GIMatchTree.h 25.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
//===- GIMatchTree.h - A decision tree to match GIMatchDag's --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_UTILS_TABLEGEN_GIMATCHTREE_H
#define LLVM_UTILS_TABLEGEN_GIMATCHTREE_H

#include "GIMatchDag.h"
#include "llvm/ADT/BitVector.h"

namespace llvm {
class raw_ostream;

class GIMatchTreeBuilder;
class GIMatchTreePartitioner;

/// Describes the binding of a variable to the matched MIR
class GIMatchTreeVariableBinding {
  /// The name of the variable described by this binding.
  StringRef Name;
  // The matched instruction it is bound to. 
  unsigned InstrID;
  // The matched operand (if appropriate) it is bound to. 
  Optional<unsigned> OpIdx;

public:
  GIMatchTreeVariableBinding(StringRef Name, unsigned InstrID,
                             Optional<unsigned> OpIdx = None)
      : Name(Name), InstrID(InstrID), OpIdx(OpIdx) {}

  bool isInstr() const { return !OpIdx.hasValue(); }
  StringRef getName() const { return Name; }
  unsigned getInstrID() const { return InstrID; }
  unsigned getOpIdx() const {
    assert(OpIdx.hasValue() && "Is not an operand binding");
    return *OpIdx;
  }
};

/// Associates a matchable with a leaf of the decision tree.
class GIMatchTreeLeafInfo {
public:
  using const_var_binding_iterator =
      std::vector<GIMatchTreeVariableBinding>::const_iterator;
  using UntestedPredicatesTy = SmallVector<const GIMatchDagPredicate *, 1>;
  using const_untested_predicates_iterator = UntestedPredicatesTy::const_iterator;

protected:
  /// A name for the matchable. This is primarily for debugging.
  StringRef Name;
  /// Where rules have multiple roots, this is which root we're starting from.
  unsigned RootIdx;
  /// Opaque data the caller of the tree building code understands.
  void *Data;
  /// Has the decision tree covered every edge traversal? If it hasn't then this
  /// is an unrecoverable error indicating there's something wrong with the
  /// partitioners.
  bool IsFullyTraversed;
  /// Has the decision tree covered every predicate test? If it has, then
  /// subsequent matchables on the same leaf are unreachable. If it hasn't, the
  /// code that requested the GIMatchTree is responsible for finishing off any
  /// remaining predicates.
  bool IsFullyTested;
  /// The variable bindings associated with this leaf so far.
  std::vector<GIMatchTreeVariableBinding> VarBindings;
  /// Any predicates left untested by the time we reach this leaf.
  UntestedPredicatesTy UntestedPredicates;

public:
  GIMatchTreeLeafInfo() { llvm_unreachable("Cannot default-construct"); }
  GIMatchTreeLeafInfo(StringRef Name, unsigned RootIdx, void *Data)
      : Name(Name), RootIdx(RootIdx), Data(Data), IsFullyTraversed(false),
        IsFullyTested(false) {}

  StringRef getName() const { return Name; }
  unsigned getRootIdx() const { return RootIdx; }
  template <class Ty> Ty *getTargetData() const {
    return static_cast<Ty *>(Data);
  }
  bool isFullyTraversed() const { return IsFullyTraversed; }
  void setIsFullyTraversed(bool V) { IsFullyTraversed = V; }
  bool isFullyTested() const { return IsFullyTested; }
  void setIsFullyTested(bool V) { IsFullyTested = V; }

  void bindInstrVariable(StringRef Name, unsigned InstrID) {
    VarBindings.emplace_back(Name, InstrID);
  }
  void bindOperandVariable(StringRef Name, unsigned InstrID, unsigned OpIdx) {
    VarBindings.emplace_back(Name, InstrID, OpIdx);
  }

  const_var_binding_iterator var_bindings_begin() const {
    return VarBindings.begin();
  }
  const_var_binding_iterator var_bindings_end() const {
    return VarBindings.end();
  }
  iterator_range<const_var_binding_iterator> var_bindings() const {
    return make_range(VarBindings.begin(), VarBindings.end());
  }
  iterator_range<const_untested_predicates_iterator> untested_predicates() const {
    return make_range(UntestedPredicates.begin(), UntestedPredicates.end());
  }
  void addUntestedPredicate(const GIMatchDagPredicate *P) {
    UntestedPredicates.push_back(P);
  }
};

/// The nodes of a decision tree used to perform the match.
/// This will be used to generate the C++ code or state machine equivalent.
///
/// It should be noted that some nodes of this tree (most notably nodes handling
/// def -> use edges) will need to iterate over several possible matches. As
/// such, code generated from this will sometimes need to support backtracking.
class GIMatchTree {
  using LeafVector = std::vector<GIMatchTreeLeafInfo>;

  /// The partitioner that has been chosen for this node. This may be nullptr if
  /// a partitioner hasn't been chosen yet or if the node is a leaf.
  std::unique_ptr<GIMatchTreePartitioner> Partitioner;
  /// All the leaves that are possible for this node of the tree.
  /// Note: This should be emptied after the tree is built when there are
  /// children but this currently isn't done to aid debuggability of the DOT
  /// graph for the decision tree.
  LeafVector PossibleLeaves;
  /// The children of this node. The index into this array must match the index
  /// chosen by the partitioner.
  std::vector<GIMatchTree> Children;

  void writeDOTGraphNode(raw_ostream &OS) const;
  void writeDOTGraphEdges(raw_ostream &OS) const;

public:
  void writeDOTGraph(raw_ostream &OS) const;

  void setNumChildren(unsigned Num) { Children.resize(Num); }
  void addPossibleLeaf(const GIMatchTreeLeafInfo &V, bool IsFullyTraversed,
                       bool IsFullyTested) {
    PossibleLeaves.push_back(V);
    PossibleLeaves.back().setIsFullyTraversed(IsFullyTraversed);
    PossibleLeaves.back().setIsFullyTested(IsFullyTested);
  }
  void dropLeavesAfter(size_t Length) {
    if (PossibleLeaves.size() > Length)
      PossibleLeaves.resize(Length);
  }
  void setPartitioner(std::unique_ptr<GIMatchTreePartitioner> &&V) {
    Partitioner = std::move(V);
  }
  GIMatchTreePartitioner *getPartitioner() const { return Partitioner.get(); }

  std::vector<GIMatchTree>::iterator children_begin() {
    return Children.begin();
  }
  std::vector<GIMatchTree>::iterator children_end() { return Children.end(); }
  iterator_range<std::vector<GIMatchTree>::iterator> children() {
    return make_range(children_begin(), children_end());
  }
  std::vector<GIMatchTree>::const_iterator children_begin() const {
    return Children.begin();
  }
  std::vector<GIMatchTree>::const_iterator children_end() const {
    return Children.end();
  }
  iterator_range<std::vector<GIMatchTree>::const_iterator> children() const {
    return make_range(children_begin(), children_end());
  }

  LeafVector::const_iterator possible_leaves_begin() const {
    return PossibleLeaves.begin();
  }
  LeafVector::const_iterator possible_leaves_end() const {
    return PossibleLeaves.end();
  }
  iterator_range<LeafVector::const_iterator>
  possible_leaves() const {
    return make_range(possible_leaves_begin(), possible_leaves_end());
  }
  LeafVector::iterator possible_leaves_begin() {
    return PossibleLeaves.begin();
  }
  LeafVector::iterator possible_leaves_end() {
    return PossibleLeaves.end();
  }
  iterator_range<LeafVector::iterator> possible_leaves() {
    return make_range(possible_leaves_begin(), possible_leaves_end());
  }
};

/// Record information that is known about the instruction bound to this ID and
/// GIMatchDagInstrNode. Every rule gets its own set of
/// GIMatchTreeInstrInfo to bind the shared IDs to an instr node in its
/// DAG.
///
/// For example, if we know that there are 3 operands. We can record it here to
/// elide duplicate checks.
class GIMatchTreeInstrInfo {
  /// The instruction ID for the matched instruction.
  unsigned ID;
  /// The corresponding instruction node in the MatchDAG.
  const GIMatchDagInstr *InstrNode;

public:
  GIMatchTreeInstrInfo(unsigned ID, const GIMatchDagInstr *InstrNode)
      : ID(ID), InstrNode(InstrNode) {}

  unsigned getID() const { return ID; }
  const GIMatchDagInstr *getInstrNode() const { return InstrNode; }
};

/// Record information that is known about the operand bound to this ID, OpIdx,
/// and GIMatchDagInstrNode. Every rule gets its own set of
/// GIMatchTreeOperandInfo to bind the shared IDs to an operand of an
/// instr node from its DAG.
///
/// For example, if we know that there the operand is a register. We can record
/// it here to elide duplicate checks.
class GIMatchTreeOperandInfo {
  /// The corresponding instruction node in the MatchDAG that the operand
  /// belongs to.
  const GIMatchDagInstr *InstrNode;
  unsigned OpIdx;

public:
  GIMatchTreeOperandInfo(const GIMatchDagInstr *InstrNode, unsigned OpIdx)
      : InstrNode(InstrNode), OpIdx(OpIdx) {}

  const GIMatchDagInstr *getInstrNode() const { return InstrNode; }
  unsigned getOpIdx() const { return OpIdx; }
};

/// Represent a leaf of the match tree and any working data we need to build the
/// tree.
///
/// It's important to note that each rule can have multiple
/// GIMatchTreeBuilderLeafInfo's since the partitioners do not always partition
/// into mutually-exclusive partitions. For example:
///   R1: (FOO ..., ...)
///   R2: (oneof(FOO, BAR) ..., ...)
/// will partition by opcode into two partitions FOO=>[R1, R2], and BAR=>[R2]
///
/// As an optimization, all instructions, edges, and predicates in the DAGs are
/// numbered and tracked in BitVectors. As such, the GIMatchDAG must not be
/// modified once construction of the tree has begun.
class GIMatchTreeBuilderLeafInfo {
protected:
  GIMatchTreeBuilder &Builder;
  GIMatchTreeLeafInfo Info;
  const GIMatchDag &MatchDag;
  /// The association between GIMatchDagInstr* and GIMatchTreeInstrInfo.
  /// The primary reason for this members existence is to allow the use of
  /// InstrIDToInfo.lookup() since that requires that the value is
  /// default-constructible.
  DenseMap<const GIMatchDagInstr *, GIMatchTreeInstrInfo> InstrNodeToInfo;
  /// The instruction information for a given ID in the context of this
  /// particular leaf.
  DenseMap<unsigned, GIMatchTreeInstrInfo *> InstrIDToInfo;
  /// The operand information for a given ID and OpIdx in the context of this
  /// particular leaf.
  DenseMap<std::pair<unsigned, unsigned>, GIMatchTreeOperandInfo>
      OperandIDToInfo;

public:
  /// The remaining instrs/edges/predicates to visit
  BitVector RemainingInstrNodes;
  BitVector RemainingEdges;
  BitVector RemainingPredicates;

  // The remaining predicate dependencies for each predicate
  std::vector<BitVector> UnsatisfiedPredDepsForPred;

  /// The edges/predicates we can visit as a result of the declare*() calls we
  /// have already made. We don't need an instrs version since edges imply the
  /// instr.
  BitVector TraversableEdges;
  BitVector TestablePredicates;

  /// Map predicates from the DAG to their position in the DAG predicate
  /// iterators.
  DenseMap<GIMatchDagPredicate *, unsigned> PredicateIDs;
  /// Map predicate dependency edges from the DAG to their position in the DAG
  /// predicate dependency iterators.
  DenseMap<GIMatchDagPredicateDependencyEdge *, unsigned> PredicateDepIDs;

public:
  GIMatchTreeBuilderLeafInfo(GIMatchTreeBuilder &Builder, StringRef Name,
                             unsigned RootIdx, const GIMatchDag &MatchDag,
                             void *Data);

  StringRef getName() const { return Info.getName(); }
  GIMatchTreeLeafInfo &getInfo() { return Info; }
  const GIMatchTreeLeafInfo &getInfo() const { return Info; }
  const GIMatchDag &getMatchDag() const { return MatchDag; }
  unsigned getRootIdx() const { return Info.getRootIdx(); }

  /// Has this DAG been fully traversed. This must be true by the time the tree
  /// builder finishes.
  bool isFullyTraversed() const {
    // We don't need UnsatisfiedPredDepsForPred because RemainingPredicates
    // can't be all-zero without satisfying all the dependencies. The same is
    // almost true for Edges and Instrs but it's possible to have Instrs without
    // Edges.
    return RemainingInstrNodes.none() && RemainingEdges.none();
  }

  /// Has this DAG been fully tested. This hould be true by the time the tree
  /// builder finishes but clients can finish any untested predicates left over
  /// if it's not true.
  bool isFullyTested() const {
    // We don't need UnsatisfiedPredDepsForPred because RemainingPredicates
    // can't be all-zero without satisfying all the dependencies. The same is
    // almost true for Edges and Instrs but it's possible to have Instrs without
    // Edges.
    return RemainingInstrNodes.none() && RemainingEdges.none() &&
           RemainingPredicates.none();
  }

  const GIMatchDagInstr *getInstr(unsigned Idx) const {
    return *(MatchDag.instr_nodes_begin() + Idx);
  }
  const GIMatchDagEdge *getEdge(unsigned Idx) const {
    return *(MatchDag.edges_begin() + Idx);
  }
  GIMatchDagEdge *getEdge(unsigned Idx) {
    return *(MatchDag.edges_begin() + Idx);
  }
  const GIMatchDagPredicate *getPredicate(unsigned Idx) const {
    return *(MatchDag.predicates_begin() + Idx);
  }
  iterator_range<llvm::BitVector::const_set_bits_iterator>
  untested_instrs() const {
    return RemainingInstrNodes.set_bits();
  }
  iterator_range<llvm::BitVector::const_set_bits_iterator>
  untested_edges() const {
    return RemainingEdges.set_bits();
  }
  iterator_range<llvm::BitVector::const_set_bits_iterator>
  untested_predicates() const {
    return RemainingPredicates.set_bits();
  }

  /// Bind an instr node to the given ID and clear any blocking dependencies
  /// that were waiting for it.
  void declareInstr(const GIMatchDagInstr *Instr, unsigned ID);

  /// Bind an operand to the given ID and OpIdx and clear any blocking
  /// dependencies that were waiting for it.
  void declareOperand(unsigned InstrID, unsigned OpIdx);

  GIMatchTreeInstrInfo *getInstrInfo(unsigned ID) const {
    auto I = InstrIDToInfo.find(ID);
    if (I != InstrIDToInfo.end())
      return I->second;
    return nullptr;
  }

  void dump(raw_ostream &OS) const {
    OS << "Leaf " << getName() << " for root #" << getRootIdx() << "\n";
    MatchDag.print(OS);
    for (const auto &I : InstrIDToInfo)
      OS << "Declared Instr #" << I.first << "\n";
    for (const auto &I : OperandIDToInfo)
      OS << "Declared Instr #" << I.first.first << ", Op #" << I.first.second
         << "\n";
    OS << RemainingInstrNodes.count() << " untested instrs of "
       << RemainingInstrNodes.size() << "\n";
    OS << RemainingEdges.count() << " untested edges of "
       << RemainingEdges.size() << "\n";
    OS << RemainingPredicates.count() << " untested predicates of "
       << RemainingPredicates.size() << "\n";

    OS << TraversableEdges.count() << " edges could be traversed\n";
    OS << TestablePredicates.count() << " predicates could be tested\n";
  }
};

/// The tree builder has a fairly tough job. It's purpose is to merge all the
/// DAGs from the ruleset into a decision tree that walks all of them
/// simultaneously and identifies the rule that was matched. In addition to
/// that, it also needs to find the most efficient order to make decisions
/// without violating any dependencies and ensure that every DAG covers every
/// instr/edge/predicate.
class GIMatchTreeBuilder {
public:
  using LeafVec = std::vector<GIMatchTreeBuilderLeafInfo>;

protected:
  /// The leaves that the resulting decision tree will distinguish.
  LeafVec Leaves;
  /// The tree node being constructed.
  GIMatchTree *TreeNode;
  /// The builders for each subtree resulting from the current decision.
  std::vector<GIMatchTreeBuilder> SubtreeBuilders;
  /// The possible partitioners we could apply right now.
  std::vector<std::unique_ptr<GIMatchTreePartitioner>> Partitioners;
  /// The next instruction ID to allocate when requested by the chosen
  /// Partitioner.
  unsigned NextInstrID;

  /// Use any context we have stored to cull partitioners that only test things
  /// we already know. At the time of writing, there's no need to do anything
  /// here but it will become important once, for example, there is a
  /// num-operands and an opcode partitioner. This is because applying an opcode
  /// partitioner (usually) makes the number of operands known which makes
  /// additional checking pointless.
  void filterRedundantPartitioners();

  /// Evaluate the available partioners and select the best one at the moment.
  void evaluatePartitioners();

  /// Construct the current tree node.
  void runStep();

public:
  GIMatchTreeBuilder(unsigned NextInstrID) : NextInstrID(NextInstrID) {}
  GIMatchTreeBuilder(GIMatchTree *TreeNode, unsigned NextInstrID)
      : TreeNode(TreeNode), NextInstrID(NextInstrID) {}

  void addLeaf(StringRef Name, unsigned RootIdx, const GIMatchDag &MatchDag,
               void *Data) {
    Leaves.emplace_back(*this, Name, RootIdx, MatchDag, Data);
  }
  void addLeaf(const GIMatchTreeBuilderLeafInfo &L) { Leaves.push_back(L); }
  void addPartitioner(std::unique_ptr<GIMatchTreePartitioner> P) {
    Partitioners.push_back(std::move(P));
  }
  void addPartitionersForInstr(unsigned InstrIdx);
  void addPartitionersForOperand(unsigned InstrID, unsigned OpIdx);

  LeafVec &getPossibleLeaves() { return Leaves; }

  unsigned allocInstrID() { return NextInstrID++; }

  /// Construct the decision tree.
  std::unique_ptr<GIMatchTree> run();
};

/// Partitioners are the core of the tree builder and are unfortunately rather
/// tricky to write.
class GIMatchTreePartitioner {
protected:
  /// The partitions resulting from applying the partitioner to the possible
  /// leaves. The keys must be consecutive integers starting from 0. This can
  /// lead to some unfortunate situations where partitioners test a predicate
  /// and use 0 for success and 1 for failure if the ruleset encounters a
  /// success case first but is necessary to assign the partition to one of the
  /// tree nodes children. As a result, you usually need some kind of
  /// indirection to map the natural keys (e.g. ptrs/bools) to this linear
  /// sequence. The values are a bitvector indicating which leaves belong to
  /// this partition.
  DenseMap<unsigned, BitVector> Partitions;

public:
  virtual ~GIMatchTreePartitioner() {}
  virtual std::unique_ptr<GIMatchTreePartitioner> clone() const = 0;

  /// Determines which partitions the given leaves belong to. A leaf may belong
  /// to multiple partitions in which case it will be duplicated during
  /// applyForPartition().
  ///
  /// This function can be rather complicated. A few particular things to be
  /// aware of include:
  /// * One leaf can be assigned to multiple partitions when there's some
  ///   ambiguity.
  /// * Not all DAG's for the leaves may be able to perform the test. For
  ///   example, the opcode partitiioner must account for one DAG being a
  ///   superset of another such as [(ADD ..., ..., ...)], and [(MUL t, ...,
  ///   ...), (ADD ..., t, ...)]
  /// * Attaching meaning to a particular partition index will generally not
  ///   work due to the '0, 1, ..., n' requirement. You might encounter cases
  ///   where only partition 1 is seen, leaving a missing 0.
  /// * Finding a specific predicate such as the opcode predicate for a specific
  ///   instruction is non-trivial. It's often O(NumPredicates), leading to
  ///   O(NumPredicates*NumRules) when applied to the whole ruleset. The good
  ///   news there is that n is typically small thanks to predicate dependencies
  ///   limiting how many are testable at once. Also, with opcode and type
  ///   predicates being so frequent the value of m drops very fast too. It
  ///   wouldn't be terribly surprising to see a 10k ruleset drop down to an
  ///   average of 100 leaves per partition after a single opcode partitioner.
  /// * The same goes for finding specific edges. The need to traverse them in
  ///   dependency order dramatically limits the search space at any given
  ///   moment.
  /// * If you need to add a leaf to all partitions, make sure you don't forget
  ///   them when adding partitions later.
  virtual void repartition(GIMatchTreeBuilder::LeafVec &Leaves) = 0;

  /// Delegate the leaves for a given partition to the corresponding subbuilder,
  /// update any recorded context for this partition (e.g. allocate instr id's
  /// for instrs recorder by the current node), and clear any blocking
  /// dependencies this partitioner resolved.
  virtual void applyForPartition(unsigned PartitionIdx,
                                 GIMatchTreeBuilder &Builder,
                                 GIMatchTreeBuilder &SubBuilder) = 0;

  /// Return a BitVector indicating which leaves should be transferred to the
  /// specified partition. Note that the same leaf can be indicated for multiple
  /// partitions.
  BitVector getPossibleLeavesForPartition(unsigned Idx) {
    const auto &I = Partitions.find(Idx);
    assert(I != Partitions.end() && "Requested non-existant partition");
    return I->second;
  }

  size_t getNumPartitions() const { return Partitions.size(); }
  size_t getNumLeavesWithDupes() const {
    size_t S = 0;
    for (const auto &P : Partitions)
      S += P.second.size();
    return S;
  }

  /// Emit a brief description of the partitioner suitable for debug printing or
  /// use in a DOT graph.
  virtual void emitDescription(raw_ostream &OS) const = 0;
  /// Emit a label for the given partition suitable for debug printing or use in
  /// a DOT graph.
  virtual void emitPartitionName(raw_ostream &OS, unsigned Idx) const = 0;

  /// Emit a long description of how the partitioner partitions the leaves.
  virtual void emitPartitionResults(raw_ostream &OS) const = 0;

  /// Generate code to select between partitions based on the MIR being matched.
  /// This is typically a switch statement that picks a partition index.
  virtual void generatePartitionSelectorCode(raw_ostream &OS,
                                             StringRef Indent) const = 0;
};

/// Partition according to the opcode of the instruction.
///
/// Numbers CodeGenInstr ptrs for use as partition ID's. One special partition,
/// nullptr, represents the case where the instruction isn't known.
///
/// * If the opcode can be tested and is a single opcode, create the partition
///   for that opcode and assign the leaf to it. This partition no longer needs
///   to test the opcode, and many details about the instruction will usually
///   become known (e.g. number of operands for non-variadic instrs) via the
///   CodeGenInstr ptr.
/// * (not implemented yet) If the opcode can be tested and is a choice of
///   opcodes, then the leaf can be treated like the single-opcode case but must
///   be added to all relevant partitions and not quite as much becomes known as
///   a result. That said, multiple-choice opcodes are likely similar enough
///   (because if they aren't then handling them together makes little sense)
///   that plenty still becomes known. The main implementation issue with this
///   is having a description to represent the commonality between instructions.
/// * If the opcode is not tested, the leaf must be added to all partitions
///   including the wildcard nullptr partition. What becomes known as a result
///   varies between partitions.
/// * If the instruction to be tested is not declared then add the leaf to all
///   partitions. This occurs when we encounter one rule that is a superset of
///   the other and we are still matching the remainder of the superset. The
///   result is that the cases that don't match the superset will match the
///   subset rule, while the ones that do match the superset will match either
///   (which one is algorithm dependent but will usually be the superset).
class GIMatchTreeOpcodePartitioner : public GIMatchTreePartitioner {
  unsigned InstrID;
  DenseMap<const CodeGenInstruction *, unsigned> InstrToPartition;
  std::vector<const CodeGenInstruction *> PartitionToInstr;
  std::vector<BitVector> TestedPredicates;

public:
  GIMatchTreeOpcodePartitioner(unsigned InstrID) : InstrID(InstrID) {}

  std::unique_ptr<GIMatchTreePartitioner> clone() const override {
    return std::make_unique<GIMatchTreeOpcodePartitioner>(*this);
  }

  void emitDescription(raw_ostream &OS) const override {
    OS << "MI[" << InstrID << "].getOpcode()";
  }

  void emitPartitionName(raw_ostream &OS, unsigned Idx) const override;

  void repartition(GIMatchTreeBuilder::LeafVec &Leaves) override;
  void applyForPartition(unsigned Idx, GIMatchTreeBuilder &SubBuilder,
                         GIMatchTreeBuilder &Builder) override;

  void emitPartitionResults(raw_ostream &OS) const override;

  void generatePartitionSelectorCode(raw_ostream &OS,
                                     StringRef Indent) const override;
};

class GIMatchTreeVRegDefPartitioner : public GIMatchTreePartitioner {
  unsigned NewInstrID = -1;
  unsigned InstrID;
  unsigned OpIdx;
  std::vector<BitVector> TraversedEdges;
  DenseMap<unsigned, unsigned> ResultToPartition;
  std::vector<bool> PartitionToResult;

  void addToPartition(bool Result, unsigned LeafIdx);

public:
  GIMatchTreeVRegDefPartitioner(unsigned InstrID, unsigned OpIdx)
      : InstrID(InstrID), OpIdx(OpIdx) {}

  std::unique_ptr<GIMatchTreePartitioner> clone() const override {
    return std::make_unique<GIMatchTreeVRegDefPartitioner>(*this);
  }

  void emitDescription(raw_ostream &OS) const override {
    OS << "MI[" << NewInstrID << "] = getVRegDef(MI[" << InstrID
       << "].getOperand(" << OpIdx << "))";
  }

  void emitPartitionName(raw_ostream &OS, unsigned Idx) const override {
    bool Result = PartitionToResult[Idx];
    if (Result)
      OS << "true";
    else
      OS << "false";
  }

  void repartition(GIMatchTreeBuilder::LeafVec &Leaves) override;
  void applyForPartition(unsigned PartitionIdx, GIMatchTreeBuilder &Builder,
                         GIMatchTreeBuilder &SubBuilder) override;
  void emitPartitionResults(raw_ostream &OS) const override;

  void generatePartitionSelectorCode(raw_ostream &OS,
                                     StringRef Indent) const override;
};

} // end namespace llvm
#endif // ifndef LLVM_UTILS_TABLEGEN_GIMATCHTREE_H