a decision tree used to perform the match.
/// This will be used to generate the C++ code or state machine equivalent.
///
/// It should be noted that some nodes of this tree (most notably nodes handling
/// def -> use edges) will need to iterate over several possible matches. As
/// such, code generated from this will sometimes need to support backtracking.
class GIMatchTree {
using LeafVector = std::vector<GIMatchTreeLeafInfo>;
/// The partitioner that has been chosen for this node. This may be nullptr if
/// a partitioner hasn't been chosen yet or if the node is a leaf.
std::unique_ptr<GIMatchTreePartitioner> Partitioner;
/// All the leaves that are possible for this node of the tree.
/// Note: This should be emptied after the tree is built when there are
/// children but this currently isn't done to aid debuggability of the DOT
/// graph for the decision tree.
LeafVector PossibleLeaves;
/// The children of this node. The index into this array must match the index
/// chosen by the partitioner.
std::vector<GIMatchTree> Children;
void writeDOTGraphNode(raw_ostream &OS) const;
void writeDOTGraphEdges(raw_ostream &OS) const;
public:
void writeDOTGraph(raw_ostream &OS) const;
void setNumChildren(unsigned Num) { Children.resize(Num); }
void addPossibleLeaf(const GIMatchTreeLeafInfo &V, bool IsFullyTraversed,
bool IsFullyTested) {
PossibleLeaves.push_back(V);
PossibleLeaves.back().setIsFullyTraversed(IsFullyTraversed);
PossibleLeaves.back().setIsFullyTested(IsFullyTested);
}
void dropLeavesAfter(size_t Length) {
if (PossibleLeaves.size() > Length)
PossibleLeaves.resize(Length);
}
void setPartitioner(std::unique_ptr<GIMatchTreePartitioner> &&V) {
Partitioner = std::move(V);
}
GIMatchTreePartitioner *getPartitioner() const { return Partitioner.get(); }
std::vector<GIMatchTree>::iterator children_begin() {
return Children.begin();
}
std::vector<GIMatchTree>::iterator children_end() { return Children.end(); }
iterator_range<std::vector<GIMatchTree>::iterator> children() {
return make_range(children_begin(), children_end());
}
std::vector<GIMatchTree>::const_iterator children_begin() const {
return Children.begin();
}
std::vector<GIMatchTree>::const_iterator children_end() const {
return Children.end();
}
iterator_range<std::vector<GIMatchTree>::const_iterator> children() const {
return make_range(children_begin(), children_end());
}
LeafVector::const_iterator possible_leaves_begin() const {
return PossibleLeaves.begin();
}
LeafVector::const_iterator possible_leaves_end() const {
return PossibleLeaves.end();
}
iterator_range<LeafVector::const_iterator>
possible_leaves() const {
return make_range(possible_leaves_begin(), possible_leaves_end());
}
LeafVector::iterator possible_leaves_begin() {
return PossibleLeaves.begin();
}
LeafVector::iterator possible_leaves_end() {
return PossibleLeaves.end();
}
iterator_range<LeafVector::iterator> possible_leaves() {
return make_range(possible_leaves_begin(), possible_leaves_end());
}
};
/// Record information that is known about the instruction bound to this ID and
/// GIMatchDagInstrNode. Every rule gets its own set of
/// GIMatchTreeInstrInfo to bind the shared IDs to an instr node in its
/// DAG.
///
/// For example, if we know that there are 3 operands. We can record it here to
/// elide duplicate checks.
class GIMatchTreeInstrInfo {
/// The instruction ID for the matched instruction.
unsigned ID;
/// The corresponding instruction node in the MatchDAG.
const GIMatchDagInstr *InstrNode;
public:
GIMatchTreeInstrInfo(unsigned ID, const GIMatchDagInstr *InstrNode)
: ID(ID), InstrNode(InstrNode) {}
unsigned getID() const { return ID; }
const GIMatchDagInstr *getInstrNode() const { return InstrNode; }
};
/// Record information that is known about the operand bound to this ID, OpIdx,
/// and GIMatchDagInstrNode. Every rule gets its own set of
/// GIMatchTreeOperandInfo to bind the shared IDs to an operand of an
/// instr node from its DAG.
///
/// For example, if we know that there the operand is a register. We can record
/// it here to elide duplicate checks.
class GIMatchTreeOperandInfo {
/// The corresponding instruction node in the MatchDAG that the operand
/// belongs to.
const GIMatchDagInstr *InstrNode;
unsigned OpIdx;
public:
GIMatchTreeOperandInfo(const GIMatchDagInstr *InstrNode, unsigned OpIdx)
: InstrNode(InstrNode), OpIdx(OpIdx) {}
const GIMatchDagInstr *getInstrNode() const { return InstrNode; }
unsigned getOpIdx() const { return OpIdx; }
};
/// Represent a leaf of the match tree and any working data we need to build the
/// tree.
///
/// It's important to note that each rule can have multiple
/// GIMatchTreeBuilderLeafInfo's since the partitioners do not always partition
/// into mutually-exclusive partitions. For example:
/// R1: (FOO ..., ...)
/// R2: (oneof(FOO, BAR) ..., ...)
/// will partition by opcode into two partitions FOO=>[R1, R2], and BAR=>[R2]
///
/// As an optimization, all instructions, edges, and predicates in the DAGs are
/// numbered and tracked in BitVectors. As such, the GIMatchDAG must not be
/// modified once construction of the tree has begun.
class GIMatchTreeBuilderLeafInfo {
protected:
GIMatchTreeBuilder &Builder;
GIMatchTreeLeafInfo Info;
const GIMatchDag &MatchDag;
/// The association between GIMatchDagInstr* and GIMatchTreeInstrInfo.
/// The primary reason for this members existence is to allow the use of
/// InstrIDToInfo.lookup() since that requires that the value is
/// default-constructible.
DenseMap<const GIMatchDagInstr *, GIMatchTreeInstrInfo> InstrNodeToInfo;
/// The instruction information for a given ID in the context of this
/// particular leaf.
DenseMap<unsigned, GIMatchTreeInstrInfo *> InstrIDToInfo;
/// The operand information for a given ID and OpIdx in the context of this
/// particular leaf.
DenseMap<std::pair<unsigned, unsigned>, GIMatchTreeOperandInfo>
OperandIDToInfo;
public:
/// The remaining instrs/edges/predicates to visit
BitVector RemainingInstrNodes;
BitVector RemainingEdges;
BitVector RemainingPredicates;
// The remaining predicate dependencies for each predicate
std::vector<BitVector> UnsatisfiedPredDepsForPred;
/// The edges/predicates we can visit as a result of the declare*() calls we
/// have already made. We don't need an instrs version since edges imply the
/// instr.
BitVector TraversableEdges;
BitVector TestablePredicates;
/// Map predicates from the DAG to their position in the DAG predicate
/// iterators.
DenseMap<GIMatchDagPredicate *, unsigned> PredicateIDs;
/// Map predicate dependency edges from the DAG to their position in the DAG
/// predicate dependency iterators.
DenseMap<GIMatchDagPredicateDependencyEdge *, unsigned> PredicateDepIDs;
public:
GIMatchTreeBuilderLeafInfo(GIMatchTreeBuilder &Builder, StringRef Name,
unsigned RootIdx, const GIMatchDag &MatchDag,
void *Data);
StringRef getName() const { return Info.getName(); }
GIMatchTreeLeafInfo &getInfo() { return Info; }
const GIMatchTreeLeafInfo &getInfo() const { return Info; }
const GIMatchDag &getMatchDag() const { return MatchDag; }
unsigned getRootIdx() const { return Info.getRootIdx(); }
/// Has this DAG been fully traversed. This must be true by the time the tree
/// builder finishes.
bool isFullyTraversed() const {
// We don't need UnsatisfiedPredDepsForPred because RemainingPredicates
// can't be all-zero without satisfying all the dependencies. The same is
// almost true for Edges and Instrs but it's possible to have Instrs without
// Edges.
return RemainingInstrNodes.none() && RemainingEdges.none();
}
/// Has this DAG been fully tested. This hould be true by the time the tree
/// builder finishes but clients can finish any untested predicates left over
/// if it's not true.
bool isFullyTested() const {
// We don't need UnsatisfiedPredDepsForPred because RemainingPredicates
// can't be all-zero without satisfying all the dependencies. The same is
// almost true for Edges and Instrs but it's possible to have Instrs without
// Edges.
return RemainingInstrNodes.none() && RemainingEdges.none() &&
RemainingPredicates.none();
}
const GIMatchDagInstr *getInstr(unsigned Idx) const {
return *(MatchDag.instr_nodes_begin() + Idx);
}
const GIMatchDagEdge *getEdge(unsigned Idx) const {
return *(MatchDag.edges_begin() + Idx);
}
GIMatchDagEdge *getEdge(unsigned Idx) {
return *(MatchDag.edges_begin() + Idx);
}
const GIMatchDagPredicate *getPredicate(unsigned Idx) const {
return *(MatchDag.predicates_begin() + Idx);
}
iterator_range<llvm::BitVector::const_set_bits_iterator>
untested_instrs() const {
return RemainingInstrNodes.set_bits();
}
iterator_range<llvm::BitVector::const_set_bits_iterator>
untested_edges() const {
return RemainingEdges.set_bits();
}
iterator_range<llvm::BitVector::const_set_bits_iterator>
untested_predicates() const {
return RemainingPredicates.set_bits();
}
/// Bind an instr node to the given ID and clear any blocking dependencies
/// that were waiting for it.
void declareInstr(const GIMatchDagInstr *Instr, unsigned ID);
/// Bind an operand to the given ID and OpIdx and clear any blocking
/// dependencies that were waiting for it.
void declareOperand(unsigned InstrID, unsigned OpIdx);
GIMatchTreeInstrInfo *getInstrInfo(unsigned ID) const {
auto I = InstrIDToInfo.find(ID);
if (I != InstrIDToInfo.end())
return I->second;
return nullptr;
}
void dump(raw_ostream &OS) const {
OS << "Leaf " << getName() << " for root #" << getRootIdx() << "\n";
MatchDag.print(OS);
for (const auto &I : InstrIDToInfo)
OS << "Declared Instr #" << I.first << "\n";
for (const auto &I : OperandIDToInfo)
OS << "Declared Instr #" << I.first.first << ", Op #" << I.first.second
<< "\n";
OS << RemainingInstrNodes.count() << " untested instrs of "
<< RemainingInstrNodes.size() << "\n";
OS << RemainingEdges.count() << " untested edges of "
<< RemainingEdges.size() << "\n";
OS << RemainingPredicates.count() << " untested predicates of "
<< RemainingPredicates.size() << "\n";
OS << TraversableEdges.count() << " edges could be traversed\n";
OS << TestablePredicates.count() << " predicates could be tested\n";
}
};
/// The tree builder has a fairly tough job. It's purpose is to merge all the
/// DAGs from the ruleset into a decision tree that walks all of them
/// simultaneously and identifies the rule that was matched. In addition to
/// that, it also needs to find the most efficient order to make decisions
/// without violating any dependencies and ensure that every DAG covers every
/// instr/edge/predicate.
class GIMatchTreeBuilder {
public:
using LeafVec = std::vector<GIMatchTreeBuilderLeafInfo>;
protected:
/// The leaves that the resulting decision tree will distinguish.
LeafVec Leaves;
/// The tree node being constructed.
GIMatchTree *TreeNode;
/// The builders for each subtree resulting from the current decision.
std::vector<GIMatchTreeBuilder> SubtreeBuilders;
/// The possible partitioners we could apply right now.
std::vector<std::unique_ptr<GIMatchTreePartitioner>> Partitioners;
/// The next instruction ID to allocate when requested by the chosen
/// Partitioner.
unsigned NextInstrID;
/// Use any context we have stored to cull partitioners that only test things
/// we already know. At the time of writing, there's no need to do anything
/// here but it will become important once, for example, there is a
/// num-operands and an opcode partitioner. This is because applying an opcode
/// partitioner (usually) makes the number of operands known which makes
/// additional checking pointless.
void filterRedundantPartitioners();
/// Evaluate the available partioners and select the best one at the moment.
void evaluatePartitioners();
/// Construct the current tree node.
void runStep();
public:
GIMatchTreeBuilder(unsigned NextInstrID) : NextInstrID(NextInstrID) {}
GIMatchTreeBuilder(GIMatchTree *TreeNode, unsigned NextInstrID)
: TreeNode(TreeNode), NextInstrID(NextInstrID) {}
void addLeaf(StringRef Name, unsigned RootIdx, const GIMatchDag &MatchDag,
void *Data) {
Leaves.emplace_back(*this, Name, RootIdx, MatchDag, Data);
}
void addLeaf(const GIMatchTreeBuilderLeafInfo &L) { Leaves.push_back(L); }
void addPartitioner(std::unique_ptr<GIMatchTreePartitioner> P) {
Partitioners.push_back(std::move(P));
}
void addPartitionersForInstr(unsigned InstrIdx);
void addPartitionersForOperand(unsigned InstrID, unsigned OpIdx);
LeafVec &getPossibleLeaves() { return Leaves; }
unsigned allocInstrID() { return NextInstrID++; }
/// Construct the decision tree.
std::unique_ptr<GIMatchTree> run();
};
/// Partitioners are the core of the tree builder and are unfortunately rather
/// tricky to write.
class GIMatchTreePartitioner {
protected:
/// The partitions resulting from applying the partitioner to the possible
/// leaves. The keys must be consecutive integers starting from 0. This can
/// lead to some unfortunate situations where partitioners test a predicate
/// and use 0 for success and 1 for failure if the ruleset encounters a
/// success case first but is necessary to assign the partition to one of the
/// tree nodes children. As a result, you usually need some kind of
/// indirection to map the natural keys (e.g. ptrs/bools) to this linear
/// sequence. The values are a bitvector indicating which leaves belong to
/// this partition.
DenseMap<unsigned, BitVector> Partitions;
public:
virtual ~GIMatchTreePartitioner() {}
virtual std::unique_ptr<GIMatchTreePartitioner> clone() const = 0;
/// Determines which partitions the given leaves belong to. A leaf may belong
/// to multiple partitions in which case it will be duplicated during
/// applyForPartition().
///
/// This function can be rather complicated. A few particular things to be
/// aware of include:
/// * One leaf can be assigned to multiple partitions when there's some
/// ambiguity.
/// * Not all DAG's for the leaves may be able to perform the test. For
/// example, the opcode partitiioner must account for one DAG being a
/// superset of another such as [(ADD ..., ..., ...)], and [(MUL t, ...,
/// ...), (ADD ..., t, ...)]
/// * Attaching meaning to a particular partition index will generally not
/// work due to the '0, 1, ..., n' requirement. You might encounter cases
/// where only partition 1 is seen, leaving a missing 0.
/// * Finding a specific predicate such as the opcode predicate for a specific
/// instruction is non-trivial. It's often O(NumPredicates), leading to
/// O(NumPredicates*NumRules) when applied to the whole ruleset. The good
/// news there is that n is typically small thanks to predicate dependencies
/// limiting how many are testable at once. Also, with opcode and type
/// predicates being so frequent the value of m drops very fast too. It
/// wouldn't be terribly surprising to see a 10k ruleset drop down to an
/// average of 100 leaves per partition after a single opcode partitioner.
/// * The same goes for finding specific edges. The need to traverse them in
/// dependency order dramatically limits the search space at any given
/// moment.
/// * If you need to add a leaf to all partitions, make sure you don't forget
/// them when adding partitions later.
virtual void repartition(GIMatchTreeBuilder::LeafVec &Leaves) = 0;
/// Delegate the leaves for a given partition to the corresponding subbuilder,
/// update any recorded context for this partition (e.g. allocate instr id's
/// for instrs recorder by the current node), and clear any blocking
/// dependencies this partitioner resolved.
virtual void applyForPartition(unsigned PartitionIdx,
GIMatchTreeBuilder &Builder,
GIMatchTreeBuilder &SubBuilder) = 0;
/// Return a BitVector indicating which leaves should be transferred to the
/// specified partition. Note that the same leaf can be indicated for multiple
/// partitions.
BitVector getPossibleLeavesForPartition(unsigned Idx) {
const auto &I = Partitions.find(Idx);
assert(I != Partitions.end() && "Requested non-existant partition");
return I->second;
}
size_t getNumPartitions() const { return Partitions.size(); }
size_t getNumLeavesWithDupes() const {
size_t S = 0;
for (const auto &P : Partitions)
S += P.second.size();
return S;
}
/// Emit a brief description of the partitioner suitable for debug printing or
/// use in a DOT graph.
virtual void emitDescription(raw_ostream &OS) const = 0;
/// Emit a label for the given partition suitable for debug printing or use in
/// a DOT graph.
virtual void emitPartitionName(raw_ostream &OS, unsigned Idx) const = 0;
/// Emit a long description of how the partitioner partitions the leaves.
virtual void emitPartitionResults(raw_ostream &OS) const = 0;
/// Generate code to select between partitions based on the MIR being matched.
/// This is typically a switch statement that picks a partition index.
virtual void generatePartitionSelectorCode(raw_ostream &OS,
StringRef Indent) const = 0;
};
/// Partition according to the opcode of the instruction.
///
/// Numbers CodeGenInstr ptrs for use as partition ID's. One special partition,
/// nullptr, represents the case where the instruction isn't known.
///
/// * If the opcode can be tested and is a single opcode, create the partition
/// for that opcode and assign the leaf to it. This partition no longer needs
/// to test the opcode, and many details about the instruction will usually
/// become known (e.g. number of operands for non-variadic instrs) via the
/// CodeGenInstr ptr.
/// * (not implemented yet) If the opcode can be tested and is a choice of
/// opcodes, then the leaf can be treated like the single-opcode case but must
/// be added to all relevant partitions and not quite as much becomes known as
/// a result. That said, multiple-choice opcodes are likely similar enough
/// (because if they aren't then handling them together makes little sense)
/// that plenty still becomes known. The main implementation issue with this
/// is having a description to represent the commonality between instructions.
/// * If the opcode is not tested, the leaf must be added to all partitions
/// including the wildcard nullptr partition. What becomes known as a result
/// varies between partitions.
/// * If the instruction to be tested is not declared then add the leaf to all
/// partitions. This occurs when we encounter one rule that is a superset of
/// the other and we are still matching the remainder of the superset. The
/// result is that the cases that don't match the superset will match the
/// subset rule, while the ones that do match the superset will match either
/// (which one is algorithm dependent but will usually be the superset).
class GIMatchTreeOpcodePartitioner : public GIMatchTreePartitioner {
unsigned InstrID;
DenseMap<const CodeGenInstruction *, unsigned> InstrToPartition;
std::vector<const CodeGenInstruction *> PartitionToInstr;
std::vector<BitVector> TestedPredicates;
public:
GIMatchTreeOpcodePartitioner(unsigned InstrID) : InstrID(InstrID) {}
std::unique_ptr<GIMatchTreePartitioner> clone() const override {
return std::make_unique<GIMatchTreeOpcodePartitioner>(*this);
}
void emitDescription(raw_ostream &OS) const override {
OS << "MI[" << InstrID << "].getOpcode()";
}
void emitPartitionName(raw_ostream &OS, unsigned Idx) const override;
void repartition(GIMatchTreeBuilder::LeafVec &Leaves) override;
void applyForPartition(unsigned Idx, GIMatchTreeBuilder &SubBuilder,
GIMatchTreeBuilder &Builder) override;
void emitPartitionResults(raw_ostream &OS) const override;
void generatePartitionSelectorCode(raw_ostream &OS,
StringRef Indent) const override;
};
class GIMatchTreeVRegDefPartitioner : public GIMatchTreePartitioner {
unsigned NewInstrID = -1;
unsigned InstrID;
unsigned OpIdx;
std::vector<BitVector> TraversedEdges;
DenseMap<unsigned, unsigned> ResultToPartition;
std::vector<bool> PartitionToResult;
void addToPartition(bool Result, unsigned LeafIdx);
public:
GIMatchTreeVRegDefPartitioner(unsigned InstrID, unsigned OpIdx)
: InstrID(InstrID), OpIdx(OpIdx) {}
std::unique_ptr<GIMatchTreePartitioner> clone() const override {
return std::make_unique<GIMatchTreeVRegDefPartitioner>(*this);
}
void emitDescription(raw_ostream &OS) const override {
OS << "MI[" << NewInstrID << "] = getVRegDef(MI[" << InstrID
<< "].getOperand(" << OpIdx << "))";
}
void emitPartitionName(raw_ostream &OS, unsigned Idx) const override {
bool Result = PartitionToResult[Idx];
if (Result)
OS << "true";
else
OS << "false";
}
void repartition(GIMatchTreeBuilder::LeafVec &Leaves) override;
void applyForPartition(unsigned PartitionIdx, GIMatchTreeBuilder &Builder,
GIMatchTreeBuilder &SubBuilder) override;
void emitPartitionResults(raw_ostream &OS) const override;
void generatePartitionSelectorCode(raw_ostream &OS,
StringRef Indent) const override;
};
} // end namespace llvm
#endif // ifndef LLVM_UTILS_TABLEGEN_GIMATCHTREE_H