CodeGenTarget.cpp 33.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This class wraps target description classes used by the various code
// generation TableGen backends.  This makes it easier to access the data and
// provides a single place that needs to check it for validity.  All of these
// classes abort on error conditions.
//
//===----------------------------------------------------------------------===//

#include "CodeGenTarget.h"
#include "CodeGenDAGPatterns.h"
#include "CodeGenIntrinsics.h"
#include "CodeGenSchedule.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Timer.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
using namespace llvm;

cl::OptionCategory AsmParserCat("Options for -gen-asm-parser");
cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer");

static cl::opt<unsigned>
    AsmParserNum("asmparsernum", cl::init(0),
                 cl::desc("Make -gen-asm-parser emit assembly parser #N"),
                 cl::cat(AsmParserCat));

static cl::opt<unsigned>
    AsmWriterNum("asmwriternum", cl::init(0),
                 cl::desc("Make -gen-asm-writer emit assembly writer #N"),
                 cl::cat(AsmWriterCat));

/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
/// record corresponds to.
MVT::SimpleValueType llvm::getValueType(Record *Rec) {
  return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
}

StringRef llvm::getName(MVT::SimpleValueType T) {
  switch (T) {
  case MVT::Other:   return "UNKNOWN";
  case MVT::iPTR:    return "TLI.getPointerTy()";
  case MVT::iPTRAny: return "TLI.getPointerTy()";
  default: return getEnumName(T);
  }
}

StringRef llvm::getEnumName(MVT::SimpleValueType T) {
  switch (T) {
  case MVT::Other:    return "MVT::Other";
  case MVT::i1:       return "MVT::i1";
  case MVT::i8:       return "MVT::i8";
  case MVT::i16:      return "MVT::i16";
  case MVT::i32:      return "MVT::i32";
  case MVT::i64:      return "MVT::i64";
  case MVT::i128:     return "MVT::i128";
  case MVT::Any:      return "MVT::Any";
  case MVT::iAny:     return "MVT::iAny";
  case MVT::fAny:     return "MVT::fAny";
  case MVT::vAny:     return "MVT::vAny";
  case MVT::f16:      return "MVT::f16";
  case MVT::bf16:     return "MVT::bf16";
  case MVT::f32:      return "MVT::f32";
  case MVT::f64:      return "MVT::f64";
  case MVT::f80:      return "MVT::f80";
  case MVT::f128:     return "MVT::f128";
  case MVT::ppcf128:  return "MVT::ppcf128";
  case MVT::x86mmx:   return "MVT::x86mmx";
  case MVT::Glue:     return "MVT::Glue";
  case MVT::isVoid:   return "MVT::isVoid";
  case MVT::v1i1:     return "MVT::v1i1";
  case MVT::v2i1:     return "MVT::v2i1";
  case MVT::v4i1:     return "MVT::v4i1";
  case MVT::v8i1:     return "MVT::v8i1";
  case MVT::v16i1:    return "MVT::v16i1";
  case MVT::v32i1:    return "MVT::v32i1";
  case MVT::v64i1:    return "MVT::v64i1";
  case MVT::v128i1:   return "MVT::v128i1";
  case MVT::v256i1:   return "MVT::v256i1";
  case MVT::v512i1:   return "MVT::v512i1";
  case MVT::v1024i1:  return "MVT::v1024i1";
  case MVT::v1i8:     return "MVT::v1i8";
  case MVT::v2i8:     return "MVT::v2i8";
  case MVT::v4i8:     return "MVT::v4i8";
  case MVT::v8i8:     return "MVT::v8i8";
  case MVT::v16i8:    return "MVT::v16i8";
  case MVT::v32i8:    return "MVT::v32i8";
  case MVT::v64i8:    return "MVT::v64i8";
  case MVT::v128i8:   return "MVT::v128i8";
  case MVT::v256i8:   return "MVT::v256i8";
  case MVT::v1i16:    return "MVT::v1i16";
  case MVT::v2i16:    return "MVT::v2i16";
  case MVT::v3i16:    return "MVT::v3i16";
  case MVT::v4i16:    return "MVT::v4i16";
  case MVT::v8i16:    return "MVT::v8i16";
  case MVT::v16i16:   return "MVT::v16i16";
  case MVT::v32i16:   return "MVT::v32i16";
  case MVT::v64i16:   return "MVT::v64i16";
  case MVT::v128i16:  return "MVT::v128i16";
  case MVT::v1i32:    return "MVT::v1i32";
  case MVT::v2i32:    return "MVT::v2i32";
  case MVT::v3i32:    return "MVT::v3i32";
  case MVT::v4i32:    return "MVT::v4i32";
  case MVT::v5i32:    return "MVT::v5i32";
  case MVT::v8i32:    return "MVT::v8i32";
  case MVT::v16i32:   return "MVT::v16i32";
  case MVT::v32i32:   return "MVT::v32i32";
  case MVT::v64i32:   return "MVT::v64i32";
  case MVT::v128i32:  return "MVT::v128i32";
  case MVT::v256i32:  return "MVT::v256i32";
  case MVT::v512i32:  return "MVT::v512i32";
  case MVT::v1024i32: return "MVT::v1024i32";
  case MVT::v2048i32: return "MVT::v2048i32";
  case MVT::v1i64:    return "MVT::v1i64";
  case MVT::v2i64:    return "MVT::v2i64";
  case MVT::v4i64:    return "MVT::v4i64";
  case MVT::v8i64:    return "MVT::v8i64";
  case MVT::v16i64:   return "MVT::v16i64";
  case MVT::v32i64:   return "MVT::v32i64";
  case MVT::v1i128:   return "MVT::v1i128";
  case MVT::v2f16:    return "MVT::v2f16";
  case MVT::v3f16:    return "MVT::v3f16";
  case MVT::v4f16:    return "MVT::v4f16";
  case MVT::v8f16:    return "MVT::v8f16";
  case MVT::v16f16:   return "MVT::v16f16";
  case MVT::v32f16:   return "MVT::v32f16";
  case MVT::v64f16:   return "MVT::v64f16";
  case MVT::v128f16:  return "MVT::v128f16";
  case MVT::v2bf16:   return "MVT::v2bf16";
  case MVT::v3bf16:   return "MVT::v3bf16";
  case MVT::v4bf16:   return "MVT::v4bf16";
  case MVT::v8bf16:   return "MVT::v8bf16";
  case MVT::v16bf16:  return "MVT::v16bf16";
  case MVT::v32bf16:  return "MVT::v32bf16";
  case MVT::v64bf16:  return "MVT::v64bf16";
  case MVT::v128bf16: return "MVT::v128bf16";
  case MVT::v1f32:    return "MVT::v1f32";
  case MVT::v2f32:    return "MVT::v2f32";
  case MVT::v3f32:    return "MVT::v3f32";
  case MVT::v4f32:    return "MVT::v4f32";
  case MVT::v5f32:    return "MVT::v5f32";
  case MVT::v8f32:    return "MVT::v8f32";
  case MVT::v16f32:   return "MVT::v16f32";
  case MVT::v32f32:   return "MVT::v32f32";
  case MVT::v64f32:   return "MVT::v64f32";
  case MVT::v128f32:  return "MVT::v128f32";
  case MVT::v256f32:  return "MVT::v256f32";
  case MVT::v512f32:  return "MVT::v512f32";
  case MVT::v1024f32: return "MVT::v1024f32";
  case MVT::v2048f32: return "MVT::v2048f32";
  case MVT::v1f64:    return "MVT::v1f64";
  case MVT::v2f64:    return "MVT::v2f64";
  case MVT::v4f64:    return "MVT::v4f64";
  case MVT::v8f64:    return "MVT::v8f64";
  case MVT::v16f64:   return "MVT::v16f64";
  case MVT::v32f64:   return "MVT::v32f64";
  case MVT::nxv1i1:   return "MVT::nxv1i1";
  case MVT::nxv2i1:   return "MVT::nxv2i1";
  case MVT::nxv4i1:   return "MVT::nxv4i1";
  case MVT::nxv8i1:   return "MVT::nxv8i1";
  case MVT::nxv16i1:  return "MVT::nxv16i1";
  case MVT::nxv32i1:  return "MVT::nxv32i1";
  case MVT::nxv64i1:  return "MVT::nxv64i1";
  case MVT::nxv1i8:   return "MVT::nxv1i8";
  case MVT::nxv2i8:   return "MVT::nxv2i8";
  case MVT::nxv4i8:   return "MVT::nxv4i8";
  case MVT::nxv8i8:   return "MVT::nxv8i8";
  case MVT::nxv16i8:  return "MVT::nxv16i8";
  case MVT::nxv32i8:  return "MVT::nxv32i8";
  case MVT::nxv64i8:  return "MVT::nxv64i8";
  case MVT::nxv1i16:  return "MVT::nxv1i16";
  case MVT::nxv2i16:  return "MVT::nxv2i16";
  case MVT::nxv4i16:  return "MVT::nxv4i16";
  case MVT::nxv8i16:  return "MVT::nxv8i16";
  case MVT::nxv16i16: return "MVT::nxv16i16";
  case MVT::nxv32i16: return "MVT::nxv32i16";
  case MVT::nxv1i32:  return "MVT::nxv1i32";
  case MVT::nxv2i32:  return "MVT::nxv2i32";
  case MVT::nxv4i32:  return "MVT::nxv4i32";
  case MVT::nxv8i32:  return "MVT::nxv8i32";
  case MVT::nxv16i32: return "MVT::nxv16i32";
  case MVT::nxv32i32: return "MVT::nxv32i32";
  case MVT::nxv1i64:  return "MVT::nxv1i64";
  case MVT::nxv2i64:  return "MVT::nxv2i64";
  case MVT::nxv4i64:  return "MVT::nxv4i64";
  case MVT::nxv8i64:  return "MVT::nxv8i64";
  case MVT::nxv16i64: return "MVT::nxv16i64";
  case MVT::nxv32i64: return "MVT::nxv32i64";
  case MVT::nxv1f16:  return "MVT::nxv1f16";
  case MVT::nxv2f16:  return "MVT::nxv2f16";
  case MVT::nxv4f16:  return "MVT::nxv4f16";
  case MVT::nxv8f16:  return "MVT::nxv8f16";
  case MVT::nxv16f16: return "MVT::nxv16f16";
  case MVT::nxv32f16: return "MVT::nxv32f16";
  case MVT::nxv2bf16:  return "MVT::nxv2bf16";
  case MVT::nxv4bf16:  return "MVT::nxv4bf16";
  case MVT::nxv8bf16:  return "MVT::nxv8bf16";
  case MVT::nxv1f32:  return "MVT::nxv1f32";
  case MVT::nxv2f32:  return "MVT::nxv2f32";
  case MVT::nxv4f32:  return "MVT::nxv4f32";
  case MVT::nxv8f32:  return "MVT::nxv8f32";
  case MVT::nxv16f32: return "MVT::nxv16f32";
  case MVT::nxv1f64:  return "MVT::nxv1f64";
  case MVT::nxv2f64:  return "MVT::nxv2f64";
  case MVT::nxv4f64:  return "MVT::nxv4f64";
  case MVT::nxv8f64:  return "MVT::nxv8f64";
  case MVT::token:    return "MVT::token";
  case MVT::Metadata: return "MVT::Metadata";
  case MVT::iPTR:     return "MVT::iPTR";
  case MVT::iPTRAny:  return "MVT::iPTRAny";
  case MVT::Untyped:  return "MVT::Untyped";
  case MVT::exnref:   return "MVT::exnref";
  default: llvm_unreachable("ILLEGAL VALUE TYPE!");
  }
}

/// getQualifiedName - Return the name of the specified record, with a
/// namespace qualifier if the record contains one.
///
std::string llvm::getQualifiedName(const Record *R) {
  std::string Namespace;
  if (R->getValue("Namespace"))
    Namespace = std::string(R->getValueAsString("Namespace"));
  if (Namespace.empty())
    return std::string(R->getName());
  return Namespace + "::" + R->getName().str();
}


/// getTarget - Return the current instance of the Target class.
///
CodeGenTarget::CodeGenTarget(RecordKeeper &records)
  : Records(records), CGH(records) {
  std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
  if (Targets.size() == 0)
    PrintFatalError("ERROR: No 'Target' subclasses defined!");
  if (Targets.size() != 1)
    PrintFatalError("ERROR: Multiple subclasses of Target defined!");
  TargetRec = Targets[0];
}

CodeGenTarget::~CodeGenTarget() {
}

const StringRef CodeGenTarget::getName() const {
  return TargetRec->getName();
}

StringRef CodeGenTarget::getInstNamespace() const {
  for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) {
    // Make sure not to pick up "TargetOpcode" by accidentally getting
    // the namespace off the PHI instruction or something.
    if (Inst->Namespace != "TargetOpcode")
      return Inst->Namespace;
  }

  return "";
}

StringRef CodeGenTarget::getRegNamespace() const {
  auto &RegClasses = RegBank->getRegClasses();
  return RegClasses.size() > 0 ? RegClasses.front().Namespace : "";
}

Record *CodeGenTarget::getInstructionSet() const {
  return TargetRec->getValueAsDef("InstructionSet");
}

bool CodeGenTarget::getAllowRegisterRenaming() const {
  return TargetRec->getValueAsInt("AllowRegisterRenaming");
}

/// getAsmParser - Return the AssemblyParser definition for this target.
///
Record *CodeGenTarget::getAsmParser() const {
  std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers");
  if (AsmParserNum >= LI.size())
    PrintFatalError("Target does not have an AsmParser #" +
                    Twine(AsmParserNum) + "!");
  return LI[AsmParserNum];
}

/// getAsmParserVariant - Return the AssemblyParserVariant definition for
/// this target.
///
Record *CodeGenTarget::getAsmParserVariant(unsigned i) const {
  std::vector<Record*> LI =
    TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
  if (i >= LI.size())
    PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) +
                    "!");
  return LI[i];
}

/// getAsmParserVariantCount - Return the AssemblyParserVariant definition
/// available for this target.
///
unsigned CodeGenTarget::getAsmParserVariantCount() const {
  std::vector<Record*> LI =
    TargetRec->getValueAsListOfDefs("AssemblyParserVariants");
  return LI.size();
}

/// getAsmWriter - Return the AssemblyWriter definition for this target.
///
Record *CodeGenTarget::getAsmWriter() const {
  std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
  if (AsmWriterNum >= LI.size())
    PrintFatalError("Target does not have an AsmWriter #" +
                    Twine(AsmWriterNum) + "!");
  return LI[AsmWriterNum];
}

CodeGenRegBank &CodeGenTarget::getRegBank() const {
  if (!RegBank)
    RegBank = std::make_unique<CodeGenRegBank>(Records, getHwModes());
  return *RegBank;
}

Optional<CodeGenRegisterClass *>
CodeGenTarget::getSuperRegForSubReg(const ValueTypeByHwMode &ValueTy,
                                    CodeGenRegBank &RegBank,
                                    const CodeGenSubRegIndex *SubIdx) const {
  std::vector<CodeGenRegisterClass *> Candidates;
  auto &RegClasses = RegBank.getRegClasses();

  // Try to find a register class which supports ValueTy, and also contains
  // SubIdx.
  for (CodeGenRegisterClass &RC : RegClasses) {
    // Is there a subclass of this class which contains this subregister index?
    CodeGenRegisterClass *SubClassWithSubReg = RC.getSubClassWithSubReg(SubIdx);
    if (!SubClassWithSubReg)
      continue;

    // We have a class. Check if it supports this value type.
    if (llvm::none_of(SubClassWithSubReg->VTs,
                      [&ValueTy](const ValueTypeByHwMode &ClassVT) {
                        return ClassVT == ValueTy;
                      }))
      continue;

    // We have a register class which supports both the value type and
    // subregister index. Remember it.
    Candidates.push_back(SubClassWithSubReg);
  }

  // If we didn't find anything, we're done.
  if (Candidates.empty())
    return None;

  // Find and return the largest of our candidate classes.
  llvm::stable_sort(Candidates, [&](const CodeGenRegisterClass *A,
                                    const CodeGenRegisterClass *B) {
    if (A->getMembers().size() > B->getMembers().size())
      return true;

    if (A->getMembers().size() < B->getMembers().size())
      return false;

    // Order by name as a tie-breaker.
    return StringRef(A->getName()) < B->getName();
  });

  return Candidates[0];
}

void CodeGenTarget::ReadRegAltNameIndices() const {
  RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex");
  llvm::sort(RegAltNameIndices, LessRecord());
}

/// getRegisterByName - If there is a register with the specific AsmName,
/// return it.
const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const {
  const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName();
  StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name);
  if (I == Regs.end())
    return nullptr;
  return I->second;
}

std::vector<ValueTypeByHwMode> CodeGenTarget::getRegisterVTs(Record *R)
      const {
  const CodeGenRegister *Reg = getRegBank().getReg(R);
  std::vector<ValueTypeByHwMode> Result;
  for (const auto &RC : getRegBank().getRegClasses()) {
    if (RC.contains(Reg)) {
      ArrayRef<ValueTypeByHwMode> InVTs = RC.getValueTypes();
      Result.insert(Result.end(), InVTs.begin(), InVTs.end());
    }
  }

  // Remove duplicates.
  llvm::sort(Result);
  Result.erase(std::unique(Result.begin(), Result.end()), Result.end());
  return Result;
}


void CodeGenTarget::ReadLegalValueTypes() const {
  for (const auto &RC : getRegBank().getRegClasses())
    LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end());

  // Remove duplicates.
  llvm::sort(LegalValueTypes);
  LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
                                    LegalValueTypes.end()),
                        LegalValueTypes.end());
}

CodeGenSchedModels &CodeGenTarget::getSchedModels() const {
  if (!SchedModels)
    SchedModels = std::make_unique<CodeGenSchedModels>(Records, *this);
  return *SchedModels;
}

void CodeGenTarget::ReadInstructions() const {
  NamedRegionTimer T("Read Instructions", "Time spent reading instructions",
                     "CodeGenTarget", "CodeGenTarget", TimeRegions);
  std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
  if (Insts.size() <= 2)
    PrintFatalError("No 'Instruction' subclasses defined!");

  // Parse the instructions defined in the .td file.
  for (unsigned i = 0, e = Insts.size(); i != e; ++i)
    Instructions[Insts[i]] = std::make_unique<CodeGenInstruction>(Insts[i]);
}

static const CodeGenInstruction *
GetInstByName(const char *Name,
              const DenseMap<const Record*,
                             std::unique_ptr<CodeGenInstruction>> &Insts,
              RecordKeeper &Records) {
  const Record *Rec = Records.getDef(Name);

  const auto I = Insts.find(Rec);
  if (!Rec || I == Insts.end())
    PrintFatalError(Twine("Could not find '") + Name + "' instruction!");
  return I->second.get();
}

static const char *const FixedInstrs[] = {
#define HANDLE_TARGET_OPCODE(OPC) #OPC,
#include "llvm/Support/TargetOpcodes.def"
    nullptr};

unsigned CodeGenTarget::getNumFixedInstructions() {
  return array_lengthof(FixedInstrs) - 1;
}

/// Return all of the instructions defined by the target, ordered by
/// their enum value.
void CodeGenTarget::ComputeInstrsByEnum() const {
  const auto &Insts = getInstructions();
  for (const char *const *p = FixedInstrs; *p; ++p) {
    const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records);
    assert(Instr && "Missing target independent instruction");
    assert(Instr->Namespace == "TargetOpcode" && "Bad namespace");
    InstrsByEnum.push_back(Instr);
  }
  unsigned EndOfPredefines = InstrsByEnum.size();
  assert(EndOfPredefines == getNumFixedInstructions() &&
         "Missing generic opcode");

  for (const auto &I : Insts) {
    const CodeGenInstruction *CGI = I.second.get();
    if (CGI->Namespace != "TargetOpcode") {
      InstrsByEnum.push_back(CGI);
      if (CGI->TheDef->getValueAsBit("isPseudo"))
        ++NumPseudoInstructions;
    }
  }

  assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr");

  // All of the instructions are now in random order based on the map iteration.
  llvm::sort(
      InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(),
      [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) {
        const auto &D1 = *Rec1->TheDef;
        const auto &D2 = *Rec2->TheDef;
        return std::make_tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) <
               std::make_tuple(!D2.getValueAsBit("isPseudo"), D2.getName());
      });
}


/// isLittleEndianEncoding - Return whether this target encodes its instruction
/// in little-endian format, i.e. bits laid out in the order [0..n]
///
bool CodeGenTarget::isLittleEndianEncoding() const {
  return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
}

/// reverseBitsForLittleEndianEncoding - For little-endian instruction bit
/// encodings, reverse the bit order of all instructions.
void CodeGenTarget::reverseBitsForLittleEndianEncoding() {
  if (!isLittleEndianEncoding())
    return;

  std::vector<Record *> Insts =
      Records.getAllDerivedDefinitions("InstructionEncoding");
  for (Record *R : Insts) {
    if (R->getValueAsString("Namespace") == "TargetOpcode" ||
        R->getValueAsBit("isPseudo"))
      continue;

    BitsInit *BI = R->getValueAsBitsInit("Inst");

    unsigned numBits = BI->getNumBits();

    SmallVector<Init *, 16> NewBits(numBits);

    for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) {
      unsigned bitSwapIdx = numBits - bit - 1;
      Init *OrigBit = BI->getBit(bit);
      Init *BitSwap = BI->getBit(bitSwapIdx);
      NewBits[bit]        = BitSwap;
      NewBits[bitSwapIdx] = OrigBit;
    }
    if (numBits % 2) {
      unsigned middle = (numBits + 1) / 2;
      NewBits[middle] = BI->getBit(middle);
    }

    BitsInit *NewBI = BitsInit::get(NewBits);

    // Update the bits in reversed order so that emitInstrOpBits will get the
    // correct endianness.
    R->getValue("Inst")->setValue(NewBI);
  }
}

/// guessInstructionProperties - Return true if it's OK to guess instruction
/// properties instead of raising an error.
///
/// This is configurable as a temporary migration aid. It will eventually be
/// permanently false.
bool CodeGenTarget::guessInstructionProperties() const {
  return getInstructionSet()->getValueAsBit("guessInstructionProperties");
}

//===----------------------------------------------------------------------===//
// ComplexPattern implementation
//
ComplexPattern::ComplexPattern(Record *R) {
  Ty          = ::getValueType(R->getValueAsDef("Ty"));
  NumOperands = R->getValueAsInt("NumOperands");
  SelectFunc = std::string(R->getValueAsString("SelectFunc"));
  RootNodes   = R->getValueAsListOfDefs("RootNodes");

  // FIXME: This is a hack to statically increase the priority of patterns which
  // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best
  // possible pattern match we'll need to dynamically calculate the complexity
  // of all patterns a dag can potentially map to.
  int64_t RawComplexity = R->getValueAsInt("Complexity");
  if (RawComplexity == -1)
    Complexity = NumOperands * 3;
  else
    Complexity = RawComplexity;

  // FIXME: Why is this different from parseSDPatternOperatorProperties?
  // Parse the properties.
  Properties = 0;
  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
  for (unsigned i = 0, e = PropList.size(); i != e; ++i)
    if (PropList[i]->getName() == "SDNPHasChain") {
      Properties |= 1 << SDNPHasChain;
    } else if (PropList[i]->getName() == "SDNPOptInGlue") {
      Properties |= 1 << SDNPOptInGlue;
    } else if (PropList[i]->getName() == "SDNPMayStore") {
      Properties |= 1 << SDNPMayStore;
    } else if (PropList[i]->getName() == "SDNPMayLoad") {
      Properties |= 1 << SDNPMayLoad;
    } else if (PropList[i]->getName() == "SDNPSideEffect") {
      Properties |= 1 << SDNPSideEffect;
    } else if (PropList[i]->getName() == "SDNPMemOperand") {
      Properties |= 1 << SDNPMemOperand;
    } else if (PropList[i]->getName() == "SDNPVariadic") {
      Properties |= 1 << SDNPVariadic;
    } else if (PropList[i]->getName() == "SDNPWantRoot") {
      Properties |= 1 << SDNPWantRoot;
    } else if (PropList[i]->getName() == "SDNPWantParent") {
      Properties |= 1 << SDNPWantParent;
    } else {
      PrintFatalError(R->getLoc(), "Unsupported SD Node property '" +
                                       PropList[i]->getName() +
                                       "' on ComplexPattern '" + R->getName() +
                                       "'!");
    }
}

//===----------------------------------------------------------------------===//
// CodeGenIntrinsic Implementation
//===----------------------------------------------------------------------===//

CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) {
  std::vector<Record *> IntrProperties =
      RC.getAllDerivedDefinitions("IntrinsicProperty");

  std::vector<Record *> DefaultProperties;
  for (Record *Rec : IntrProperties)
    if (Rec->getValueAsBit("IsDefault"))
      DefaultProperties.push_back(Rec);

  std::vector<Record *> Defs = RC.getAllDerivedDefinitions("Intrinsic");
  Intrinsics.reserve(Defs.size());

  for (unsigned I = 0, e = Defs.size(); I != e; ++I)
    Intrinsics.push_back(CodeGenIntrinsic(Defs[I], DefaultProperties));

  llvm::sort(Intrinsics,
             [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) {
               return std::tie(LHS.TargetPrefix, LHS.Name) <
                      std::tie(RHS.TargetPrefix, RHS.Name);
             });
  Targets.push_back({"", 0, 0});
  for (size_t I = 0, E = Intrinsics.size(); I < E; ++I)
    if (Intrinsics[I].TargetPrefix != Targets.back().Name) {
      Targets.back().Count = I - Targets.back().Offset;
      Targets.push_back({Intrinsics[I].TargetPrefix, I, 0});
    }
  Targets.back().Count = Intrinsics.size() - Targets.back().Offset;
}

CodeGenIntrinsic::CodeGenIntrinsic(Record *R,
                                   std::vector<Record *> DefaultProperties) {
  TheDef = R;
  std::string DefName = std::string(R->getName());
  ArrayRef<SMLoc> DefLoc = R->getLoc();
  ModRef = ReadWriteMem;
  Properties = 0;
  isOverloaded = false;
  isCommutative = false;
  canThrow = false;
  isNoReturn = false;
  isNoSync = false;
  isNoFree = false;
  isWillReturn = false;
  isCold = false;
  isNoDuplicate = false;
  isConvergent = false;
  isSpeculatable = false;
  hasSideEffects = false;

  if (DefName.size() <= 4 ||
      std::string(DefName.begin(), DefName.begin() + 4) != "int_")
    PrintFatalError(DefLoc,
                    "Intrinsic '" + DefName + "' does not start with 'int_'!");

  EnumName = std::string(DefName.begin()+4, DefName.end());

  if (R->getValue("GCCBuiltinName"))  // Ignore a missing GCCBuiltinName field.
    GCCBuiltinName = std::string(R->getValueAsString("GCCBuiltinName"));
  if (R->getValue("MSBuiltinName"))   // Ignore a missing MSBuiltinName field.
    MSBuiltinName = std::string(R->getValueAsString("MSBuiltinName"));

  TargetPrefix = std::string(R->getValueAsString("TargetPrefix"));
  Name = std::string(R->getValueAsString("LLVMName"));

  if (Name == "") {
    // If an explicit name isn't specified, derive one from the DefName.
    Name = "llvm.";

    for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
      Name += (EnumName[i] == '_') ? '.' : EnumName[i];
  } else {
    // Verify it starts with "llvm.".
    if (Name.size() <= 5 ||
        std::string(Name.begin(), Name.begin() + 5) != "llvm.")
      PrintFatalError(DefLoc, "Intrinsic '" + DefName +
                                  "'s name does not start with 'llvm.'!");
  }

  // If TargetPrefix is specified, make sure that Name starts with
  // "llvm.<targetprefix>.".
  if (!TargetPrefix.empty()) {
    if (Name.size() < 6+TargetPrefix.size() ||
        std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
        != (TargetPrefix + "."))
      PrintFatalError(DefLoc, "Intrinsic '" + DefName +
                                  "' does not start with 'llvm." +
                                  TargetPrefix + ".'!");
  }

  ListInit *RetTypes = R->getValueAsListInit("RetTypes");
  ListInit *ParamTypes = R->getValueAsListInit("ParamTypes");

  // First collate a list of overloaded types.
  std::vector<MVT::SimpleValueType> OverloadedVTs;
  for (ListInit *TypeList : {RetTypes, ParamTypes}) {
    for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
      Record *TyEl = TypeList->getElementAsRecord(i);
      assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");

      if (TyEl->isSubClassOf("LLVMMatchType"))
        continue;

      MVT::SimpleValueType VT = getValueType(TyEl->getValueAsDef("VT"));
      if (MVT(VT).isOverloaded()) {
        OverloadedVTs.push_back(VT);
        isOverloaded = true;
      }
    }
  }

  // Parse the list of return types.
  ListInit *TypeList = RetTypes;
  for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
    Record *TyEl = TypeList->getElementAsRecord(i);
    assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
    MVT::SimpleValueType VT;
    if (TyEl->isSubClassOf("LLVMMatchType")) {
      unsigned MatchTy = TyEl->getValueAsInt("Number");
      assert(MatchTy < OverloadedVTs.size() &&
             "Invalid matching number!");
      VT = OverloadedVTs[MatchTy];
      // It only makes sense to use the extended and truncated vector element
      // variants with iAny types; otherwise, if the intrinsic is not
      // overloaded, all the types can be specified directly.
      assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
               !TyEl->isSubClassOf("LLVMTruncatedType")) ||
              VT == MVT::iAny || VT == MVT::vAny) &&
             "Expected iAny or vAny type");
    } else {
      VT = getValueType(TyEl->getValueAsDef("VT"));
    }

    // Reject invalid types.
    if (VT == MVT::isVoid)
      PrintFatalError(DefLoc, "Intrinsic '" + DefName +
                                  " has void in result type list!");

    IS.RetVTs.push_back(VT);
    IS.RetTypeDefs.push_back(TyEl);
  }

  // Parse the list of parameter types.
  TypeList = ParamTypes;
  for (unsigned i = 0, e = TypeList->size(); i != e; ++i) {
    Record *TyEl = TypeList->getElementAsRecord(i);
    assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
    MVT::SimpleValueType VT;
    if (TyEl->isSubClassOf("LLVMMatchType")) {
      unsigned MatchTy = TyEl->getValueAsInt("Number");
      if (MatchTy >= OverloadedVTs.size()) {
        PrintError(R->getLoc(),
                   "Parameter #" + Twine(i) + " has out of bounds matching "
                   "number " + Twine(MatchTy));
        PrintFatalError(DefLoc,
                        Twine("ParamTypes is ") + TypeList->getAsString());
      }
      VT = OverloadedVTs[MatchTy];
      // It only makes sense to use the extended and truncated vector element
      // variants with iAny types; otherwise, if the intrinsic is not
      // overloaded, all the types can be specified directly.
      assert(((!TyEl->isSubClassOf("LLVMExtendedType") &&
               !TyEl->isSubClassOf("LLVMTruncatedType")) ||
              VT == MVT::iAny || VT == MVT::vAny) &&
             "Expected iAny or vAny type");
    } else
      VT = getValueType(TyEl->getValueAsDef("VT"));

    // Reject invalid types.
    if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/)
      PrintFatalError(DefLoc, "Intrinsic '" + DefName +
                                  " has void in result type list!");

    IS.ParamVTs.push_back(VT);
    IS.ParamTypeDefs.push_back(TyEl);
  }

  // Set default properties to true.
  setDefaultProperties(R, DefaultProperties);

  // Parse the intrinsic properties.
  ListInit *PropList = R->getValueAsListInit("IntrProperties");
  for (unsigned i = 0, e = PropList->size(); i != e; ++i) {
    Record *Property = PropList->getElementAsRecord(i);
    assert(Property->isSubClassOf("IntrinsicProperty") &&
           "Expected a property!");

    setProperty(Property);
  }

  // Also record the SDPatternOperator Properties.
  Properties = parseSDPatternOperatorProperties(R);

  // Sort the argument attributes for later benefit.
  llvm::sort(ArgumentAttributes);
}

void CodeGenIntrinsic::setDefaultProperties(
    Record *R, std::vector<Record *> DefaultProperties) {
  // opt-out of using default attributes.
  if (R->getValueAsBit("DisableDefaultAttributes"))
    return;

  for (Record *Rec : DefaultProperties)
    setProperty(Rec);
}

void CodeGenIntrinsic::setProperty(Record *R) {
  if (R->getName() == "IntrNoMem")
    ModRef = NoMem;
  else if (R->getName() == "IntrReadMem")
    ModRef = ModRefBehavior(ModRef & ~MR_Mod);
  else if (R->getName() == "IntrWriteMem")
    ModRef = ModRefBehavior(ModRef & ~MR_Ref);
  else if (R->getName() == "IntrArgMemOnly")
    ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem);
  else if (R->getName() == "IntrInaccessibleMemOnly")
    ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem);
  else if (R->getName() == "IntrInaccessibleMemOrArgMemOnly")
    ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem |
                            MR_InaccessibleMem);
  else if (R->getName() == "Commutative")
    isCommutative = true;
  else if (R->getName() == "Throws")
    canThrow = true;
  else if (R->getName() == "IntrNoDuplicate")
    isNoDuplicate = true;
  else if (R->getName() == "IntrConvergent")
    isConvergent = true;
  else if (R->getName() == "IntrNoReturn")
    isNoReturn = true;
  else if (R->getName() == "IntrNoSync")
    isNoSync = true;
  else if (R->getName() == "IntrNoFree")
    isNoFree = true;
  else if (R->getName() == "IntrWillReturn")
    isWillReturn = true;
  else if (R->getName() == "IntrCold")
    isCold = true;
  else if (R->getName() == "IntrSpeculatable")
    isSpeculatable = true;
  else if (R->getName() == "IntrHasSideEffects")
    hasSideEffects = true;
  else if (R->isSubClassOf("NoCapture")) {
    unsigned ArgNo = R->getValueAsInt("ArgNo");
    ArgumentAttributes.emplace_back(ArgNo, NoCapture, 0);
  } else if (R->isSubClassOf("NoAlias")) {
    unsigned ArgNo = R->getValueAsInt("ArgNo");
    ArgumentAttributes.emplace_back(ArgNo, NoAlias, 0);
  } else if (R->isSubClassOf("NoUndef")) {
    unsigned ArgNo = R->getValueAsInt("ArgNo");
    ArgumentAttributes.emplace_back(ArgNo, NoUndef, 0);
  } else if (R->isSubClassOf("Returned")) {
    unsigned ArgNo = R->getValueAsInt("ArgNo");
    ArgumentAttributes.emplace_back(ArgNo, Returned, 0);
  } else if (R->isSubClassOf("ReadOnly")) {
    unsigned ArgNo = R->getValueAsInt("ArgNo");
    ArgumentAttributes.emplace_back(ArgNo, ReadOnly, 0);
  } else if (R->isSubClassOf("WriteOnly")) {
    unsigned ArgNo = R->getValueAsInt("ArgNo");
    ArgumentAttributes.emplace_back(ArgNo, WriteOnly, 0);
  } else if (R->isSubClassOf("ReadNone")) {
    unsigned ArgNo = R->getValueAsInt("ArgNo");
    ArgumentAttributes.emplace_back(ArgNo, ReadNone, 0);
  } else if (R->isSubClassOf("ImmArg")) {
    unsigned ArgNo = R->getValueAsInt("ArgNo");
    ArgumentAttributes.emplace_back(ArgNo, ImmArg, 0);
  } else if (R->isSubClassOf("Align")) {
    unsigned ArgNo = R->getValueAsInt("ArgNo");
    uint64_t Align = R->getValueAsInt("Align");
    ArgumentAttributes.emplace_back(ArgNo, Alignment, Align);
  } else
    llvm_unreachable("Unknown property!");
}

bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const {
  if (ParamIdx >= IS.ParamVTs.size())
    return false;
  MVT ParamType = MVT(IS.ParamVTs[ParamIdx]);
  return ParamType == MVT::iPTR || ParamType == MVT::iPTRAny;
}

bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const {
  // Convert argument index to attribute index starting from `FirstArgIndex`.
  ArgAttribute Val{ParamIdx + 1, ImmArg, 0};
  return std::binary_search(ArgumentAttributes.begin(),
                            ArgumentAttributes.end(), Val);
}