CodeGenSchedule.cpp 84.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
//===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines structures to encapsulate the machine model as described in
// the target description.
//
//===----------------------------------------------------------------------===//

#include "CodeGenSchedule.h"
#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include <algorithm>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "subtarget-emitter"

#ifndef NDEBUG
static void dumpIdxVec(ArrayRef<unsigned> V) {
  for (unsigned Idx : V)
    dbgs() << Idx << ", ";
}
#endif

namespace {

// (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
struct InstrsOp : public SetTheory::Operator {
  void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
             ArrayRef<SMLoc> Loc) override {
    ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
  }
};

// (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
struct InstRegexOp : public SetTheory::Operator {
  const CodeGenTarget &Target;
  InstRegexOp(const CodeGenTarget &t): Target(t) {}

  /// Remove any text inside of parentheses from S.
  static std::string removeParens(llvm::StringRef S) {
    std::string Result;
    unsigned Paren = 0;
    // NB: We don't care about escaped parens here.
    for (char C : S) {
      switch (C) {
      case '(':
        ++Paren;
        break;
      case ')':
        --Paren;
        break;
      default:
        if (Paren == 0)
          Result += C;
      }
    }
    return Result;
  }

  void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
             ArrayRef<SMLoc> Loc) override {
    ArrayRef<const CodeGenInstruction *> Instructions =
        Target.getInstructionsByEnumValue();

    unsigned NumGeneric = Target.getNumFixedInstructions();
    unsigned NumPseudos = Target.getNumPseudoInstructions();
    auto Generics = Instructions.slice(0, NumGeneric);
    auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
    auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);

    for (Init *Arg : make_range(Expr->arg_begin(), Expr->arg_end())) {
      StringInit *SI = dyn_cast<StringInit>(Arg);
      if (!SI)
        PrintFatalError(Loc, "instregex requires pattern string: " +
                                 Expr->getAsString());
      StringRef Original = SI->getValue();

      // Extract a prefix that we can binary search on.
      static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
      auto FirstMeta = Original.find_first_of(RegexMetachars);

      // Look for top-level | or ?. We cannot optimize them to binary search.
      if (removeParens(Original).find_first_of("|?") != std::string::npos)
        FirstMeta = 0;

      Optional<Regex> Regexpr = None;
      StringRef Prefix = Original.substr(0, FirstMeta);
      StringRef PatStr = Original.substr(FirstMeta);
      if (!PatStr.empty()) {
        // For the rest use a python-style prefix match.
        std::string pat = std::string(PatStr);
        if (pat[0] != '^') {
          pat.insert(0, "^(");
          pat.insert(pat.end(), ')');
        }
        Regexpr = Regex(pat);
      }

      int NumMatches = 0;

      // The generic opcodes are unsorted, handle them manually.
      for (auto *Inst : Generics) {
        StringRef InstName = Inst->TheDef->getName();
        if (InstName.startswith(Prefix) &&
            (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
          Elts.insert(Inst->TheDef);
          NumMatches++;
        }
      }

      // Target instructions are split into two ranges: pseudo instructions
      // first, than non-pseudos. Each range is in lexicographical order
      // sorted by name. Find the sub-ranges that start with our prefix.
      struct Comp {
        bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
          return LHS->TheDef->getName() < RHS;
        }
        bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
          return LHS < RHS->TheDef->getName() &&
                 !RHS->TheDef->getName().startswith(LHS);
        }
      };
      auto Range1 =
          std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
      auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
                                     Prefix, Comp());

      // For these ranges we know that instruction names start with the prefix.
      // Check if there's a regex that needs to be checked.
      const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
        StringRef InstName = Inst->TheDef->getName();
        if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
          Elts.insert(Inst->TheDef);
          NumMatches++;
        }
      };
      std::for_each(Range1.first, Range1.second, HandleNonGeneric);
      std::for_each(Range2.first, Range2.second, HandleNonGeneric);

      if (0 == NumMatches)
        PrintFatalError(Loc, "instregex has no matches: " + Original);
    }
  }
};

} // end anonymous namespace

/// CodeGenModels ctor interprets machine model records and populates maps.
CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
                                       const CodeGenTarget &TGT):
  Records(RK), Target(TGT) {

  Sets.addFieldExpander("InstRW", "Instrs");

  // Allow Set evaluation to recognize the dags used in InstRW records:
  // (instrs Op1, Op1...)
  Sets.addOperator("instrs", std::make_unique<InstrsOp>());
  Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));

  // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
  // that are explicitly referenced in tablegen records. Resources associated
  // with each processor will be derived later. Populate ProcModelMap with the
  // CodeGenProcModel instances.
  collectProcModels();

  // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
  // defined, and populate SchedReads and SchedWrites vectors. Implicit
  // SchedReadWrites that represent sequences derived from expanded variant will
  // be inferred later.
  collectSchedRW();

  // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
  // required by an instruction definition, and populate SchedClassIdxMap. Set
  // NumItineraryClasses to the number of explicit itinerary classes referenced
  // by instructions. Set NumInstrSchedClasses to the number of itinerary
  // classes plus any classes implied by instructions that derive from class
  // Sched and provide SchedRW list. This does not infer any new classes from
  // SchedVariant.
  collectSchedClasses();

  // Find instruction itineraries for each processor. Sort and populate
  // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
  // all itinerary classes to be discovered.
  collectProcItins();

  // Find ItinRW records for each processor and itinerary class.
  // (For per-operand resources mapped to itinerary classes).
  collectProcItinRW();

  // Find UnsupportedFeatures records for each processor.
  // (For per-operand resources mapped to itinerary classes).
  collectProcUnsupportedFeatures();

  // Infer new SchedClasses from SchedVariant.
  inferSchedClasses();

  // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
  // ProcResourceDefs.
  LLVM_DEBUG(
      dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
  collectProcResources();

  // Collect optional processor description.
  collectOptionalProcessorInfo();

  // Check MCInstPredicate definitions.
  checkMCInstPredicates();

  // Check STIPredicate definitions.
  checkSTIPredicates();

  // Find STIPredicate definitions for each processor model, and construct
  // STIPredicateFunction objects.
  collectSTIPredicates();

  checkCompleteness();
}

void CodeGenSchedModels::checkSTIPredicates() const {
  DenseMap<StringRef, const Record *> Declarations;

  // There cannot be multiple declarations with the same name.
  const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
  for (const Record *R : Decls) {
    StringRef Name = R->getValueAsString("Name");
    const auto It = Declarations.find(Name);
    if (It == Declarations.end()) {
      Declarations[Name] = R;
      continue;
    }

    PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
    PrintFatalNote(It->second->getLoc(), "Previous declaration was here.");
  }

  // Disallow InstructionEquivalenceClasses with an empty instruction list.
  const RecVec Defs =
      Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
  for (const Record *R : Defs) {
    RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
    if (Opcodes.empty()) {
      PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
                                   "defined with an empty opcode list.");
    }
  }
}

// Used by function `processSTIPredicate` to construct a mask of machine
// instruction operands.
static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
  APInt OperandMask;
  if (Indices.empty())
    return OperandMask;

  int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
  assert(MaxIndex >= 0 && "Invalid negative indices in input!");
  OperandMask = OperandMask.zext(MaxIndex + 1);
  for (const int64_t Index : Indices) {
    assert(Index >= 0 && "Invalid negative indices!");
    OperandMask.setBit(Index);
  }

  return OperandMask;
}

static void
processSTIPredicate(STIPredicateFunction &Fn,
                    const DenseMap<Record *, unsigned> &ProcModelMap) {
  DenseMap<const Record *, unsigned> Opcode2Index;
  using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
  std::vector<OpcodeMapPair> OpcodeMappings;
  std::vector<std::pair<APInt, APInt>> OpcodeMasks;

  DenseMap<const Record *, unsigned> Predicate2Index;
  unsigned NumUniquePredicates = 0;

  // Number unique predicates and opcodes used by InstructionEquivalenceClass
  // definitions. Each unique opcode will be associated with an OpcodeInfo
  // object.
  for (const Record *Def : Fn.getDefinitions()) {
    RecVec Classes = Def->getValueAsListOfDefs("Classes");
    for (const Record *EC : Classes) {
      const Record *Pred = EC->getValueAsDef("Predicate");
      if (Predicate2Index.find(Pred) == Predicate2Index.end())
        Predicate2Index[Pred] = NumUniquePredicates++;

      RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
      for (const Record *Opcode : Opcodes) {
        if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
          Opcode2Index[Opcode] = OpcodeMappings.size();
          OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
        }
      }
    }
  }

  // Initialize vector `OpcodeMasks` with default values.  We want to keep track
  // of which processors "use" which opcodes.  We also want to be able to
  // identify predicates that are used by different processors for a same
  // opcode.
  // This information is used later on by this algorithm to sort OpcodeMapping
  // elements based on their processor and predicate sets.
  OpcodeMasks.resize(OpcodeMappings.size());
  APInt DefaultProcMask(ProcModelMap.size(), 0);
  APInt DefaultPredMask(NumUniquePredicates, 0);
  for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
    MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);

  // Construct a OpcodeInfo object for every unique opcode declared by an
  // InstructionEquivalenceClass definition.
  for (const Record *Def : Fn.getDefinitions()) {
    RecVec Classes = Def->getValueAsListOfDefs("Classes");
    const Record *SchedModel = Def->getValueAsDef("SchedModel");
    unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
    APInt ProcMask(ProcModelMap.size(), 0);
    ProcMask.setBit(ProcIndex);

    for (const Record *EC : Classes) {
      RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");

      std::vector<int64_t> OpIndices =
          EC->getValueAsListOfInts("OperandIndices");
      APInt OperandMask = constructOperandMask(OpIndices);

      const Record *Pred = EC->getValueAsDef("Predicate");
      APInt PredMask(NumUniquePredicates, 0);
      PredMask.setBit(Predicate2Index[Pred]);

      for (const Record *Opcode : Opcodes) {
        unsigned OpcodeIdx = Opcode2Index[Opcode];
        if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
          std::string Message =
              "Opcode " + Opcode->getName().str() +
              " used by multiple InstructionEquivalenceClass definitions.";
          PrintFatalError(EC->getLoc(), Message);
        }
        OpcodeMasks[OpcodeIdx].first |= ProcMask;
        OpcodeMasks[OpcodeIdx].second |= PredMask;
        OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;

        OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
      }
    }
  }

  // Sort OpcodeMappings elements based on their CPU and predicate masks.
  // As a last resort, order elements by opcode identifier.
  llvm::sort(OpcodeMappings,
             [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
               unsigned LhsIdx = Opcode2Index[Lhs.first];
               unsigned RhsIdx = Opcode2Index[Rhs.first];
               const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
               const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];

               auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
                 unsigned LhsCountPopulation = Lhs.countPopulation();
                 unsigned RhsCountPopulation = Rhs.countPopulation();
                 return ((LhsCountPopulation < RhsCountPopulation) ||
                         ((LhsCountPopulation == RhsCountPopulation) &&
                          (Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
               };

               if (LhsMasks.first != RhsMasks.first)
                 return LessThan(LhsMasks.first, RhsMasks.first);

               if (LhsMasks.second != RhsMasks.second)
                 return LessThan(LhsMasks.second, RhsMasks.second);

               return LhsIdx < RhsIdx;
             });

  // Now construct opcode groups. Groups are used by the SubtargetEmitter when
  // expanding the body of a STIPredicate function. In particular, each opcode
  // group is expanded into a sequence of labels in a switch statement.
  // It identifies opcodes for which different processors define same predicates
  // and same opcode masks.
  for (OpcodeMapPair &Info : OpcodeMappings)
    Fn.addOpcode(Info.first, std::move(Info.second));
}

void CodeGenSchedModels::collectSTIPredicates() {
  // Map STIPredicateDecl records to elements of vector
  // CodeGenSchedModels::STIPredicates.
  DenseMap<const Record *, unsigned> Decl2Index;

  RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
  for (const Record *R : RV) {
    const Record *Decl = R->getValueAsDef("Declaration");

    const auto It = Decl2Index.find(Decl);
    if (It == Decl2Index.end()) {
      Decl2Index[Decl] = STIPredicates.size();
      STIPredicateFunction Predicate(Decl);
      Predicate.addDefinition(R);
      STIPredicates.emplace_back(std::move(Predicate));
      continue;
    }

    STIPredicateFunction &PreviousDef = STIPredicates[It->second];
    PreviousDef.addDefinition(R);
  }

  for (STIPredicateFunction &Fn : STIPredicates)
    processSTIPredicate(Fn, ProcModelMap);
}

void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
                                          const llvm::APInt &OperandMask,
                                          const Record *Predicate) {
  auto It = llvm::find_if(
      Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
        return P.Predicate == Predicate && P.OperandMask == OperandMask;
      });
  if (It == Predicates.end()) {
    Predicates.emplace_back(CpuMask, OperandMask, Predicate);
    return;
  }
  It->ProcModelMask |= CpuMask;
}

void CodeGenSchedModels::checkMCInstPredicates() const {
  RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
  if (MCPredicates.empty())
    return;

  // A target cannot have multiple TIIPredicate definitions with a same name.
  llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
  for (const Record *TIIPred : MCPredicates) {
    StringRef Name = TIIPred->getValueAsString("FunctionName");
    StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
    if (It == TIIPredicates.end()) {
      TIIPredicates[Name] = TIIPred;
      continue;
    }

    PrintError(TIIPred->getLoc(),
               "TIIPredicate " + Name + " is multiply defined.");
    PrintFatalNote(It->second->getLoc(),
                   " Previous definition of " + Name + " was here.");
  }
}

void CodeGenSchedModels::collectRetireControlUnits() {
  RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");

  for (Record *RCU : Units) {
    CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
    if (PM.RetireControlUnit) {
      PrintError(RCU->getLoc(),
                 "Expected a single RetireControlUnit definition");
      PrintNote(PM.RetireControlUnit->getLoc(),
                "Previous definition of RetireControlUnit was here");
    }
    PM.RetireControlUnit = RCU;
  }
}

void CodeGenSchedModels::collectLoadStoreQueueInfo() {
  RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");

  for (Record *Queue : Queues) {
    CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
    if (Queue->isSubClassOf("LoadQueue")) {
      if (PM.LoadQueue) {
        PrintError(Queue->getLoc(),
                   "Expected a single LoadQueue definition");
        PrintNote(PM.LoadQueue->getLoc(),
                  "Previous definition of LoadQueue was here");
      }

      PM.LoadQueue = Queue;
    }

    if (Queue->isSubClassOf("StoreQueue")) {
      if (PM.StoreQueue) {
        PrintError(Queue->getLoc(),
                   "Expected a single StoreQueue definition");
        PrintNote(PM.LoadQueue->getLoc(),
                  "Previous definition of StoreQueue was here");
      }

      PM.StoreQueue = Queue;
    }
  }
}

/// Collect optional processor information.
void CodeGenSchedModels::collectOptionalProcessorInfo() {
  // Find register file definitions for each processor.
  collectRegisterFiles();

  // Collect processor RetireControlUnit descriptors if available.
  collectRetireControlUnits();

  // Collect information about load/store queues.
  collectLoadStoreQueueInfo();

  checkCompleteness();
}

/// Gather all processor models.
void CodeGenSchedModels::collectProcModels() {
  RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
  llvm::sort(ProcRecords, LessRecordFieldName());

  // Reserve space because we can. Reallocation would be ok.
  ProcModels.reserve(ProcRecords.size()+1);

  // Use idx=0 for NoModel/NoItineraries.
  Record *NoModelDef = Records.getDef("NoSchedModel");
  Record *NoItinsDef = Records.getDef("NoItineraries");
  ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
  ProcModelMap[NoModelDef] = 0;

  // For each processor, find a unique machine model.
  LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
  for (Record *ProcRecord : ProcRecords)
    addProcModel(ProcRecord);
}

/// Get a unique processor model based on the defined MachineModel and
/// ProcessorItineraries.
void CodeGenSchedModels::addProcModel(Record *ProcDef) {
  Record *ModelKey = getModelOrItinDef(ProcDef);
  if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
    return;

  std::string Name = std::string(ModelKey->getName());
  if (ModelKey->isSubClassOf("SchedMachineModel")) {
    Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
    ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
  }
  else {
    // An itinerary is defined without a machine model. Infer a new model.
    if (!ModelKey->getValueAsListOfDefs("IID").empty())
      Name = Name + "Model";
    ProcModels.emplace_back(ProcModels.size(), Name,
                            ProcDef->getValueAsDef("SchedModel"), ModelKey);
  }
  LLVM_DEBUG(ProcModels.back().dump());
}

// Recursively find all reachable SchedReadWrite records.
static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
                        SmallPtrSet<Record*, 16> &RWSet) {
  if (!RWSet.insert(RWDef).second)
    return;
  RWDefs.push_back(RWDef);
  // Reads don't currently have sequence records, but it can be added later.
  if (RWDef->isSubClassOf("WriteSequence")) {
    RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
    for (Record *WSRec : Seq)
      scanSchedRW(WSRec, RWDefs, RWSet);
  }
  else if (RWDef->isSubClassOf("SchedVariant")) {
    // Visit each variant (guarded by a different predicate).
    RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
    for (Record *Variant : Vars) {
      // Visit each RW in the sequence selected by the current variant.
      RecVec Selected = Variant->getValueAsListOfDefs("Selected");
      for (Record *SelDef : Selected)
        scanSchedRW(SelDef, RWDefs, RWSet);
    }
  }
}

// Collect and sort all SchedReadWrites reachable via tablegen records.
// More may be inferred later when inferring new SchedClasses from variants.
void CodeGenSchedModels::collectSchedRW() {
  // Reserve idx=0 for invalid writes/reads.
  SchedWrites.resize(1);
  SchedReads.resize(1);

  SmallPtrSet<Record*, 16> RWSet;

  // Find all SchedReadWrites referenced by instruction defs.
  RecVec SWDefs, SRDefs;
  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
    Record *SchedDef = Inst->TheDef;
    if (SchedDef->isValueUnset("SchedRW"))
      continue;
    RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
    for (Record *RW : RWs) {
      if (RW->isSubClassOf("SchedWrite"))
        scanSchedRW(RW, SWDefs, RWSet);
      else {
        assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
        scanSchedRW(RW, SRDefs, RWSet);
      }
    }
  }
  // Find all ReadWrites referenced by InstRW.
  RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
  for (Record *InstRWDef : InstRWDefs) {
    // For all OperandReadWrites.
    RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
    for (Record *RWDef : RWDefs) {
      if (RWDef->isSubClassOf("SchedWrite"))
        scanSchedRW(RWDef, SWDefs, RWSet);
      else {
        assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
        scanSchedRW(RWDef, SRDefs, RWSet);
      }
    }
  }
  // Find all ReadWrites referenced by ItinRW.
  RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
  for (Record *ItinRWDef : ItinRWDefs) {
    // For all OperandReadWrites.
    RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
    for (Record *RWDef : RWDefs) {
      if (RWDef->isSubClassOf("SchedWrite"))
        scanSchedRW(RWDef, SWDefs, RWSet);
      else {
        assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
        scanSchedRW(RWDef, SRDefs, RWSet);
      }
    }
  }
  // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
  // for the loop below that initializes Alias vectors.
  RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
  llvm::sort(AliasDefs, LessRecord());
  for (Record *ADef : AliasDefs) {
    Record *MatchDef = ADef->getValueAsDef("MatchRW");
    Record *AliasDef = ADef->getValueAsDef("AliasRW");
    if (MatchDef->isSubClassOf("SchedWrite")) {
      if (!AliasDef->isSubClassOf("SchedWrite"))
        PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
      scanSchedRW(AliasDef, SWDefs, RWSet);
    }
    else {
      assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
      if (!AliasDef->isSubClassOf("SchedRead"))
        PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
      scanSchedRW(AliasDef, SRDefs, RWSet);
    }
  }
  // Sort and add the SchedReadWrites directly referenced by instructions or
  // itinerary resources. Index reads and writes in separate domains.
  llvm::sort(SWDefs, LessRecord());
  for (Record *SWDef : SWDefs) {
    assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
    SchedWrites.emplace_back(SchedWrites.size(), SWDef);
  }
  llvm::sort(SRDefs, LessRecord());
  for (Record *SRDef : SRDefs) {
    assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
    SchedReads.emplace_back(SchedReads.size(), SRDef);
  }
  // Initialize WriteSequence vectors.
  for (CodeGenSchedRW &CGRW : SchedWrites) {
    if (!CGRW.IsSequence)
      continue;
    findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
            /*IsRead=*/false);
  }
  // Initialize Aliases vectors.
  for (Record *ADef : AliasDefs) {
    Record *AliasDef = ADef->getValueAsDef("AliasRW");
    getSchedRW(AliasDef).IsAlias = true;
    Record *MatchDef = ADef->getValueAsDef("MatchRW");
    CodeGenSchedRW &RW = getSchedRW(MatchDef);
    if (RW.IsAlias)
      PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
    RW.Aliases.push_back(ADef);
  }
  LLVM_DEBUG(
      dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
      for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
        dbgs() << WIdx << ": ";
        SchedWrites[WIdx].dump();
        dbgs() << '\n';
      } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
             ++RIdx) {
        dbgs() << RIdx << ": ";
        SchedReads[RIdx].dump();
        dbgs() << '\n';
      } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
      for (Record *RWDef
           : RWDefs) {
        if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
          StringRef Name = RWDef->getName();
          if (Name != "NoWrite" && Name != "ReadDefault")
            dbgs() << "Unused SchedReadWrite " << Name << '\n';
        }
      });
}

/// Compute a SchedWrite name from a sequence of writes.
std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
  std::string Name("(");
  for (auto I = Seq.begin(), E = Seq.end(); I != E; ++I) {
    if (I != Seq.begin())
      Name += '_';
    Name += getSchedRW(*I, IsRead).Name;
  }
  Name += ')';
  return Name;
}

unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
                                           bool IsRead) const {
  const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
  const auto I = find_if(
      RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
  return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
}

bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
  for (const CodeGenSchedRW &Read : SchedReads) {
    Record *ReadDef = Read.TheDef;
    if (!ReadDef || !ReadDef->isSubClassOf("ProcReadAdvance"))
      continue;

    RecVec ValidWrites = ReadDef->getValueAsListOfDefs("ValidWrites");
    if (is_contained(ValidWrites, WriteDef)) {
      return true;
    }
  }
  return false;
}

static void splitSchedReadWrites(const RecVec &RWDefs,
                                 RecVec &WriteDefs, RecVec &ReadDefs) {
  for (Record *RWDef : RWDefs) {
    if (RWDef->isSubClassOf("SchedWrite"))
      WriteDefs.push_back(RWDef);
    else {
      assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
      ReadDefs.push_back(RWDef);
    }
  }
}

// Split the SchedReadWrites defs and call findRWs for each list.
void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
                                 IdxVec &Writes, IdxVec &Reads) const {
  RecVec WriteDefs;
  RecVec ReadDefs;
  splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
  findRWs(WriteDefs, Writes, false);
  findRWs(ReadDefs, Reads, true);
}

// Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
                                 bool IsRead) const {
  for (Record *RWDef : RWDefs) {
    unsigned Idx = getSchedRWIdx(RWDef, IsRead);
    assert(Idx && "failed to collect SchedReadWrite");
    RWs.push_back(Idx);
  }
}

void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
                                          bool IsRead) const {
  const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
  if (!SchedRW.IsSequence) {
    RWSeq.push_back(RWIdx);
    return;
  }
  int Repeat =
    SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
  for (int i = 0; i < Repeat; ++i) {
    for (unsigned I : SchedRW.Sequence) {
      expandRWSequence(I, RWSeq, IsRead);
    }
  }
}

// Expand a SchedWrite as a sequence following any aliases that coincide with
// the given processor model.
void CodeGenSchedModels::expandRWSeqForProc(
  unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
  const CodeGenProcModel &ProcModel) const {

  const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
  Record *AliasDef = nullptr;
  for (const Record *Rec : SchedWrite.Aliases) {
    const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
    if (Rec->getValueInit("SchedModel")->isComplete()) {
      Record *ModelDef = Rec->getValueAsDef("SchedModel");
      if (&getProcModel(ModelDef) != &ProcModel)
        continue;
    }
    if (AliasDef)
      PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
                      "defined for processor " + ProcModel.ModelName +
                      " Ensure only one SchedAlias exists per RW.");
    AliasDef = AliasRW.TheDef;
  }
  if (AliasDef) {
    expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
                       RWSeq, IsRead,ProcModel);
    return;
  }
  if (!SchedWrite.IsSequence) {
    RWSeq.push_back(RWIdx);
    return;
  }
  int Repeat =
    SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
  for (int I = 0, E = Repeat; I < E; ++I) {
    for (unsigned Idx : SchedWrite.Sequence) {
      expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
    }
  }
}

// Find the existing SchedWrite that models this sequence of writes.
unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
                                               bool IsRead) {
  std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;

  auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
    return makeArrayRef(RW.Sequence) == Seq;
  });
  // Index zero reserved for invalid RW.
  return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
}

/// Add this ReadWrite if it doesn't already exist.
unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
                                            bool IsRead) {
  assert(!Seq.empty() && "cannot insert empty sequence");
  if (Seq.size() == 1)
    return Seq.back();

  unsigned Idx = findRWForSequence(Seq, IsRead);
  if (Idx)
    return Idx;

  std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
  unsigned RWIdx = RWVec.size();
  CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
  RWVec.push_back(SchedRW);
  return RWIdx;
}

/// Visit all the instruction definitions for this target to gather and
/// enumerate the itinerary classes. These are the explicitly specified
/// SchedClasses. More SchedClasses may be inferred.
void CodeGenSchedModels::collectSchedClasses() {

  // NoItinerary is always the first class at Idx=0
  assert(SchedClasses.empty() && "Expected empty sched class");
  SchedClasses.emplace_back(0, "NoInstrModel",
                            Records.getDef("NoItinerary"));
  SchedClasses.back().ProcIndices.push_back(0);

  // Create a SchedClass for each unique combination of itinerary class and
  // SchedRW list.
  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
    Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
    IdxVec Writes, Reads;
    if (!Inst->TheDef->isValueUnset("SchedRW"))
      findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);

    // ProcIdx == 0 indicates the class applies to all processors.
    unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
    InstrClassMap[Inst->TheDef] = SCIdx;
  }
  // Create classes for InstRW defs.
  RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
  llvm::sort(InstRWDefs, LessRecord());
  LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
  for (Record *RWDef : InstRWDefs)
    createInstRWClass(RWDef);

  NumInstrSchedClasses = SchedClasses.size();

  bool EnableDump = false;
  LLVM_DEBUG(EnableDump = true);
  if (!EnableDump)
    return;

  LLVM_DEBUG(
      dbgs()
      << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
  for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
    StringRef InstName = Inst->TheDef->getName();
    unsigned SCIdx = getSchedClassIdx(*Inst);
    if (!SCIdx) {
      LLVM_DEBUG({
        if (!Inst->hasNoSchedulingInfo)
          dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
      });
      continue;
    }
    CodeGenSchedClass &SC = getSchedClass(SCIdx);
    if (SC.ProcIndices[0] != 0)
      PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
                      "must not be subtarget specific.");

    IdxVec ProcIndices;
    if (SC.ItinClassDef->getName() != "NoItinerary") {
      ProcIndices.push_back(0);
      dbgs() << "Itinerary for " << InstName << ": "
             << SC.ItinClassDef->getName() << '\n';
    }
    if (!SC.Writes.empty()) {
      ProcIndices.push_back(0);
      LLVM_DEBUG({
        dbgs() << "SchedRW machine model for " << InstName;
        for (IdxIter WI = SC.Writes.begin(), WE = SC.Writes.end(); WI != WE;
             ++WI)
          dbgs() << " " << SchedWrites[*WI].Name;
        for (IdxIter RI = SC.Reads.begin(), RE = SC.Reads.end(); RI != RE; ++RI)
          dbgs() << " " << SchedReads[*RI].Name;
        dbgs() << '\n';
      });
    }
    const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
    for (Record *RWDef : RWDefs) {
      const CodeGenProcModel &ProcModel =
          getProcModel(RWDef->getValueAsDef("SchedModel"));
      ProcIndices.push_back(ProcModel.Index);
      LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
                        << InstName);
      IdxVec Writes;
      IdxVec Reads;
      findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
              Writes, Reads);
      LLVM_DEBUG({
        for (unsigned WIdx : Writes)
          dbgs() << " " << SchedWrites[WIdx].Name;
        for (unsigned RIdx : Reads)
          dbgs() << " " << SchedReads[RIdx].Name;
        dbgs() << '\n';
      });
    }
    // If ProcIndices contains zero, the class applies to all processors.
    LLVM_DEBUG({
      if (!std::count(ProcIndices.begin(), ProcIndices.end(), 0)) {
        for (const CodeGenProcModel &PM : ProcModels) {
          if (!std::count(ProcIndices.begin(), ProcIndices.end(), PM.Index))
            dbgs() << "No machine model for " << Inst->TheDef->getName()
                   << " on processor " << PM.ModelName << '\n';
        }
      }
    });
  }
}

// Get the SchedClass index for an instruction.
unsigned
CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
  return InstrClassMap.lookup(Inst.TheDef);
}

std::string
CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
                                         ArrayRef<unsigned> OperWrites,
                                         ArrayRef<unsigned> OperReads) {

  std::string Name;
  if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
    Name = std::string(ItinClassDef->getName());
  for (unsigned Idx : OperWrites) {
    if (!Name.empty())
      Name += '_';
    Name += SchedWrites[Idx].Name;
  }
  for (unsigned Idx : OperReads) {
    Name += '_';
    Name += SchedReads[Idx].Name;
  }
  return Name;
}

std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {

  std::string Name;
  for (RecIter I = InstDefs.begin(), E = InstDefs.end(); I != E; ++I) {
    if (I != InstDefs.begin())
      Name += '_';
    Name += (*I)->getName();
  }
  return Name;
}

/// Add an inferred sched class from an itinerary class and per-operand list of
/// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
/// processors that may utilize this class.
unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
                                           ArrayRef<unsigned> OperWrites,
                                           ArrayRef<unsigned> OperReads,
                                           ArrayRef<unsigned> ProcIndices) {
  assert(!ProcIndices.empty() && "expect at least one ProcIdx");

  auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
                     return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
                   };

  auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
  unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
  if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
    IdxVec PI;
    std::set_union(SchedClasses[Idx].ProcIndices.begin(),
                   SchedClasses[Idx].ProcIndices.end(),
                   ProcIndices.begin(), ProcIndices.end(),
                   std::back_inserter(PI));
    SchedClasses[Idx].ProcIndices = std::move(PI);
    return Idx;
  }
  Idx = SchedClasses.size();
  SchedClasses.emplace_back(Idx,
                            createSchedClassName(ItinClassDef, OperWrites,
                                                 OperReads),
                            ItinClassDef);
  CodeGenSchedClass &SC = SchedClasses.back();
  SC.Writes = OperWrites;
  SC.Reads = OperReads;
  SC.ProcIndices = ProcIndices;

  return Idx;
}

// Create classes for each set of opcodes that are in the same InstReadWrite
// definition across all processors.
void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
  // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
  // intersects with an existing class via a previous InstRWDef. Instrs that do
  // not intersect with an existing class refer back to their former class as
  // determined from ItinDef or SchedRW.
  SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
  // Sort Instrs into sets.
  const RecVec *InstDefs = Sets.expand(InstRWDef);
  if (InstDefs->empty())
    PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");

  for (Record *InstDef : *InstDefs) {
    InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
    if (Pos == InstrClassMap.end())
      PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
    unsigned SCIdx = Pos->second;
    ClassInstrs[SCIdx].push_back(InstDef);
  }
  // For each set of Instrs, create a new class if necessary, and map or remap
  // the Instrs to it.
  for (auto &Entry : ClassInstrs) {
    unsigned OldSCIdx = Entry.first;
    ArrayRef<Record*> InstDefs = Entry.second;
    // If the all instrs in the current class are accounted for, then leave
    // them mapped to their old class.
    if (OldSCIdx) {
      const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
      if (!RWDefs.empty()) {
        const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
        unsigned OrigNumInstrs =
          count_if(*OrigInstDefs, [&](Record *OIDef) {
                     return InstrClassMap[OIDef] == OldSCIdx;
                   });
        if (OrigNumInstrs == InstDefs.size()) {
          assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
                 "expected a generic SchedClass");
          Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
          // Make sure we didn't already have a InstRW containing this
          // instruction on this model.
          for (Record *RWD : RWDefs) {
            if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
                RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
              assert(!InstDefs.empty()); // Checked at function start.
              PrintError(
                  InstRWDef->getLoc(),
                  "Overlapping InstRW definition for \"" +
                      InstDefs.front()->getName() +
                      "\" also matches previous \"" +
                      RWD->getValue("Instrs")->getValue()->getAsString() +
                      "\".");
              PrintFatalNote(RWD->getLoc(), "Previous match was here.");
            }
          }
          LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
                            << SchedClasses[OldSCIdx].Name << " on "
                            << RWModelDef->getName() << "\n");
          SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
          continue;
        }
      }
    }
    unsigned SCIdx = SchedClasses.size();
    SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
    CodeGenSchedClass &SC = SchedClasses.back();
    LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
                      << InstRWDef->getValueAsDef("SchedModel")->getName()
                      << "\n");

    // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
    SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
    SC.Writes = SchedClasses[OldSCIdx].Writes;
    SC.Reads = SchedClasses[OldSCIdx].Reads;
    SC.ProcIndices.push_back(0);
    // If we had an old class, copy it's InstRWs to this new class.
    if (OldSCIdx) {
      Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
      for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
        if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
          assert(!InstDefs.empty()); // Checked at function start.
          PrintError(
              InstRWDef->getLoc(),
              "Overlapping InstRW definition for \"" +
                  InstDefs.front()->getName() + "\" also matches previous \"" +
                  OldRWDef->getValue("Instrs")->getValue()->getAsString() +
                  "\".");
          PrintFatalNote(OldRWDef->getLoc(), "Previous match was here.");
        }
        assert(OldRWDef != InstRWDef &&
               "SchedClass has duplicate InstRW def");
        SC.InstRWs.push_back(OldRWDef);
      }
    }
    // Map each Instr to this new class.
    for (Record *InstDef : InstDefs)
      InstrClassMap[InstDef] = SCIdx;
    SC.InstRWs.push_back(InstRWDef);
  }
}

// True if collectProcItins found anything.
bool CodeGenSchedModels::hasItineraries() const {
  for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
    if (PM.hasItineraries())
      return true;
  return false;
}

// Gather the processor itineraries.
void CodeGenSchedModels::collectProcItins() {
  LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
  for (CodeGenProcModel &ProcModel : ProcModels) {
    if (!ProcModel.hasItineraries())
      continue;

    RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
    assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");

    // Populate ItinDefList with Itinerary records.
    ProcModel.ItinDefList.resize(NumInstrSchedClasses);

    // Insert each itinerary data record in the correct position within
    // the processor model's ItinDefList.
    for (Record *ItinData : ItinRecords) {
      const Record *ItinDef = ItinData->getValueAsDef("TheClass");
      bool FoundClass = false;

      for (const CodeGenSchedClass &SC :
           make_range(schedClassBegin(), schedClassEnd())) {
        // Multiple SchedClasses may share an itinerary. Update all of them.
        if (SC.ItinClassDef == ItinDef) {
          ProcModel.ItinDefList[SC.Index] = ItinData;
          FoundClass = true;
        }
      }
      if (!FoundClass) {
        LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
                          << " missing class for itinerary "
                          << ItinDef->getName() << '\n');
      }
    }
    // Check for missing itinerary entries.
    assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
    LLVM_DEBUG(
        for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
          if (!ProcModel.ItinDefList[i])
            dbgs() << ProcModel.ItinsDef->getName()
                   << " missing itinerary for class " << SchedClasses[i].Name
                   << '\n';
        });
  }
}

// Gather the read/write types for each itinerary class.
void CodeGenSchedModels::collectProcItinRW() {
  RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
  llvm::sort(ItinRWDefs, LessRecord());
  for (Record *RWDef  : ItinRWDefs) {
    if (!RWDef->getValueInit("SchedModel")->isComplete())
      PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
    Record *ModelDef = RWDef->getValueAsDef("SchedModel");
    ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
    if (I == ProcModelMap.end()) {
      PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
                    + ModelDef->getName());
    }
    ProcModels[I->second].ItinRWDefs.push_back(RWDef);
  }
}

// Gather the unsupported features for processor models.
void CodeGenSchedModels::collectProcUnsupportedFeatures() {
  for (CodeGenProcModel &ProcModel : ProcModels) {
    for (Record *Pred : ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures")) {
       ProcModel.UnsupportedFeaturesDefs.push_back(Pred);
    }
  }
}

/// Infer new classes from existing classes. In the process, this may create new
/// SchedWrites from sequences of existing SchedWrites.
void CodeGenSchedModels::inferSchedClasses() {
  LLVM_DEBUG(
      dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
  LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");

  // Visit all existing classes and newly created classes.
  for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
    assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");

    if (SchedClasses[Idx].ItinClassDef)
      inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
    if (!SchedClasses[Idx].InstRWs.empty())
      inferFromInstRWs(Idx);
    if (!SchedClasses[Idx].Writes.empty()) {
      inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
                  Idx, SchedClasses[Idx].ProcIndices);
    }
    assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
           "too many SchedVariants");
  }
}

/// Infer classes from per-processor itinerary resources.
void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
                                            unsigned FromClassIdx) {
  for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
    const CodeGenProcModel &PM = ProcModels[PIdx];
    // For all ItinRW entries.
    bool HasMatch = false;
    for (const Record *Rec : PM.ItinRWDefs) {
      RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
      if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
        continue;
      if (HasMatch)
        PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
                      + ItinClassDef->getName()
                      + " in ItinResources for " + PM.ModelName);
      HasMatch = true;
      IdxVec Writes, Reads;
      findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
      inferFromRW(Writes, Reads, FromClassIdx, PIdx);
    }
  }
}

/// Infer classes from per-processor InstReadWrite definitions.
void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
  for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
    assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
    Record *Rec = SchedClasses[SCIdx].InstRWs[I];
    const RecVec *InstDefs = Sets.expand(Rec);
    RecIter II = InstDefs->begin(), IE = InstDefs->end();
    for (; II != IE; ++II) {
      if (InstrClassMap[*II] == SCIdx)
        break;
    }
    // If this class no longer has any instructions mapped to it, it has become
    // irrelevant.
    if (II == IE)
      continue;
    IdxVec Writes, Reads;
    findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
    unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
    inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
  }
}

namespace {

// Helper for substituteVariantOperand.
struct TransVariant {
  Record *VarOrSeqDef;  // Variant or sequence.
  unsigned RWIdx;       // Index of this variant or sequence's matched type.
  unsigned ProcIdx;     // Processor model index or zero for any.
  unsigned TransVecIdx; // Index into PredTransitions::TransVec.

  TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
    VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
};

// Associate a predicate with the SchedReadWrite that it guards.
// RWIdx is the index of the read/write variant.
struct PredCheck {
  bool IsRead;
  unsigned RWIdx;
  Record *Predicate;

  PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
};

// A Predicate transition is a list of RW sequences guarded by a PredTerm.
struct PredTransition {
  // A predicate term is a conjunction of PredChecks.
  SmallVector<PredCheck, 4> PredTerm;
  SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
  SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
  SmallVector<unsigned, 4> ProcIndices;
};

// Encapsulate a set of partially constructed transitions.
// The results are built by repeated calls to substituteVariants.
class PredTransitions {
  CodeGenSchedModels &SchedModels;

public:
  std::vector<PredTransition> TransVec;

  PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}

  void substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
                                bool IsRead, unsigned StartIdx);

  void substituteVariants(const PredTransition &Trans);

#ifndef NDEBUG
  void dump() const;
#endif

private:
  bool mutuallyExclusive(Record *PredDef, ArrayRef<PredCheck> Term);
  void getIntersectingVariants(
    const CodeGenSchedRW &SchedRW, unsigned TransIdx,
    std::vector<TransVariant> &IntersectingVariants);
  void pushVariant(const TransVariant &VInfo, bool IsRead);
};

} // end anonymous namespace

// Return true if this predicate is mutually exclusive with a PredTerm. This
// degenerates into checking if the predicate is mutually exclusive with any
// predicate in the Term's conjunction.
//
// All predicates associated with a given SchedRW are considered mutually
// exclusive. This should work even if the conditions expressed by the
// predicates are not exclusive because the predicates for a given SchedWrite
// are always checked in the order they are defined in the .td file. Later
// conditions implicitly negate any prior condition.
bool PredTransitions::mutuallyExclusive(Record *PredDef,
                                        ArrayRef<PredCheck> Term) {
  for (const PredCheck &PC: Term) {
    if (PC.Predicate == PredDef)
      return false;

    const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
    assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
    RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
    if (any_of(Variants, [PredDef](const Record *R) {
          return R->getValueAsDef("Predicate") == PredDef;
        }))
      return true;
  }
  return false;
}

static bool hasAliasedVariants(const CodeGenSchedRW &RW,
                               CodeGenSchedModels &SchedModels) {
  if (RW.HasVariants)
    return true;

  for (Record *Alias : RW.Aliases) {
    const CodeGenSchedRW &AliasRW =
      SchedModels.getSchedRW(Alias->getValueAsDef("AliasRW"));
    if (AliasRW.HasVariants)
      return true;
    if (AliasRW.IsSequence) {
      IdxVec ExpandedRWs;
      SchedModels.expandRWSequence(AliasRW.Index, ExpandedRWs, AliasRW.IsRead);
      for (unsigned SI : ExpandedRWs) {
        if (hasAliasedVariants(SchedModels.getSchedRW(SI, AliasRW.IsRead),
                               SchedModels))
          return true;
      }
    }
  }
  return false;
}

static bool hasVariant(ArrayRef<PredTransition> Transitions,
                       CodeGenSchedModels &SchedModels) {
  for (const PredTransition &PTI : Transitions) {
    for (const SmallVectorImpl<unsigned> &WSI : PTI.WriteSequences)
      for (unsigned WI : WSI)
        if (hasAliasedVariants(SchedModels.getSchedWrite(WI), SchedModels))
          return true;

    for (const SmallVectorImpl<unsigned> &RSI : PTI.ReadSequences)
      for (unsigned RI : RSI)
        if (hasAliasedVariants(SchedModels.getSchedRead(RI), SchedModels))
          return true;
  }
  return false;
}

// Populate IntersectingVariants with any variants or aliased sequences of the
// given SchedRW whose processor indices and predicates are not mutually
// exclusive with the given transition.
void PredTransitions::getIntersectingVariants(
  const CodeGenSchedRW &SchedRW, unsigned TransIdx,
  std::vector<TransVariant> &IntersectingVariants) {

  bool GenericRW = false;

  std::vector<TransVariant> Variants;
  if (SchedRW.HasVariants) {
    unsigned VarProcIdx = 0;
    if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
      Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
      VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
    }
    // Push each variant. Assign TransVecIdx later.
    const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
    for (Record *VarDef : VarDefs)
      Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
    if (VarProcIdx == 0)
      GenericRW = true;
  }
  for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
       AI != AE; ++AI) {
    // If either the SchedAlias itself or the SchedReadWrite that it aliases
    // to is defined within a processor model, constrain all variants to
    // that processor.
    unsigned AliasProcIdx = 0;
    if ((*AI)->getValueInit("SchedModel")->isComplete()) {
      Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
      AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
    }
    const CodeGenSchedRW &AliasRW =
      SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));

    if (AliasRW.HasVariants) {
      const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
      for (Record *VD : VarDefs)
        Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
    }
    if (AliasRW.IsSequence)
      Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
    if (AliasProcIdx == 0)
      GenericRW = true;
  }
  for (TransVariant &Variant : Variants) {
    // Don't expand variants if the processor models don't intersect.
    // A zero processor index means any processor.
    SmallVectorImpl<unsigned> &ProcIndices = TransVec[TransIdx].ProcIndices;
    if (ProcIndices[0] && Variant.ProcIdx) {
      unsigned Cnt = std::count(ProcIndices.begin(), ProcIndices.end(),
                                Variant.ProcIdx);
      if (!Cnt)
        continue;
      if (Cnt > 1) {
        const CodeGenProcModel &PM =
          *(SchedModels.procModelBegin() + Variant.ProcIdx);
        PrintFatalError(Variant.VarOrSeqDef->getLoc(),
                        "Multiple variants defined for processor " +
                        PM.ModelName +
                        " Ensure only one SchedAlias exists per RW.");
      }
    }
    if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
      Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
      if (mutuallyExclusive(PredDef, TransVec[TransIdx].PredTerm))
        continue;
    }
    if (IntersectingVariants.empty()) {
      // The first variant builds on the existing transition.
      Variant.TransVecIdx = TransIdx;
      IntersectingVariants.push_back(Variant);
    }
    else {
      // Push another copy of the current transition for more variants.
      Variant.TransVecIdx = TransVec.size();
      IntersectingVariants.push_back(Variant);
      TransVec.push_back(TransVec[TransIdx]);
    }
  }
  if (GenericRW && IntersectingVariants.empty()) {
    PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
                    "a matching predicate on any processor");
  }
}

// Push the Reads/Writes selected by this variant onto the PredTransition
// specified by VInfo.
void PredTransitions::
pushVariant(const TransVariant &VInfo, bool IsRead) {
  PredTransition &Trans = TransVec[VInfo.TransVecIdx];

  // If this operand transition is reached through a processor-specific alias,
  // then the whole transition is specific to this processor.
  if (VInfo.ProcIdx != 0)
    Trans.ProcIndices.assign(1, VInfo.ProcIdx);

  IdxVec SelectedRWs;
  if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
    Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
    Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
    RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
    SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
  }
  else {
    assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
           "variant must be a SchedVariant or aliased WriteSequence");
    SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
  }

  const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);

  SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
    ? Trans.ReadSequences : Trans.WriteSequences;
  if (SchedRW.IsVariadic) {
    unsigned OperIdx = RWSequences.size()-1;
    // Make N-1 copies of this transition's last sequence.
    RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
                       RWSequences[OperIdx]);
    // Push each of the N elements of the SelectedRWs onto a copy of the last
    // sequence (split the current operand into N operands).
    // Note that write sequences should be expanded within this loop--the entire
    // sequence belongs to a single operand.
    for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
         RWI != RWE; ++RWI, ++OperIdx) {
      IdxVec ExpandedRWs;
      if (IsRead)
        ExpandedRWs.push_back(*RWI);
      else
        SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
      RWSequences[OperIdx].insert(RWSequences[OperIdx].end(),
                                  ExpandedRWs.begin(), ExpandedRWs.end());
    }
    assert(OperIdx == RWSequences.size() && "missed a sequence");
  }
  else {
    // Push this transition's expanded sequence onto this transition's last
    // sequence (add to the current operand's sequence).
    SmallVectorImpl<unsigned> &Seq = RWSequences.back();
    IdxVec ExpandedRWs;
    for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
         RWI != RWE; ++RWI) {
      if (IsRead)
        ExpandedRWs.push_back(*RWI);
      else
        SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
    }
    Seq.insert(Seq.end(), ExpandedRWs.begin(), ExpandedRWs.end());
  }
}

// RWSeq is a sequence of all Reads or all Writes for the next read or write
// operand. StartIdx is an index into TransVec where partial results
// starts. RWSeq must be applied to all transitions between StartIdx and the end
// of TransVec.
void PredTransitions::substituteVariantOperand(
  const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {

  // Visit each original RW within the current sequence.
  for (SmallVectorImpl<unsigned>::const_iterator
         RWI = RWSeq.begin(), RWE = RWSeq.end(); RWI != RWE; ++RWI) {
    const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(*RWI, IsRead);
    // Push this RW on all partial PredTransitions or distribute variants.
    // New PredTransitions may be pushed within this loop which should not be
    // revisited (TransEnd must be loop invariant).
    for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
         TransIdx != TransEnd; ++TransIdx) {
      // In the common case, push RW onto the current operand's sequence.
      if (!hasAliasedVariants(SchedRW, SchedModels)) {
        if (IsRead)
          TransVec[TransIdx].ReadSequences.back().push_back(*RWI);
        else
          TransVec[TransIdx].WriteSequences.back().push_back(*RWI);
        continue;
      }
      // Distribute this partial PredTransition across intersecting variants.
      // This will push a copies of TransVec[TransIdx] on the back of TransVec.
      std::vector<TransVariant> IntersectingVariants;
      getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
      // Now expand each variant on top of its copy of the transition.
      for (std::vector<TransVariant>::const_iterator
             IVI = IntersectingVariants.begin(),
             IVE = IntersectingVariants.end();
           IVI != IVE; ++IVI) {
        pushVariant(*IVI, IsRead);
      }
    }
  }
}

// For each variant of a Read/Write in Trans, substitute the sequence of
// Read/Writes guarded by the variant. This is exponential in the number of
// variant Read/Writes, but in practice detection of mutually exclusive
// predicates should result in linear growth in the total number variants.
//
// This is one step in a breadth-first search of nested variants.
void PredTransitions::substituteVariants(const PredTransition &Trans) {
  // Build up a set of partial results starting at the back of
  // PredTransitions. Remember the first new transition.
  unsigned StartIdx = TransVec.size();
  TransVec.emplace_back();
  TransVec.back().PredTerm = Trans.PredTerm;
  TransVec.back().ProcIndices = Trans.ProcIndices;

  // Visit each original write sequence.
  for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
         WSI = Trans.WriteSequences.begin(), WSE = Trans.WriteSequences.end();
       WSI != WSE; ++WSI) {
    // Push a new (empty) write sequence onto all partial Transitions.
    for (std::vector<PredTransition>::iterator I =
           TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
      I->WriteSequences.emplace_back();
    }
    substituteVariantOperand(*WSI, /*IsRead=*/false, StartIdx);
  }
  // Visit each original read sequence.
  for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
         RSI = Trans.ReadSequences.begin(), RSE = Trans.ReadSequences.end();
       RSI != RSE; ++RSI) {
    // Push a new (empty) read sequence onto all partial Transitions.
    for (std::vector<PredTransition>::iterator I =
           TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
      I->ReadSequences.emplace_back();
    }
    substituteVariantOperand(*RSI, /*IsRead=*/true, StartIdx);
  }
}

// Create a new SchedClass for each variant found by inferFromRW. Pass
static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
                                 unsigned FromClassIdx,
                                 CodeGenSchedModels &SchedModels) {
  // For each PredTransition, create a new CodeGenSchedTransition, which usually
  // requires creating a new SchedClass.
  for (ArrayRef<PredTransition>::iterator
         I = LastTransitions.begin(), E = LastTransitions.end(); I != E; ++I) {
    IdxVec OperWritesVariant;
    transform(I->WriteSequences, std::back_inserter(OperWritesVariant),
              [&SchedModels](ArrayRef<unsigned> WS) {
                return SchedModels.findOrInsertRW(WS, /*IsRead=*/false);
              });
    IdxVec OperReadsVariant;
    transform(I->ReadSequences, std::back_inserter(OperReadsVariant),
              [&SchedModels](ArrayRef<unsigned> RS) {
                return SchedModels.findOrInsertRW(RS, /*IsRead=*/true);
              });
    CodeGenSchedTransition SCTrans;
    SCTrans.ToClassIdx =
      SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
                                OperReadsVariant, I->ProcIndices);
    SCTrans.ProcIndices.assign(I->ProcIndices.begin(), I->ProcIndices.end());
    // The final PredTerm is unique set of predicates guarding the transition.
    RecVec Preds;
    transform(I->PredTerm, std::back_inserter(Preds),
              [](const PredCheck &P) {
                return P.Predicate;
              });
    Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
    SCTrans.PredTerm = std::move(Preds);
    SchedModels.getSchedClass(FromClassIdx)
        .Transitions.push_back(std::move(SCTrans));
  }
}

// Create new SchedClasses for the given ReadWrite list. If any of the
// ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
// of the ReadWrite list, following Aliases if necessary.
void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
                                     ArrayRef<unsigned> OperReads,
                                     unsigned FromClassIdx,
                                     ArrayRef<unsigned> ProcIndices) {
  LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
             dbgs() << ") ");

  // Create a seed transition with an empty PredTerm and the expanded sequences
  // of SchedWrites for the current SchedClass.
  std::vector<PredTransition> LastTransitions;
  LastTransitions.emplace_back();
  LastTransitions.back().ProcIndices.append(ProcIndices.begin(),
                                            ProcIndices.end());

  for (unsigned WriteIdx : OperWrites) {
    IdxVec WriteSeq;
    expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
    LastTransitions[0].WriteSequences.emplace_back();
    SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
    Seq.append(WriteSeq.begin(), WriteSeq.end());
    LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
  }
  LLVM_DEBUG(dbgs() << " Reads: ");
  for (unsigned ReadIdx : OperReads) {
    IdxVec ReadSeq;
    expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
    LastTransitions[0].ReadSequences.emplace_back();
    SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
    Seq.append(ReadSeq.begin(), ReadSeq.end());
    LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
  }
  LLVM_DEBUG(dbgs() << '\n');

  // Collect all PredTransitions for individual operands.
  // Iterate until no variant writes remain.
  while (hasVariant(LastTransitions, *this)) {
    PredTransitions Transitions(*this);
    for (const PredTransition &Trans : LastTransitions)
      Transitions.substituteVariants(Trans);
    LLVM_DEBUG(Transitions.dump());
    LastTransitions.swap(Transitions.TransVec);
  }
  // If the first transition has no variants, nothing to do.
  if (LastTransitions[0].PredTerm.empty())
    return;

  // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
  // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
  inferFromTransitions(LastTransitions, FromClassIdx, *this);
}

// Check if any processor resource group contains all resource records in
// SubUnits.
bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
  for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
    if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
      continue;
    RecVec SuperUnits =
      PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
    RecIter RI = SubUnits.begin(), RE = SubUnits.end();
    for ( ; RI != RE; ++RI) {
      if (!is_contained(SuperUnits, *RI)) {
        break;
      }
    }
    if (RI == RE)
      return true;
  }
  return false;
}

// Verify that overlapping groups have a common supergroup.
void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
  for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
    if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
      continue;
    RecVec CheckUnits =
      PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
    for (unsigned j = i+1; j < e; ++j) {
      if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
        continue;
      RecVec OtherUnits =
        PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
      if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
                             OtherUnits.begin(), OtherUnits.end())
          != CheckUnits.end()) {
        // CheckUnits and OtherUnits overlap
        OtherUnits.insert(OtherUnits.end(), CheckUnits.begin(),
                          CheckUnits.end());
        if (!hasSuperGroup(OtherUnits, PM)) {
          PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
                          "proc resource group overlaps with "
                          + PM.ProcResourceDefs[j]->getName()
                          + " but no supergroup contains both.");
        }
      }
    }
  }
}

// Collect all the RegisterFile definitions available in this target.
void CodeGenSchedModels::collectRegisterFiles() {
  RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");

  // RegisterFiles is the vector of CodeGenRegisterFile.
  for (Record *RF : RegisterFileDefs) {
    // For each register file definition, construct a CodeGenRegisterFile object
    // and add it to the appropriate scheduling model.
    CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
    PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
    CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
    CGRF.MaxMovesEliminatedPerCycle =
        RF->getValueAsInt("MaxMovesEliminatedPerCycle");
    CGRF.AllowZeroMoveEliminationOnly =
        RF->getValueAsBit("AllowZeroMoveEliminationOnly");

    // Now set the number of physical registers as well as the cost of registers
    // in each register class.
    CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
    if (!CGRF.NumPhysRegs) {
      PrintFatalError(RF->getLoc(),
                      "Invalid RegisterFile with zero physical registers");
    }

    RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
    std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
    ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
    for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
      int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;

      bool AllowMoveElim = false;
      if (MoveElimInfo->size() > I) {
        BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
        AllowMoveElim = Val->getValue();
      }

      CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
    }
  }
}

// Collect and sort WriteRes, ReadAdvance, and ProcResources.
void CodeGenSchedModels::collectProcResources() {
  ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
  ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");

  // Add any subtarget-specific SchedReadWrites that are directly associated
  // with processor resources. Refer to the parent SchedClass's ProcIndices to
  // determine which processors they apply to.
  for (const CodeGenSchedClass &SC :
       make_range(schedClassBegin(), schedClassEnd())) {
    if (SC.ItinClassDef) {
      collectItinProcResources(SC.ItinClassDef);
      continue;
    }

    // This class may have a default ReadWrite list which can be overriden by
    // InstRW definitions.
    for (Record *RW : SC.InstRWs) {
      Record *RWModelDef = RW->getValueAsDef("SchedModel");
      unsigned PIdx = getProcModel(RWModelDef).Index;
      IdxVec Writes, Reads;
      findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
      collectRWResources(Writes, Reads, PIdx);
    }

    collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
  }
  // Add resources separately defined by each subtarget.
  RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
  for (Record *WR : WRDefs) {
    Record *ModelDef = WR->getValueAsDef("SchedModel");
    addWriteRes(WR, getProcModel(ModelDef).Index);
  }
  RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
  for (Record *SWR : SWRDefs) {
    Record *ModelDef = SWR->getValueAsDef("SchedModel");
    addWriteRes(SWR, getProcModel(ModelDef).Index);
  }
  RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
  for (Record *RA : RADefs) {
    Record *ModelDef = RA->getValueAsDef("SchedModel");
    addReadAdvance(RA, getProcModel(ModelDef).Index);
  }
  RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
  for (Record *SRA : SRADefs) {
    if (SRA->getValueInit("SchedModel")->isComplete()) {
      Record *ModelDef = SRA->getValueAsDef("SchedModel");
      addReadAdvance(SRA, getProcModel(ModelDef).Index);
    }
  }
  // Add ProcResGroups that are defined within this processor model, which may
  // not be directly referenced but may directly specify a buffer size.
  RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
  for (Record *PRG : ProcResGroups) {
    if (!PRG->getValueInit("SchedModel")->isComplete())
      continue;
    CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
    if (!is_contained(PM.ProcResourceDefs, PRG))
      PM.ProcResourceDefs.push_back(PRG);
  }
  // Add ProcResourceUnits unconditionally.
  for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
    if (!PRU->getValueInit("SchedModel")->isComplete())
      continue;
    CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
    if (!is_contained(PM.ProcResourceDefs, PRU))
      PM.ProcResourceDefs.push_back(PRU);
  }
  // Finalize each ProcModel by sorting the record arrays.
  for (CodeGenProcModel &PM : ProcModels) {
    llvm::sort(PM.WriteResDefs, LessRecord());
    llvm::sort(PM.ReadAdvanceDefs, LessRecord());
    llvm::sort(PM.ProcResourceDefs, LessRecord());
    LLVM_DEBUG(
        PM.dump();
        dbgs() << "WriteResDefs: "; for (RecIter RI = PM.WriteResDefs.begin(),
                                         RE = PM.WriteResDefs.end();
                                         RI != RE; ++RI) {
          if ((*RI)->isSubClassOf("WriteRes"))
            dbgs() << (*RI)->getValueAsDef("WriteType")->getName() << " ";
          else
            dbgs() << (*RI)->getName() << " ";
        } dbgs() << "\nReadAdvanceDefs: ";
        for (RecIter RI = PM.ReadAdvanceDefs.begin(),
             RE = PM.ReadAdvanceDefs.end();
             RI != RE; ++RI) {
          if ((*RI)->isSubClassOf("ReadAdvance"))
            dbgs() << (*RI)->getValueAsDef("ReadType")->getName() << " ";
          else
            dbgs() << (*RI)->getName() << " ";
        } dbgs()
        << "\nProcResourceDefs: ";
        for (RecIter RI = PM.ProcResourceDefs.begin(),
             RE = PM.ProcResourceDefs.end();
             RI != RE; ++RI) { dbgs() << (*RI)->getName() << " "; } dbgs()
        << '\n');
    verifyProcResourceGroups(PM);
  }

  ProcResourceDefs.clear();
  ProcResGroups.clear();
}

void CodeGenSchedModels::checkCompleteness() {
  bool Complete = true;
  bool HadCompleteModel = false;
  for (const CodeGenProcModel &ProcModel : procModels()) {
    const bool HasItineraries = ProcModel.hasItineraries();
    if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
      continue;
    for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
      if (Inst->hasNoSchedulingInfo)
        continue;
      if (ProcModel.isUnsupported(*Inst))
        continue;
      unsigned SCIdx = getSchedClassIdx(*Inst);
      if (!SCIdx) {
        if (Inst->TheDef->isValueUnset("SchedRW") && !HadCompleteModel) {
          PrintError(Inst->TheDef->getLoc(),
                     "No schedule information for instruction '" +
                         Inst->TheDef->getName() + "' in SchedMachineModel '" +
                     ProcModel.ModelDef->getName() + "'");
          Complete = false;
        }
        continue;
      }

      const CodeGenSchedClass &SC = getSchedClass(SCIdx);
      if (!SC.Writes.empty())
        continue;
      if (HasItineraries && SC.ItinClassDef != nullptr &&
          SC.ItinClassDef->getName() != "NoItinerary")
        continue;

      const RecVec &InstRWs = SC.InstRWs;
      auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
        return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
      });
      if (I == InstRWs.end()) {
        PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
                                               "' lacks information for '" +
                                               Inst->TheDef->getName() + "'");
        Complete = false;
      }
    }
    HadCompleteModel = true;
  }
  if (!Complete) {
    errs() << "\n\nIncomplete schedule models found.\n"
      << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
      << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
      << "- Instructions should usually have Sched<[...]> as a superclass, "
         "you may temporarily use an empty list.\n"
      << "- Instructions related to unsupported features can be excluded with "
         "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
         "processor model.\n\n";
    PrintFatalError("Incomplete schedule model");
  }
}

// Collect itinerary class resources for each processor.
void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
  for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
    const CodeGenProcModel &PM = ProcModels[PIdx];
    // For all ItinRW entries.
    bool HasMatch = false;
    for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
         II != IE; ++II) {
      RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
      if (!std::count(Matched.begin(), Matched.end(), ItinClassDef))
        continue;
      if (HasMatch)
        PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
                        + ItinClassDef->getName()
                        + " in ItinResources for " + PM.ModelName);
      HasMatch = true;
      IdxVec Writes, Reads;
      findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
      collectRWResources(Writes, Reads, PIdx);
    }
  }
}

void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
                                            ArrayRef<unsigned> ProcIndices) {
  const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
  if (SchedRW.TheDef) {
    if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
      for (unsigned Idx : ProcIndices)
        addWriteRes(SchedRW.TheDef, Idx);
    }
    else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
      for (unsigned Idx : ProcIndices)
        addReadAdvance(SchedRW.TheDef, Idx);
    }
  }
  for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
       AI != AE; ++AI) {
    IdxVec AliasProcIndices;
    if ((*AI)->getValueInit("SchedModel")->isComplete()) {
      AliasProcIndices.push_back(
        getProcModel((*AI)->getValueAsDef("SchedModel")).Index);
    }
    else
      AliasProcIndices = ProcIndices;
    const CodeGenSchedRW &AliasRW = getSchedRW((*AI)->getValueAsDef("AliasRW"));
    assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");

    IdxVec ExpandedRWs;
    expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
    for (IdxIter SI = ExpandedRWs.begin(), SE = ExpandedRWs.end();
         SI != SE; ++SI) {
      collectRWResources(*SI, IsRead, AliasProcIndices);
    }
  }
}

// Collect resources for a set of read/write types and processor indices.
void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
                                            ArrayRef<unsigned> Reads,
                                            ArrayRef<unsigned> ProcIndices) {
  for (unsigned Idx : Writes)
    collectRWResources(Idx, /*IsRead=*/false, ProcIndices);

  for (unsigned Idx : Reads)
    collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
}

// Find the processor's resource units for this kind of resource.
Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
                                             const CodeGenProcModel &PM,
                                             ArrayRef<SMLoc> Loc) const {
  if (ProcResKind->isSubClassOf("ProcResourceUnits"))
    return ProcResKind;

  Record *ProcUnitDef = nullptr;
  assert(!ProcResourceDefs.empty());
  assert(!ProcResGroups.empty());

  for (Record *ProcResDef : ProcResourceDefs) {
    if (ProcResDef->getValueAsDef("Kind") == ProcResKind
        && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
      if (ProcUnitDef) {
        PrintFatalError(Loc,
                        "Multiple ProcessorResourceUnits associated with "
                        + ProcResKind->getName());
      }
      ProcUnitDef = ProcResDef;
    }
  }
  for (Record *ProcResGroup : ProcResGroups) {
    if (ProcResGroup == ProcResKind
        && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
      if (ProcUnitDef) {
        PrintFatalError(Loc,
                        "Multiple ProcessorResourceUnits associated with "
                        + ProcResKind->getName());
      }
      ProcUnitDef = ProcResGroup;
    }
  }
  if (!ProcUnitDef) {
    PrintFatalError(Loc,
                    "No ProcessorResources associated with "
                    + ProcResKind->getName());
  }
  return ProcUnitDef;
}

// Iteratively add a resource and its super resources.
void CodeGenSchedModels::addProcResource(Record *ProcResKind,
                                         CodeGenProcModel &PM,
                                         ArrayRef<SMLoc> Loc) {
  while (true) {
    Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);

    // See if this ProcResource is already associated with this processor.
    if (is_contained(PM.ProcResourceDefs, ProcResUnits))
      return;

    PM.ProcResourceDefs.push_back(ProcResUnits);
    if (ProcResUnits->isSubClassOf("ProcResGroup"))
      return;

    if (!ProcResUnits->getValueInit("Super")->isComplete())
      return;

    ProcResKind = ProcResUnits->getValueAsDef("Super");
  }
}

// Add resources for a SchedWrite to this processor if they don't exist.
void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
  assert(PIdx && "don't add resources to an invalid Processor model");

  RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
  if (is_contained(WRDefs, ProcWriteResDef))
    return;
  WRDefs.push_back(ProcWriteResDef);

  // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
  RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
  for (RecIter WritePRI = ProcResDefs.begin(), WritePRE = ProcResDefs.end();
       WritePRI != WritePRE; ++WritePRI) {
    addProcResource(*WritePRI, ProcModels[PIdx], ProcWriteResDef->getLoc());
  }
}

// Add resources for a ReadAdvance to this processor if they don't exist.
void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
                                        unsigned PIdx) {
  RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
  if (is_contained(RADefs, ProcReadAdvanceDef))
    return;
  RADefs.push_back(ProcReadAdvanceDef);
}

unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
  RecIter PRPos = find(ProcResourceDefs, PRDef);
  if (PRPos == ProcResourceDefs.end())
    PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
                    "the ProcResources list for " + ModelName);
  // Idx=0 is reserved for invalid.
  return 1 + (PRPos - ProcResourceDefs.begin());
}

bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
  for (const Record *TheDef : UnsupportedFeaturesDefs) {
    for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
      if (TheDef->getName() == PredDef->getName())
        return true;
    }
  }
  return false;
}

#ifndef NDEBUG
void CodeGenProcModel::dump() const {
  dbgs() << Index << ": " << ModelName << " "
         << (ModelDef ? ModelDef->getName() : "inferred") << " "
         << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
}

void CodeGenSchedRW::dump() const {
  dbgs() << Name << (IsVariadic ? " (V) " : " ");
  if (IsSequence) {
    dbgs() << "(";
    dumpIdxVec(Sequence);
    dbgs() << ")";
  }
}

void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
  dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
         << "  Writes: ";
  for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
    SchedModels->getSchedWrite(Writes[i]).dump();
    if (i < N-1) {
      dbgs() << '\n';
      dbgs().indent(10);
    }
  }
  dbgs() << "\n  Reads: ";
  for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
    SchedModels->getSchedRead(Reads[i]).dump();
    if (i < N-1) {
      dbgs() << '\n';
      dbgs().indent(10);
    }
  }
  dbgs() << "\n  ProcIdx: "; dumpIdxVec(ProcIndices); dbgs() << '\n';
  if (!Transitions.empty()) {
    dbgs() << "\n Transitions for Proc ";
    for (const CodeGenSchedTransition &Transition : Transitions) {
      dumpIdxVec(Transition.ProcIndices);
    }
  }
}

void PredTransitions::dump() const {
  dbgs() << "Expanded Variants:\n";
  for (std::vector<PredTransition>::const_iterator
         TI = TransVec.begin(), TE = TransVec.end(); TI != TE; ++TI) {
    dbgs() << "{";
    for (SmallVectorImpl<PredCheck>::const_iterator
           PCI = TI->PredTerm.begin(), PCE = TI->PredTerm.end();
         PCI != PCE; ++PCI) {
      if (PCI != TI->PredTerm.begin())
        dbgs() << ", ";
      dbgs() << SchedModels.getSchedRW(PCI->RWIdx, PCI->IsRead).Name
             << ":" << PCI->Predicate->getName();
    }
    dbgs() << "},\n  => {";
    for (SmallVectorImpl<SmallVector<unsigned,4>>::const_iterator
           WSI = TI->WriteSequences.begin(), WSE = TI->WriteSequences.end();
         WSI != WSE; ++WSI) {
      dbgs() << "(";
      for (SmallVectorImpl<unsigned>::const_iterator
             WI = WSI->begin(), WE = WSI->end(); WI != WE; ++WI) {
        if (WI != WSI->begin())
          dbgs() << ", ";
        dbgs() << SchedModels.getSchedWrite(*WI).Name;
      }
      dbgs() << "),";
    }
    dbgs() << "}\n";
  }
}
#endif // NDEBUG