FastISelEmitter.cpp 30.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
///===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits code for use by the "fast" instruction
// selection algorithm. See the comments at the top of
// lib/CodeGen/SelectionDAG/FastISel.cpp for background.
//
// This file scans through the target's tablegen instruction-info files
// and extracts instructions with obvious-looking patterns, and it emits
// code to look up these instructions by type and operator.
//
//===----------------------------------------------------------------------===//

#include "CodeGenDAGPatterns.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <utility>
using namespace llvm;


/// InstructionMemo - This class holds additional information about an
/// instruction needed to emit code for it.
///
namespace {
struct InstructionMemo {
  std::string Name;
  const CodeGenRegisterClass *RC;
  std::string SubRegNo;
  std::vector<std::string> PhysRegs;
  std::string PredicateCheck;

  InstructionMemo(StringRef Name, const CodeGenRegisterClass *RC,
                  std::string SubRegNo, std::vector<std::string> PhysRegs,
                  std::string PredicateCheck)
      : Name(Name), RC(RC), SubRegNo(std::move(SubRegNo)),
        PhysRegs(std::move(PhysRegs)),
        PredicateCheck(std::move(PredicateCheck)) {}

  // Make sure we do not copy InstructionMemo.
  InstructionMemo(const InstructionMemo &Other) = delete;
  InstructionMemo(InstructionMemo &&Other) = default;
};
} // End anonymous namespace

/// ImmPredicateSet - This uniques predicates (represented as a string) and
/// gives them unique (small) integer ID's that start at 0.
namespace {
class ImmPredicateSet {
  DenseMap<TreePattern *, unsigned> ImmIDs;
  std::vector<TreePredicateFn> PredsByName;
public:

  unsigned getIDFor(TreePredicateFn Pred) {
    unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
    if (Entry == 0) {
      PredsByName.push_back(Pred);
      Entry = PredsByName.size();
    }
    return Entry-1;
  }

  const TreePredicateFn &getPredicate(unsigned i) {
    assert(i < PredsByName.size());
    return PredsByName[i];
  }

  typedef std::vector<TreePredicateFn>::const_iterator iterator;
  iterator begin() const { return PredsByName.begin(); }
  iterator end() const { return PredsByName.end(); }

};
} // End anonymous namespace

/// OperandsSignature - This class holds a description of a list of operand
/// types. It has utility methods for emitting text based on the operands.
///
namespace {
struct OperandsSignature {
  class OpKind {
    enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
    char Repr;
  public:

    OpKind() : Repr(OK_Invalid) {}

    bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
    bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }

    static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
    static OpKind getFP()  { OpKind K; K.Repr = OK_FP; return K; }
    static OpKind getImm(unsigned V) {
      assert((unsigned)OK_Imm+V < 128 &&
             "Too many integer predicates for the 'Repr' char");
      OpKind K; K.Repr = OK_Imm+V; return K;
    }

    bool isReg() const { return Repr == OK_Reg; }
    bool isFP() const  { return Repr == OK_FP; }
    bool isImm() const { return Repr >= OK_Imm; }

    unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }

    void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
                             bool StripImmCodes) const {
      if (isReg())
        OS << 'r';
      else if (isFP())
        OS << 'f';
      else {
        OS << 'i';
        if (!StripImmCodes)
          if (unsigned Code = getImmCode())
            OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
      }
    }
  };


  SmallVector<OpKind, 3> Operands;

  bool operator<(const OperandsSignature &O) const {
    return Operands < O.Operands;
  }
  bool operator==(const OperandsSignature &O) const {
    return Operands == O.Operands;
  }

  bool empty() const { return Operands.empty(); }

  bool hasAnyImmediateCodes() const {
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
      if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
        return true;
    return false;
  }

  /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
  /// to zero.
  OperandsSignature getWithoutImmCodes() const {
    OperandsSignature Result;
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
      if (!Operands[i].isImm())
        Result.Operands.push_back(Operands[i]);
      else
        Result.Operands.push_back(OpKind::getImm(0));
    return Result;
  }

  void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
    bool EmittedAnything = false;
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
      if (!Operands[i].isImm()) continue;

      unsigned Code = Operands[i].getImmCode();
      if (Code == 0) continue;

      if (EmittedAnything)
        OS << " &&\n        ";

      TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);

      // Emit the type check.
      TreePattern *TP = PredFn.getOrigPatFragRecord();
      ValueTypeByHwMode VVT = TP->getTree(0)->getType(0);
      assert(VVT.isSimple() &&
             "Cannot use variable value types with fast isel");
      OS << "VT == " << getEnumName(VVT.getSimple().SimpleTy) << " && ";

      OS << PredFn.getFnName() << "(imm" << i <<')';
      EmittedAnything = true;
    }
  }

  /// initialize - Examine the given pattern and initialize the contents
  /// of the Operands array accordingly. Return true if all the operands
  /// are supported, false otherwise.
  ///
  bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
                  MVT::SimpleValueType VT,
                  ImmPredicateSet &ImmediatePredicates,
                  const CodeGenRegisterClass *OrigDstRC) {
    if (InstPatNode->isLeaf())
      return false;

    if (InstPatNode->getOperator()->getName() == "imm") {
      Operands.push_back(OpKind::getImm(0));
      return true;
    }

    if (InstPatNode->getOperator()->getName() == "fpimm") {
      Operands.push_back(OpKind::getFP());
      return true;
    }

    const CodeGenRegisterClass *DstRC = nullptr;

    for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
      TreePatternNode *Op = InstPatNode->getChild(i);

      // Handle imm operands specially.
      if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
        unsigned PredNo = 0;
        if (!Op->getPredicateCalls().empty()) {
          TreePredicateFn PredFn = Op->getPredicateCalls()[0].Fn;
          // If there is more than one predicate weighing in on this operand
          // then we don't handle it.  This doesn't typically happen for
          // immediates anyway.
          if (Op->getPredicateCalls().size() > 1 ||
              !PredFn.isImmediatePattern() || PredFn.usesOperands())
            return false;
          // Ignore any instruction with 'FastIselShouldIgnore', these are
          // not needed and just bloat the fast instruction selector.  For
          // example, X86 doesn't need to generate code to match ADD16ri8 since
          // ADD16ri will do just fine.
          Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
          if (Rec->getValueAsBit("FastIselShouldIgnore"))
            return false;

          PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
        }

        Operands.push_back(OpKind::getImm(PredNo));
        continue;
      }


      // For now, filter out any operand with a predicate.
      // For now, filter out any operand with multiple values.
      if (!Op->getPredicateCalls().empty() || Op->getNumTypes() != 1)
        return false;

      if (!Op->isLeaf()) {
         if (Op->getOperator()->getName() == "fpimm") {
          Operands.push_back(OpKind::getFP());
          continue;
        }
        // For now, ignore other non-leaf nodes.
        return false;
      }

      assert(Op->hasConcreteType(0) && "Type infererence not done?");

      // For now, all the operands must have the same type (if they aren't
      // immediates).  Note that this causes us to reject variable sized shifts
      // on X86.
      if (Op->getSimpleType(0) != VT)
        return false;

      DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
      if (!OpDI)
        return false;
      Record *OpLeafRec = OpDI->getDef();

      // For now, the only other thing we accept is register operands.
      const CodeGenRegisterClass *RC = nullptr;
      if (OpLeafRec->isSubClassOf("RegisterOperand"))
        OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
      if (OpLeafRec->isSubClassOf("RegisterClass"))
        RC = &Target.getRegisterClass(OpLeafRec);
      else if (OpLeafRec->isSubClassOf("Register"))
        RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
      else if (OpLeafRec->isSubClassOf("ValueType")) {
        RC = OrigDstRC;
      } else
        return false;

      // For now, this needs to be a register class of some sort.
      if (!RC)
        return false;

      // For now, all the operands must have the same register class or be
      // a strict subclass of the destination.
      if (DstRC) {
        if (DstRC != RC && !DstRC->hasSubClass(RC))
          return false;
      } else
        DstRC = RC;
      Operands.push_back(OpKind::getReg());
    }
    return true;
  }

  void PrintParameters(raw_ostream &OS) const {
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
      if (Operands[i].isReg()) {
        OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
      } else if (Operands[i].isImm()) {
        OS << "uint64_t imm" << i;
      } else if (Operands[i].isFP()) {
        OS << "const ConstantFP *f" << i;
      } else {
        llvm_unreachable("Unknown operand kind!");
      }
      if (i + 1 != e)
        OS << ", ";
    }
  }

  void PrintArguments(raw_ostream &OS,
                      const std::vector<std::string> &PR) const {
    assert(PR.size() == Operands.size());
    bool PrintedArg = false;
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
      if (PR[i] != "")
        // Implicit physical register operand.
        continue;

      if (PrintedArg)
        OS << ", ";
      if (Operands[i].isReg()) {
        OS << "Op" << i << ", Op" << i << "IsKill";
        PrintedArg = true;
      } else if (Operands[i].isImm()) {
        OS << "imm" << i;
        PrintedArg = true;
      } else if (Operands[i].isFP()) {
        OS << "f" << i;
        PrintedArg = true;
      } else {
        llvm_unreachable("Unknown operand kind!");
      }
    }
  }

  void PrintArguments(raw_ostream &OS) const {
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
      if (Operands[i].isReg()) {
        OS << "Op" << i << ", Op" << i << "IsKill";
      } else if (Operands[i].isImm()) {
        OS << "imm" << i;
      } else if (Operands[i].isFP()) {
        OS << "f" << i;
      } else {
        llvm_unreachable("Unknown operand kind!");
      }
      if (i + 1 != e)
        OS << ", ";
    }
  }


  void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
                           ImmPredicateSet &ImmPredicates,
                           bool StripImmCodes = false) const {
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
      if (PR[i] != "")
        // Implicit physical register operand. e.g. Instruction::Mul expect to
        // select to a binary op. On x86, mul may take a single operand with
        // the other operand being implicit. We must emit something that looks
        // like a binary instruction except for the very inner fastEmitInst_*
        // call.
        continue;
      Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
    }
  }

  void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
                           bool StripImmCodes = false) const {
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
      Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
  }
};
} // End anonymous namespace

namespace {
class FastISelMap {
  // A multimap is needed instead of a "plain" map because the key is
  // the instruction's complexity (an int) and they are not unique.
  typedef std::multimap<int, InstructionMemo> PredMap;
  typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
  typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
  typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
  typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
            OperandsOpcodeTypeRetPredMap;

  OperandsOpcodeTypeRetPredMap SimplePatterns;

  // This is used to check that there are no duplicate predicates
  typedef std::multimap<std::string, bool> PredCheckMap;
  typedef std::map<MVT::SimpleValueType, PredCheckMap> RetPredCheckMap;
  typedef std::map<MVT::SimpleValueType, RetPredCheckMap> TypeRetPredCheckMap;
  typedef std::map<std::string, TypeRetPredCheckMap> OpcodeTypeRetPredCheckMap;
  typedef std::map<OperandsSignature, OpcodeTypeRetPredCheckMap>
            OperandsOpcodeTypeRetPredCheckMap;

  OperandsOpcodeTypeRetPredCheckMap SimplePatternsCheck;

  std::map<OperandsSignature, std::vector<OperandsSignature> >
    SignaturesWithConstantForms;

  StringRef InstNS;
  ImmPredicateSet ImmediatePredicates;
public:
  explicit FastISelMap(StringRef InstNS);

  void collectPatterns(CodeGenDAGPatterns &CGP);
  void printImmediatePredicates(raw_ostream &OS);
  void printFunctionDefinitions(raw_ostream &OS);
private:
  void emitInstructionCode(raw_ostream &OS,
                           const OperandsSignature &Operands,
                           const PredMap &PM,
                           const std::string &RetVTName);
};
} // End anonymous namespace

static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
  return std::string(CGP.getSDNodeInfo(Op).getEnumName());
}

static std::string getLegalCName(std::string OpName) {
  std::string::size_type pos = OpName.find("::");
  if (pos != std::string::npos)
    OpName.replace(pos, 2, "_");
  return OpName;
}

FastISelMap::FastISelMap(StringRef instns) : InstNS(instns) {}

static std::string PhyRegForNode(TreePatternNode *Op,
                                 const CodeGenTarget &Target) {
  std::string PhysReg;

  if (!Op->isLeaf())
    return PhysReg;

  Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
  if (!OpLeafRec->isSubClassOf("Register"))
    return PhysReg;

  PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
               ->getValue();
  PhysReg += "::";
  PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
  return PhysReg;
}

void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
  const CodeGenTarget &Target = CGP.getTargetInfo();

  // Scan through all the patterns and record the simple ones.
  for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
       E = CGP.ptm_end(); I != E; ++I) {
    const PatternToMatch &Pattern = *I;

    // For now, just look at Instructions, so that we don't have to worry
    // about emitting multiple instructions for a pattern.
    TreePatternNode *Dst = Pattern.getDstPattern();
    if (Dst->isLeaf()) continue;
    Record *Op = Dst->getOperator();
    if (!Op->isSubClassOf("Instruction"))
      continue;
    CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
    if (II.Operands.empty())
      continue;

    // Allow instructions to be marked as unavailable for FastISel for
    // certain cases, i.e. an ISA has two 'and' instruction which differ
    // by what registers they can use but are otherwise identical for
    // codegen purposes.
    if (II.FastISelShouldIgnore)
      continue;

    // For now, ignore multi-instruction patterns.
    bool MultiInsts = false;
    for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
      TreePatternNode *ChildOp = Dst->getChild(i);
      if (ChildOp->isLeaf())
        continue;
      if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
        MultiInsts = true;
        break;
      }
    }
    if (MultiInsts)
      continue;

    // For now, ignore instructions where the first operand is not an
    // output register.
    const CodeGenRegisterClass *DstRC = nullptr;
    std::string SubRegNo;
    if (Op->getName() != "EXTRACT_SUBREG") {
      Record *Op0Rec = II.Operands[0].Rec;
      if (Op0Rec->isSubClassOf("RegisterOperand"))
        Op0Rec = Op0Rec->getValueAsDef("RegClass");
      if (!Op0Rec->isSubClassOf("RegisterClass"))
        continue;
      DstRC = &Target.getRegisterClass(Op0Rec);
      if (!DstRC)
        continue;
    } else {
      // If this isn't a leaf, then continue since the register classes are
      // a bit too complicated for now.
      if (!Dst->getChild(1)->isLeaf()) continue;

      DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
      if (SR)
        SubRegNo = getQualifiedName(SR->getDef());
      else
        SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
    }

    // Inspect the pattern.
    TreePatternNode *InstPatNode = Pattern.getSrcPattern();
    if (!InstPatNode) continue;
    if (InstPatNode->isLeaf()) continue;

    // Ignore multiple result nodes for now.
    if (InstPatNode->getNumTypes() > 1) continue;

    Record *InstPatOp = InstPatNode->getOperator();
    std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
    MVT::SimpleValueType RetVT = MVT::isVoid;
    if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getSimpleType(0);
    MVT::SimpleValueType VT = RetVT;
    if (InstPatNode->getNumChildren()) {
      assert(InstPatNode->getChild(0)->getNumTypes() == 1);
      VT = InstPatNode->getChild(0)->getSimpleType(0);
    }

    // For now, filter out any instructions with predicates.
    if (!InstPatNode->getPredicateCalls().empty())
      continue;

    // Check all the operands.
    OperandsSignature Operands;
    if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
                             DstRC))
      continue;

    std::vector<std::string> PhysRegInputs;
    if (InstPatNode->getOperator()->getName() == "imm" ||
        InstPatNode->getOperator()->getName() == "fpimm")
      PhysRegInputs.push_back("");
    else {
      // Compute the PhysRegs used by the given pattern, and check that
      // the mapping from the src to dst patterns is simple.
      bool FoundNonSimplePattern = false;
      unsigned DstIndex = 0;
      for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
        std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
        if (PhysReg.empty()) {
          if (DstIndex >= Dst->getNumChildren() ||
              Dst->getChild(DstIndex)->getName() !=
              InstPatNode->getChild(i)->getName()) {
            FoundNonSimplePattern = true;
            break;
          }
          ++DstIndex;
        }

        PhysRegInputs.push_back(PhysReg);
      }

      if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
        FoundNonSimplePattern = true;

      if (FoundNonSimplePattern)
        continue;
    }

    // Check if the operands match one of the patterns handled by FastISel.
    std::string ManglingSuffix;
    raw_string_ostream SuffixOS(ManglingSuffix);
    Operands.PrintManglingSuffix(SuffixOS, ImmediatePredicates, true);
    SuffixOS.flush();
    if (!StringSwitch<bool>(ManglingSuffix)
        .Cases("", "r", "rr", "ri", "i", "f", true)
        .Default(false))
      continue;

    // Get the predicate that guards this pattern.
    std::string PredicateCheck = Pattern.getPredicateCheck();

    // Ok, we found a pattern that we can handle. Remember it.
    InstructionMemo Memo(
      Pattern.getDstPattern()->getOperator()->getName(),
      DstRC,
      SubRegNo,
      PhysRegInputs,
      PredicateCheck
    );

    int complexity = Pattern.getPatternComplexity(CGP);

    if (SimplePatternsCheck[Operands][OpcodeName][VT]
         [RetVT].count(PredicateCheck)) {
      PrintFatalError(Pattern.getSrcRecord()->getLoc(),
                    "Duplicate predicate in FastISel table!");
    }
    SimplePatternsCheck[Operands][OpcodeName][VT][RetVT].insert(
            std::make_pair(PredicateCheck, true));

       // Note: Instructions with the same complexity will appear in the order
          // that they are encountered.
    SimplePatterns[Operands][OpcodeName][VT][RetVT].emplace(complexity,
                                                            std::move(Memo));

    // If any of the operands were immediates with predicates on them, strip
    // them down to a signature that doesn't have predicates so that we can
    // associate them with the stripped predicate version.
    if (Operands.hasAnyImmediateCodes()) {
      SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
        .push_back(Operands);
    }
  }
}

void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
  if (ImmediatePredicates.begin() == ImmediatePredicates.end())
    return;

  OS << "\n// FastEmit Immediate Predicate functions.\n";
  for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
       E = ImmediatePredicates.end(); I != E; ++I) {
    OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
    OS << I->getImmediatePredicateCode() << "\n}\n";
  }

  OS << "\n\n";
}

void FastISelMap::emitInstructionCode(raw_ostream &OS,
                                      const OperandsSignature &Operands,
                                      const PredMap &PM,
                                      const std::string &RetVTName) {
  // Emit code for each possible instruction. There may be
  // multiple if there are subtarget concerns.  A reverse iterator
  // is used to produce the ones with highest complexity first.

  bool OneHadNoPredicate = false;
  for (PredMap::const_reverse_iterator PI = PM.rbegin(), PE = PM.rend();
       PI != PE; ++PI) {
    const InstructionMemo &Memo = PI->second;
    std::string PredicateCheck = Memo.PredicateCheck;

    if (PredicateCheck.empty()) {
      assert(!OneHadNoPredicate &&
             "Multiple instructions match and more than one had "
             "no predicate!");
      OneHadNoPredicate = true;
    } else {
      if (OneHadNoPredicate) {
        PrintFatalError("Multiple instructions match and one with no "
                        "predicate came before one with a predicate!  "
                        "name:" + Memo.Name + "  predicate: " + PredicateCheck);
      }
      OS << "  if (" + PredicateCheck + ") {\n";
      OS << "  ";
    }

    for (unsigned i = 0; i < Memo.PhysRegs.size(); ++i) {
      if (Memo.PhysRegs[i] != "")
        OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
           << "TII.get(TargetOpcode::COPY), " << Memo.PhysRegs[i]
           << ").addReg(Op" << i << ");\n";
    }

    OS << "  return fastEmitInst_";
    if (Memo.SubRegNo.empty()) {
      Operands.PrintManglingSuffix(OS, Memo.PhysRegs, ImmediatePredicates,
                                   true);
      OS << "(" << InstNS << "::" << Memo.Name << ", ";
      OS << "&" << InstNS << "::" << Memo.RC->getName() << "RegClass";
      if (!Operands.empty())
        OS << ", ";
      Operands.PrintArguments(OS, Memo.PhysRegs);
      OS << ");\n";
    } else {
      OS << "extractsubreg(" << RetVTName
         << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
    }

    if (!PredicateCheck.empty()) {
      OS << "  }\n";
    }
  }
  // Return 0 if all of the possibilities had predicates but none
  // were satisfied.
  if (!OneHadNoPredicate)
    OS << "  return 0;\n";
  OS << "}\n";
  OS << "\n";
}


void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
  // Now emit code for all the patterns that we collected.
  for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
       OE = SimplePatterns.end(); OI != OE; ++OI) {
    const OperandsSignature &Operands = OI->first;
    const OpcodeTypeRetPredMap &OTM = OI->second;

    for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
         I != E; ++I) {
      const std::string &Opcode = I->first;
      const TypeRetPredMap &TM = I->second;

      OS << "// FastEmit functions for " << Opcode << ".\n";
      OS << "\n";

      // Emit one function for each opcode,type pair.
      for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
           TI != TE; ++TI) {
        MVT::SimpleValueType VT = TI->first;
        const RetPredMap &RM = TI->second;
        if (RM.size() != 1) {
          for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
               RI != RE; ++RI) {
            MVT::SimpleValueType RetVT = RI->first;
            const PredMap &PM = RI->second;

            OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
               << getLegalCName(std::string(getName(VT))) << "_"
               << getLegalCName(std::string(getName(RetVT))) << "_";
            Operands.PrintManglingSuffix(OS, ImmediatePredicates);
            OS << "(";
            Operands.PrintParameters(OS);
            OS << ") {\n";

            emitInstructionCode(OS, Operands, PM, std::string(getName(RetVT)));
          }

          // Emit one function for the type that demultiplexes on return type.
          OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
             << getLegalCName(std::string(getName(VT))) << "_";
          Operands.PrintManglingSuffix(OS, ImmediatePredicates);
          OS << "(MVT RetVT";
          if (!Operands.empty())
            OS << ", ";
          Operands.PrintParameters(OS);
          OS << ") {\nswitch (RetVT.SimpleTy) {\n";
          for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
               RI != RE; ++RI) {
            MVT::SimpleValueType RetVT = RI->first;
            OS << "  case " << getName(RetVT) << ": return fastEmit_"
               << getLegalCName(Opcode) << "_"
               << getLegalCName(std::string(getName(VT))) << "_"
               << getLegalCName(std::string(getName(RetVT))) << "_";
            Operands.PrintManglingSuffix(OS, ImmediatePredicates);
            OS << "(";
            Operands.PrintArguments(OS);
            OS << ");\n";
          }
          OS << "  default: return 0;\n}\n}\n\n";

        } else {
          // Non-variadic return type.
          OS << "unsigned fastEmit_" << getLegalCName(Opcode) << "_"
             << getLegalCName(std::string(getName(VT))) << "_";
          Operands.PrintManglingSuffix(OS, ImmediatePredicates);
          OS << "(MVT RetVT";
          if (!Operands.empty())
            OS << ", ";
          Operands.PrintParameters(OS);
          OS << ") {\n";

          OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first)
             << ")\n    return 0;\n";

          const PredMap &PM = RM.begin()->second;

          emitInstructionCode(OS, Operands, PM, "RetVT");
        }
      }

      // Emit one function for the opcode that demultiplexes based on the type.
      OS << "unsigned fastEmit_"
         << getLegalCName(Opcode) << "_";
      Operands.PrintManglingSuffix(OS, ImmediatePredicates);
      OS << "(MVT VT, MVT RetVT";
      if (!Operands.empty())
        OS << ", ";
      Operands.PrintParameters(OS);
      OS << ") {\n";
      OS << "  switch (VT.SimpleTy) {\n";
      for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
           TI != TE; ++TI) {
        MVT::SimpleValueType VT = TI->first;
        std::string TypeName = std::string(getName(VT));
        OS << "  case " << TypeName << ": return fastEmit_"
           << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
        Operands.PrintManglingSuffix(OS, ImmediatePredicates);
        OS << "(RetVT";
        if (!Operands.empty())
          OS << ", ";
        Operands.PrintArguments(OS);
        OS << ");\n";
      }
      OS << "  default: return 0;\n";
      OS << "  }\n";
      OS << "}\n";
      OS << "\n";
    }

    OS << "// Top-level FastEmit function.\n";
    OS << "\n";

    // Emit one function for the operand signature that demultiplexes based
    // on opcode and type.
    OS << "unsigned fastEmit_";
    Operands.PrintManglingSuffix(OS, ImmediatePredicates);
    OS << "(MVT VT, MVT RetVT, unsigned Opcode";
    if (!Operands.empty())
      OS << ", ";
    Operands.PrintParameters(OS);
    OS << ") ";
    if (!Operands.hasAnyImmediateCodes())
      OS << "override ";
    OS << "{\n";

    // If there are any forms of this signature available that operate on
    // constrained forms of the immediate (e.g., 32-bit sext immediate in a
    // 64-bit operand), check them first.

    std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
      = SignaturesWithConstantForms.find(Operands);
    if (MI != SignaturesWithConstantForms.end()) {
      // Unique any duplicates out of the list.
      llvm::sort(MI->second);
      MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
                       MI->second.end());

      // Check each in order it was seen.  It would be nice to have a good
      // relative ordering between them, but we're not going for optimality
      // here.
      for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
        OS << "  if (";
        MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
        OS << ")\n    if (unsigned Reg = fastEmit_";
        MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
        OS << "(VT, RetVT, Opcode";
        if (!MI->second[i].empty())
          OS << ", ";
        MI->second[i].PrintArguments(OS);
        OS << "))\n      return Reg;\n\n";
      }

      // Done with this, remove it.
      SignaturesWithConstantForms.erase(MI);
    }

    OS << "  switch (Opcode) {\n";
    for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
         I != E; ++I) {
      const std::string &Opcode = I->first;

      OS << "  case " << Opcode << ": return fastEmit_"
         << getLegalCName(Opcode) << "_";
      Operands.PrintManglingSuffix(OS, ImmediatePredicates);
      OS << "(VT, RetVT";
      if (!Operands.empty())
        OS << ", ";
      Operands.PrintArguments(OS);
      OS << ");\n";
    }
    OS << "  default: return 0;\n";
    OS << "  }\n";
    OS << "}\n";
    OS << "\n";
  }

  // TODO: SignaturesWithConstantForms should be empty here.
}

namespace llvm {

void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
  CodeGenDAGPatterns CGP(RK);
  const CodeGenTarget &Target = CGP.getTargetInfo();
  emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
                       Target.getName().str() + " target", OS);

  // Determine the target's namespace name.
  StringRef InstNS = Target.getInstNamespace();
  assert(!InstNS.empty() && "Can't determine target-specific namespace!");

  FastISelMap F(InstNS);
  F.collectPatterns(CGP);
  F.printImmediatePredicates(OS);
  F.printFunctionDefinitions(OS);
}

} // End llvm namespace