CodeGenRegisters.cpp 90.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines structures to encapsulate information gleaned from the
// target register and register class definitions.
//
//===----------------------------------------------------------------------===//

#include "CodeGenRegisters.h"
#include "CodeGenTarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntEqClasses.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <queue>
#include <set>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "regalloc-emitter"

//===----------------------------------------------------------------------===//
//                             CodeGenSubRegIndex
//===----------------------------------------------------------------------===//

CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
  : TheDef(R), EnumValue(Enum), AllSuperRegsCovered(true), Artificial(true) {
  Name = std::string(R->getName());
  if (R->getValue("Namespace"))
    Namespace = std::string(R->getValueAsString("Namespace"));
  Size = R->getValueAsInt("Size");
  Offset = R->getValueAsInt("Offset");
}

CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
                                       unsigned Enum)
    : TheDef(nullptr), Name(std::string(N)), Namespace(std::string(Nspace)),
      Size(-1), Offset(-1), EnumValue(Enum), AllSuperRegsCovered(true),
      Artificial(true) {}

std::string CodeGenSubRegIndex::getQualifiedName() const {
  std::string N = getNamespace();
  if (!N.empty())
    N += "::";
  N += getName();
  return N;
}

void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
  if (!TheDef)
    return;

  std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
  if (!Comps.empty()) {
    if (Comps.size() != 2)
      PrintFatalError(TheDef->getLoc(),
                      "ComposedOf must have exactly two entries");
    CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
    CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
    CodeGenSubRegIndex *X = A->addComposite(B, this);
    if (X)
      PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
  }

  std::vector<Record*> Parts =
    TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
  if (!Parts.empty()) {
    if (Parts.size() < 2)
      PrintFatalError(TheDef->getLoc(),
                      "CoveredBySubRegs must have two or more entries");
    SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
    for (Record *Part : Parts)
      IdxParts.push_back(RegBank.getSubRegIdx(Part));
    setConcatenationOf(IdxParts);
  }
}

LaneBitmask CodeGenSubRegIndex::computeLaneMask() const {
  // Already computed?
  if (LaneMask.any())
    return LaneMask;

  // Recursion guard, shouldn't be required.
  LaneMask = LaneBitmask::getAll();

  // The lane mask is simply the union of all sub-indices.
  LaneBitmask M;
  for (const auto &C : Composed)
    M |= C.second->computeLaneMask();
  assert(M.any() && "Missing lane mask, sub-register cycle?");
  LaneMask = M;
  return LaneMask;
}

void CodeGenSubRegIndex::setConcatenationOf(
    ArrayRef<CodeGenSubRegIndex*> Parts) {
  if (ConcatenationOf.empty())
    ConcatenationOf.assign(Parts.begin(), Parts.end());
  else
    assert(std::equal(Parts.begin(), Parts.end(),
                      ConcatenationOf.begin()) && "parts consistent");
}

void CodeGenSubRegIndex::computeConcatTransitiveClosure() {
  for (SmallVectorImpl<CodeGenSubRegIndex*>::iterator
       I = ConcatenationOf.begin(); I != ConcatenationOf.end(); /*empty*/) {
    CodeGenSubRegIndex *SubIdx = *I;
    SubIdx->computeConcatTransitiveClosure();
#ifndef NDEBUG
    for (CodeGenSubRegIndex *SRI : SubIdx->ConcatenationOf)
      assert(SRI->ConcatenationOf.empty() && "No transitive closure?");
#endif

    if (SubIdx->ConcatenationOf.empty()) {
      ++I;
    } else {
      I = ConcatenationOf.erase(I);
      I = ConcatenationOf.insert(I, SubIdx->ConcatenationOf.begin(),
                                 SubIdx->ConcatenationOf.end());
      I += SubIdx->ConcatenationOf.size();
    }
  }
}

//===----------------------------------------------------------------------===//
//                              CodeGenRegister
//===----------------------------------------------------------------------===//

CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
  : TheDef(R),
    EnumValue(Enum),
    CostPerUse(R->getValueAsInt("CostPerUse")),
    CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
    HasDisjunctSubRegs(false),
    SubRegsComplete(false),
    SuperRegsComplete(false),
    TopoSig(~0u) {
  Artificial = R->getValueAsBit("isArtificial");
}

void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
  std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
  std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");

  if (SRIs.size() != SRs.size())
    PrintFatalError(TheDef->getLoc(),
                    "SubRegs and SubRegIndices must have the same size");

  for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
    ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
    ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
  }

  // Also compute leading super-registers. Each register has a list of
  // covered-by-subregs super-registers where it appears as the first explicit
  // sub-register.
  //
  // This is used by computeSecondarySubRegs() to find candidates.
  if (CoveredBySubRegs && !ExplicitSubRegs.empty())
    ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);

  // Add ad hoc alias links. This is a symmetric relationship between two
  // registers, so build a symmetric graph by adding links in both ends.
  std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
  for (Record *Alias : Aliases) {
    CodeGenRegister *Reg = RegBank.getReg(Alias);
    ExplicitAliases.push_back(Reg);
    Reg->ExplicitAliases.push_back(this);
  }
}

const StringRef CodeGenRegister::getName() const {
  assert(TheDef && "no def");
  return TheDef->getName();
}

namespace {

// Iterate over all register units in a set of registers.
class RegUnitIterator {
  CodeGenRegister::Vec::const_iterator RegI, RegE;
  CodeGenRegister::RegUnitList::iterator UnitI, UnitE;

public:
  RegUnitIterator(const CodeGenRegister::Vec &Regs):
    RegI(Regs.begin()), RegE(Regs.end()) {

    if (RegI != RegE) {
      UnitI = (*RegI)->getRegUnits().begin();
      UnitE = (*RegI)->getRegUnits().end();
      advance();
    }
  }

  bool isValid() const { return UnitI != UnitE; }

  unsigned operator* () const { assert(isValid()); return *UnitI; }

  const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }

  /// Preincrement.  Move to the next unit.
  void operator++() {
    assert(isValid() && "Cannot advance beyond the last operand");
    ++UnitI;
    advance();
  }

protected:
  void advance() {
    while (UnitI == UnitE) {
      if (++RegI == RegE)
        break;
      UnitI = (*RegI)->getRegUnits().begin();
      UnitE = (*RegI)->getRegUnits().end();
    }
  }
};

} // end anonymous namespace

// Return true of this unit appears in RegUnits.
static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
  return RegUnits.test(Unit);
}

// Inherit register units from subregisters.
// Return true if the RegUnits changed.
bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
  bool changed = false;
  for (const auto &SubReg : SubRegs) {
    CodeGenRegister *SR = SubReg.second;
    // Merge the subregister's units into this register's RegUnits.
    changed |= (RegUnits |= SR->RegUnits);
  }

  return changed;
}

const CodeGenRegister::SubRegMap &
CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
  // Only compute this map once.
  if (SubRegsComplete)
    return SubRegs;
  SubRegsComplete = true;

  HasDisjunctSubRegs = ExplicitSubRegs.size() > 1;

  // First insert the explicit subregs and make sure they are fully indexed.
  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    CodeGenRegister *SR = ExplicitSubRegs[i];
    CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
    if (!SR->Artificial)
      Idx->Artificial = false;
    if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
      PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
                      " appears twice in Register " + getName());
    // Map explicit sub-registers first, so the names take precedence.
    // The inherited sub-registers are mapped below.
    SubReg2Idx.insert(std::make_pair(SR, Idx));
  }

  // Keep track of inherited subregs and how they can be reached.
  SmallPtrSet<CodeGenRegister*, 8> Orphans;

  // Clone inherited subregs and place duplicate entries in Orphans.
  // Here the order is important - earlier subregs take precedence.
  for (CodeGenRegister *ESR : ExplicitSubRegs) {
    const SubRegMap &Map = ESR->computeSubRegs(RegBank);
    HasDisjunctSubRegs |= ESR->HasDisjunctSubRegs;

    for (const auto &SR : Map) {
      if (!SubRegs.insert(SR).second)
        Orphans.insert(SR.second);
    }
  }

  // Expand any composed subreg indices.
  // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
  // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
  // expanded subreg indices recursively.
  SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
  for (unsigned i = 0; i != Indices.size(); ++i) {
    CodeGenSubRegIndex *Idx = Indices[i];
    const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
    CodeGenRegister *SR = SubRegs[Idx];
    const SubRegMap &Map = SR->computeSubRegs(RegBank);

    // Look at the possible compositions of Idx.
    // They may not all be supported by SR.
    for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
           E = Comps.end(); I != E; ++I) {
      SubRegMap::const_iterator SRI = Map.find(I->first);
      if (SRI == Map.end())
        continue; // Idx + I->first doesn't exist in SR.
      // Add I->second as a name for the subreg SRI->second, assuming it is
      // orphaned, and the name isn't already used for something else.
      if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
        continue;
      // We found a new name for the orphaned sub-register.
      SubRegs.insert(std::make_pair(I->second, SRI->second));
      Indices.push_back(I->second);
    }
  }

  // Now Orphans contains the inherited subregisters without a direct index.
  // Create inferred indexes for all missing entries.
  // Work backwards in the Indices vector in order to compose subregs bottom-up.
  // Consider this subreg sequence:
  //
  //   qsub_1 -> dsub_0 -> ssub_0
  //
  // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
  // can be reached in two different ways:
  //
  //   qsub_1 -> ssub_0
  //   dsub_2 -> ssub_0
  //
  // We pick the latter composition because another register may have [dsub_0,
  // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
  // dsub_2 -> ssub_0 composition can be shared.
  while (!Indices.empty() && !Orphans.empty()) {
    CodeGenSubRegIndex *Idx = Indices.pop_back_val();
    CodeGenRegister *SR = SubRegs[Idx];
    const SubRegMap &Map = SR->computeSubRegs(RegBank);
    for (const auto &SubReg : Map)
      if (Orphans.erase(SubReg.second))
        SubRegs[RegBank.getCompositeSubRegIndex(Idx, SubReg.first)] = SubReg.second;
  }

  // Compute the inverse SubReg -> Idx map.
  for (const auto &SubReg : SubRegs) {
    if (SubReg.second == this) {
      ArrayRef<SMLoc> Loc;
      if (TheDef)
        Loc = TheDef->getLoc();
      PrintFatalError(Loc, "Register " + getName() +
                      " has itself as a sub-register");
    }

    // Compute AllSuperRegsCovered.
    if (!CoveredBySubRegs)
      SubReg.first->AllSuperRegsCovered = false;

    // Ensure that every sub-register has a unique name.
    DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
      SubReg2Idx.insert(std::make_pair(SubReg.second, SubReg.first)).first;
    if (Ins->second == SubReg.first)
      continue;
    // Trouble: Two different names for SubReg.second.
    ArrayRef<SMLoc> Loc;
    if (TheDef)
      Loc = TheDef->getLoc();
    PrintFatalError(Loc, "Sub-register can't have two names: " +
                  SubReg.second->getName() + " available as " +
                  SubReg.first->getName() + " and " + Ins->second->getName());
  }

  // Derive possible names for sub-register concatenations from any explicit
  // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
  // that getConcatSubRegIndex() won't invent any concatenated indices that the
  // user already specified.
  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    CodeGenRegister *SR = ExplicitSubRegs[i];
    if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1 ||
        SR->Artificial)
      continue;

    // SR is composed of multiple sub-regs. Find their names in this register.
    SmallVector<CodeGenSubRegIndex*, 8> Parts;
    for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) {
      CodeGenSubRegIndex &I = *SR->ExplicitSubRegIndices[j];
      if (!I.Artificial)
        Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
    }

    // Offer this as an existing spelling for the concatenation of Parts.
    CodeGenSubRegIndex &Idx = *ExplicitSubRegIndices[i];
    Idx.setConcatenationOf(Parts);
  }

  // Initialize RegUnitList. Because getSubRegs is called recursively, this
  // processes the register hierarchy in postorder.
  //
  // Inherit all sub-register units. It is good enough to look at the explicit
  // sub-registers, the other registers won't contribute any more units.
  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    CodeGenRegister *SR = ExplicitSubRegs[i];
    RegUnits |= SR->RegUnits;
  }

  // Absent any ad hoc aliasing, we create one register unit per leaf register.
  // These units correspond to the maximal cliques in the register overlap
  // graph which is optimal.
  //
  // When there is ad hoc aliasing, we simply create one unit per edge in the
  // undirected ad hoc aliasing graph. Technically, we could do better by
  // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
  // are extremely rare anyway (I've never seen one), so we don't bother with
  // the added complexity.
  for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
    CodeGenRegister *AR = ExplicitAliases[i];
    // Only visit each edge once.
    if (AR->SubRegsComplete)
      continue;
    // Create a RegUnit representing this alias edge, and add it to both
    // registers.
    unsigned Unit = RegBank.newRegUnit(this, AR);
    RegUnits.set(Unit);
    AR->RegUnits.set(Unit);
  }

  // Finally, create units for leaf registers without ad hoc aliases. Note that
  // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
  // necessary. This means the aliasing leaf registers can share a single unit.
  if (RegUnits.empty())
    RegUnits.set(RegBank.newRegUnit(this));

  // We have now computed the native register units. More may be adopted later
  // for balancing purposes.
  NativeRegUnits = RegUnits;

  return SubRegs;
}

// In a register that is covered by its sub-registers, try to find redundant
// sub-registers. For example:
//
//   QQ0 = {Q0, Q1}
//   Q0 = {D0, D1}
//   Q1 = {D2, D3}
//
// We can infer that D1_D2 is also a sub-register, even if it wasn't named in
// the register definition.
//
// The explicitly specified registers form a tree. This function discovers
// sub-register relationships that would force a DAG.
//
void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
  SmallVector<SubRegMap::value_type, 8> NewSubRegs;

  std::queue<std::pair<CodeGenSubRegIndex*,CodeGenRegister*>> SubRegQueue;
  for (std::pair<CodeGenSubRegIndex*,CodeGenRegister*> P : SubRegs)
    SubRegQueue.push(P);

  // Look at the leading super-registers of each sub-register. Those are the
  // candidates for new sub-registers, assuming they are fully contained in
  // this register.
  while (!SubRegQueue.empty()) {
    CodeGenSubRegIndex *SubRegIdx;
    const CodeGenRegister *SubReg;
    std::tie(SubRegIdx, SubReg) = SubRegQueue.front();
    SubRegQueue.pop();

    const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
    for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
      CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
      // Already got this sub-register?
      if (Cand == this || getSubRegIndex(Cand))
        continue;
      // Check if each component of Cand is already a sub-register.
      assert(!Cand->ExplicitSubRegs.empty() &&
             "Super-register has no sub-registers");
      if (Cand->ExplicitSubRegs.size() == 1)
        continue;
      SmallVector<CodeGenSubRegIndex*, 8> Parts;
      // We know that the first component is (SubRegIdx,SubReg). However we
      // may still need to split it into smaller subregister parts.
      assert(Cand->ExplicitSubRegs[0] == SubReg && "LeadingSuperRegs correct");
      assert(getSubRegIndex(SubReg) == SubRegIdx && "LeadingSuperRegs correct");
      for (CodeGenRegister *SubReg : Cand->ExplicitSubRegs) {
        if (CodeGenSubRegIndex *SubRegIdx = getSubRegIndex(SubReg)) {
          if (SubRegIdx->ConcatenationOf.empty()) {
            Parts.push_back(SubRegIdx);
          } else
            for (CodeGenSubRegIndex *SubIdx : SubRegIdx->ConcatenationOf)
              Parts.push_back(SubIdx);
        } else {
          // Sub-register doesn't exist.
          Parts.clear();
          break;
        }
      }
      // There is nothing to do if some Cand sub-register is not part of this
      // register.
      if (Parts.empty())
        continue;

      // Each part of Cand is a sub-register of this. Make the full Cand also
      // a sub-register with a concatenated sub-register index.
      CodeGenSubRegIndex *Concat = RegBank.getConcatSubRegIndex(Parts);
      std::pair<CodeGenSubRegIndex*,CodeGenRegister*> NewSubReg =
          std::make_pair(Concat, Cand);

      if (!SubRegs.insert(NewSubReg).second)
        continue;

      // We inserted a new subregister.
      NewSubRegs.push_back(NewSubReg);
      SubRegQueue.push(NewSubReg);
      SubReg2Idx.insert(std::make_pair(Cand, Concat));
    }
  }

  // Create sub-register index composition maps for the synthesized indices.
  for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
    CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
    CodeGenRegister *NewSubReg = NewSubRegs[i].second;
    for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
           SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
      CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
      if (!SubIdx)
        PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
                        SI->second->getName() + " in " + getName());
      NewIdx->addComposite(SI->first, SubIdx);
    }
  }
}

void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
  // Only visit each register once.
  if (SuperRegsComplete)
    return;
  SuperRegsComplete = true;

  // Make sure all sub-registers have been visited first, so the super-reg
  // lists will be topologically ordered.
  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
       I != E; ++I)
    I->second->computeSuperRegs(RegBank);

  // Now add this as a super-register on all sub-registers.
  // Also compute the TopoSigId in post-order.
  TopoSigId Id;
  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
       I != E; ++I) {
    // Topological signature computed from SubIdx, TopoId(SubReg).
    // Loops and idempotent indices have TopoSig = ~0u.
    Id.push_back(I->first->EnumValue);
    Id.push_back(I->second->TopoSig);

    // Don't add duplicate entries.
    if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
      continue;
    I->second->SuperRegs.push_back(this);
  }
  TopoSig = RegBank.getTopoSig(Id);
}

void
CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
                                    CodeGenRegBank &RegBank) const {
  assert(SubRegsComplete && "Must precompute sub-registers");
  for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    CodeGenRegister *SR = ExplicitSubRegs[i];
    if (OSet.insert(SR))
      SR->addSubRegsPreOrder(OSet, RegBank);
  }
  // Add any secondary sub-registers that weren't part of the explicit tree.
  for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
       I != E; ++I)
    OSet.insert(I->second);
}

// Get the sum of this register's unit weights.
unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
  unsigned Weight = 0;
  for (RegUnitList::iterator I = RegUnits.begin(), E = RegUnits.end();
       I != E; ++I) {
    Weight += RegBank.getRegUnit(*I).Weight;
  }
  return Weight;
}

//===----------------------------------------------------------------------===//
//                               RegisterTuples
//===----------------------------------------------------------------------===//

// A RegisterTuples def is used to generate pseudo-registers from lists of
// sub-registers. We provide a SetTheory expander class that returns the new
// registers.
namespace {

struct TupleExpander : SetTheory::Expander {
  // Reference to SynthDefs in the containing CodeGenRegBank, to keep track of
  // the synthesized definitions for their lifetime.
  std::vector<std::unique_ptr<Record>> &SynthDefs;

  TupleExpander(std::vector<std::unique_ptr<Record>> &SynthDefs)
      : SynthDefs(SynthDefs) {}

  void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) override {
    std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
    unsigned Dim = Indices.size();
    ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
    if (Dim != SubRegs->size())
      PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
    if (Dim < 2)
      PrintFatalError(Def->getLoc(),
                      "Tuples must have at least 2 sub-registers");

    // Evaluate the sub-register lists to be zipped.
    unsigned Length = ~0u;
    SmallVector<SetTheory::RecSet, 4> Lists(Dim);
    for (unsigned i = 0; i != Dim; ++i) {
      ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
      Length = std::min(Length, unsigned(Lists[i].size()));
    }

    if (Length == 0)
      return;

    // Precompute some types.
    Record *RegisterCl = Def->getRecords().getClass("Register");
    RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
    std::vector<StringRef> RegNames =
      Def->getValueAsListOfStrings("RegAsmNames");

    // Zip them up.
    for (unsigned n = 0; n != Length; ++n) {
      std::string Name;
      Record *Proto = Lists[0][n];
      std::vector<Init*> Tuple;
      unsigned CostPerUse = 0;
      for (unsigned i = 0; i != Dim; ++i) {
        Record *Reg = Lists[i][n];
        if (i) Name += '_';
        Name += Reg->getName();
        Tuple.push_back(DefInit::get(Reg));
        CostPerUse = std::max(CostPerUse,
                              unsigned(Reg->getValueAsInt("CostPerUse")));
      }

      StringInit *AsmName = StringInit::get("");
      if (!RegNames.empty()) {
        if (RegNames.size() <= n)
          PrintFatalError(Def->getLoc(),
                          "Register tuple definition missing name for '" +
                            Name + "'.");
        AsmName = StringInit::get(RegNames[n]);
      }

      // Create a new Record representing the synthesized register. This record
      // is only for consumption by CodeGenRegister, it is not added to the
      // RecordKeeper.
      SynthDefs.emplace_back(
          std::make_unique<Record>(Name, Def->getLoc(), Def->getRecords()));
      Record *NewReg = SynthDefs.back().get();
      Elts.insert(NewReg);

      // Copy Proto super-classes.
      ArrayRef<std::pair<Record *, SMRange>> Supers = Proto->getSuperClasses();
      for (const auto &SuperPair : Supers)
        NewReg->addSuperClass(SuperPair.first, SuperPair.second);

      // Copy Proto fields.
      for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
        RecordVal RV = Proto->getValues()[i];

        // Skip existing fields, like NAME.
        if (NewReg->getValue(RV.getNameInit()))
          continue;

        StringRef Field = RV.getName();

        // Replace the sub-register list with Tuple.
        if (Field == "SubRegs")
          RV.setValue(ListInit::get(Tuple, RegisterRecTy));

        if (Field == "AsmName")
          RV.setValue(AsmName);

        // CostPerUse is aggregated from all Tuple members.
        if (Field == "CostPerUse")
          RV.setValue(IntInit::get(CostPerUse));

        // Composite registers are always covered by sub-registers.
        if (Field == "CoveredBySubRegs")
          RV.setValue(BitInit::get(true));

        // Copy fields from the RegisterTuples def.
        if (Field == "SubRegIndices" ||
            Field == "CompositeIndices") {
          NewReg->addValue(*Def->getValue(Field));
          continue;
        }

        // Some fields get their default uninitialized value.
        if (Field == "DwarfNumbers" ||
            Field == "DwarfAlias" ||
            Field == "Aliases") {
          if (const RecordVal *DefRV = RegisterCl->getValue(Field))
            NewReg->addValue(*DefRV);
          continue;
        }

        // Everything else is copied from Proto.
        NewReg->addValue(RV);
      }
    }
  }
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
//                            CodeGenRegisterClass
//===----------------------------------------------------------------------===//

static void sortAndUniqueRegisters(CodeGenRegister::Vec &M) {
  llvm::sort(M, deref<std::less<>>());
  M.erase(std::unique(M.begin(), M.end(), deref<std::equal_to<>>()), M.end());
}

CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
    : TheDef(R), Name(std::string(R->getName())),
      TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1) {
  GeneratePressureSet = R->getValueAsBit("GeneratePressureSet");
  std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
  if (TypeList.empty())
    PrintFatalError(R->getLoc(), "RegTypes list must not be empty!");
  for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    Record *Type = TypeList[i];
    if (!Type->isSubClassOf("ValueType"))
      PrintFatalError(R->getLoc(),
                      "RegTypes list member '" + Type->getName() +
                          "' does not derive from the ValueType class!");
    VTs.push_back(getValueTypeByHwMode(Type, RegBank.getHwModes()));
  }

  // Allocation order 0 is the full set. AltOrders provides others.
  const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
  ListInit *AltOrders = R->getValueAsListInit("AltOrders");
  Orders.resize(1 + AltOrders->size());

  // Default allocation order always contains all registers.
  Artificial = true;
  for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
    Orders[0].push_back((*Elements)[i]);
    const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
    Members.push_back(Reg);
    Artificial &= Reg->Artificial;
    TopoSigs.set(Reg->getTopoSig());
  }
  sortAndUniqueRegisters(Members);

  // Alternative allocation orders may be subsets.
  SetTheory::RecSet Order;
  for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
    RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
    Orders[1 + i].append(Order.begin(), Order.end());
    // Verify that all altorder members are regclass members.
    while (!Order.empty()) {
      CodeGenRegister *Reg = RegBank.getReg(Order.back());
      Order.pop_back();
      if (!contains(Reg))
        PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
                      " is not a class member");
    }
  }

  Namespace = R->getValueAsString("Namespace");

  if (const RecordVal *RV = R->getValue("RegInfos"))
    if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue()))
      RSI = RegSizeInfoByHwMode(DI->getDef(), RegBank.getHwModes());
  unsigned Size = R->getValueAsInt("Size");
  assert((RSI.hasDefault() || Size != 0 || VTs[0].isSimple()) &&
         "Impossible to determine register size");
  if (!RSI.hasDefault()) {
    RegSizeInfo RI;
    RI.RegSize = RI.SpillSize = Size ? Size
                                     : VTs[0].getSimple().getSizeInBits();
    RI.SpillAlignment = R->getValueAsInt("Alignment");
    RSI.Map.insert({DefaultMode, RI});
  }

  CopyCost = R->getValueAsInt("CopyCost");
  Allocatable = R->getValueAsBit("isAllocatable");
  AltOrderSelect = R->getValueAsString("AltOrderSelect");
  int AllocationPriority = R->getValueAsInt("AllocationPriority");
  if (AllocationPriority < 0 || AllocationPriority > 63)
    PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
  this->AllocationPriority = AllocationPriority;
}

// Create an inferred register class that was missing from the .td files.
// Most properties will be inherited from the closest super-class after the
// class structure has been computed.
CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
                                           StringRef Name, Key Props)
    : Members(*Props.Members), TheDef(nullptr), Name(std::string(Name)),
      TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), RSI(Props.RSI),
      CopyCost(0), Allocatable(true), AllocationPriority(0) {
  Artificial = true;
  GeneratePressureSet = false;
  for (const auto R : Members) {
    TopoSigs.set(R->getTopoSig());
    Artificial &= R->Artificial;
  }
}

// Compute inherited propertied for a synthesized register class.
void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
  assert(!getDef() && "Only synthesized classes can inherit properties");
  assert(!SuperClasses.empty() && "Synthesized class without super class");

  // The last super-class is the smallest one.
  CodeGenRegisterClass &Super = *SuperClasses.back();

  // Most properties are copied directly.
  // Exceptions are members, size, and alignment
  Namespace = Super.Namespace;
  VTs = Super.VTs;
  CopyCost = Super.CopyCost;
  Allocatable = Super.Allocatable;
  AltOrderSelect = Super.AltOrderSelect;
  AllocationPriority = Super.AllocationPriority;
  GeneratePressureSet |= Super.GeneratePressureSet;

  // Copy all allocation orders, filter out foreign registers from the larger
  // super-class.
  Orders.resize(Super.Orders.size());
  for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
    for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
      if (contains(RegBank.getReg(Super.Orders[i][j])))
        Orders[i].push_back(Super.Orders[i][j]);
}

bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
  return std::binary_search(Members.begin(), Members.end(), Reg,
                            deref<std::less<>>());
}

unsigned CodeGenRegisterClass::getWeight(const CodeGenRegBank& RegBank) const {
  if (TheDef && !TheDef->isValueUnset("Weight"))
    return TheDef->getValueAsInt("Weight");

  if (Members.empty() || Artificial)
    return 0;

  return (*Members.begin())->getWeight(RegBank);
}

namespace llvm {

  raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
    OS << "{ " << K.RSI;
    for (const auto R : *K.Members)
      OS << ", " << R->getName();
    return OS << " }";
  }

} // end namespace llvm

// This is a simple lexicographical order that can be used to search for sets.
// It is not the same as the topological order provided by TopoOrderRC.
bool CodeGenRegisterClass::Key::
operator<(const CodeGenRegisterClass::Key &B) const {
  assert(Members && B.Members);
  return std::tie(*Members, RSI) < std::tie(*B.Members, B.RSI);
}

// Returns true if RC is a strict subclass.
// RC is a sub-class of this class if it is a valid replacement for any
// instruction operand where a register of this classis required. It must
// satisfy these conditions:
//
// 1. All RC registers are also in this.
// 2. The RC spill size must not be smaller than our spill size.
// 3. RC spill alignment must be compatible with ours.
//
static bool testSubClass(const CodeGenRegisterClass *A,
                         const CodeGenRegisterClass *B) {
  return A->RSI.isSubClassOf(B->RSI) &&
         std::includes(A->getMembers().begin(), A->getMembers().end(),
                       B->getMembers().begin(), B->getMembers().end(),
                       deref<std::less<>>());
}

/// Sorting predicate for register classes.  This provides a topological
/// ordering that arranges all register classes before their sub-classes.
///
/// Register classes with the same registers, spill size, and alignment form a
/// clique.  They will be ordered alphabetically.
///
static bool TopoOrderRC(const CodeGenRegisterClass &PA,
                        const CodeGenRegisterClass &PB) {
  auto *A = &PA;
  auto *B = &PB;
  if (A == B)
    return false;

  if (A->RSI < B->RSI)
    return true;
  if (A->RSI != B->RSI)
    return false;

  // Order by descending set size.  Note that the classes' allocation order may
  // not have been computed yet.  The Members set is always vaild.
  if (A->getMembers().size() > B->getMembers().size())
    return true;
  if (A->getMembers().size() < B->getMembers().size())
    return false;

  // Finally order by name as a tie breaker.
  return StringRef(A->getName()) < B->getName();
}

std::string CodeGenRegisterClass::getQualifiedName() const {
  if (Namespace.empty())
    return getName();
  else
    return (Namespace + "::" + getName()).str();
}

// Compute sub-classes of all register classes.
// Assume the classes are ordered topologically.
void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
  auto &RegClasses = RegBank.getRegClasses();

  // Visit backwards so sub-classes are seen first.
  for (auto I = RegClasses.rbegin(), E = RegClasses.rend(); I != E; ++I) {
    CodeGenRegisterClass &RC = *I;
    RC.SubClasses.resize(RegClasses.size());
    RC.SubClasses.set(RC.EnumValue);
    if (RC.Artificial)
      continue;

    // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
    for (auto I2 = I.base(), E2 = RegClasses.end(); I2 != E2; ++I2) {
      CodeGenRegisterClass &SubRC = *I2;
      if (RC.SubClasses.test(SubRC.EnumValue))
        continue;
      if (!testSubClass(&RC, &SubRC))
        continue;
      // SubRC is a sub-class. Grap all its sub-classes so we won't have to
      // check them again.
      RC.SubClasses |= SubRC.SubClasses;
    }

    // Sweep up missed clique members.  They will be immediately preceding RC.
    for (auto I2 = std::next(I); I2 != E && testSubClass(&RC, &*I2); ++I2)
      RC.SubClasses.set(I2->EnumValue);
  }

  // Compute the SuperClasses lists from the SubClasses vectors.
  for (auto &RC : RegClasses) {
    const BitVector &SC = RC.getSubClasses();
    auto I = RegClasses.begin();
    for (int s = 0, next_s = SC.find_first(); next_s != -1;
         next_s = SC.find_next(s)) {
      std::advance(I, next_s - s);
      s = next_s;
      if (&*I == &RC)
        continue;
      I->SuperClasses.push_back(&RC);
    }
  }

  // With the class hierarchy in place, let synthesized register classes inherit
  // properties from their closest super-class. The iteration order here can
  // propagate properties down multiple levels.
  for (auto &RC : RegClasses)
    if (!RC.getDef())
      RC.inheritProperties(RegBank);
}

Optional<std::pair<CodeGenRegisterClass *, CodeGenRegisterClass *>>
CodeGenRegisterClass::getMatchingSubClassWithSubRegs(
    CodeGenRegBank &RegBank, const CodeGenSubRegIndex *SubIdx) const {
  auto SizeOrder = [this](const CodeGenRegisterClass *A,
                      const CodeGenRegisterClass *B) {
    // If there are multiple, identical register classes, prefer the original
    // register class.
    if (A == B)
      return false;
    if (A->getMembers().size() == B->getMembers().size())
      return A == this;
    return A->getMembers().size() > B->getMembers().size();
  };

  auto &RegClasses = RegBank.getRegClasses();

  // Find all the subclasses of this one that fully support the sub-register
  // index and order them by size. BiggestSuperRC should always be first.
  CodeGenRegisterClass *BiggestSuperRegRC = getSubClassWithSubReg(SubIdx);
  if (!BiggestSuperRegRC)
    return None;
  BitVector SuperRegRCsBV = BiggestSuperRegRC->getSubClasses();
  std::vector<CodeGenRegisterClass *> SuperRegRCs;
  for (auto &RC : RegClasses)
    if (SuperRegRCsBV[RC.EnumValue])
      SuperRegRCs.emplace_back(&RC);
  llvm::stable_sort(SuperRegRCs, SizeOrder);

  assert(SuperRegRCs.front() == BiggestSuperRegRC &&
         "Biggest class wasn't first");

  // Find all the subreg classes and order them by size too.
  std::vector<std::pair<CodeGenRegisterClass *, BitVector>> SuperRegClasses;
  for (auto &RC: RegClasses) {
    BitVector SuperRegClassesBV(RegClasses.size());
    RC.getSuperRegClasses(SubIdx, SuperRegClassesBV);
    if (SuperRegClassesBV.any())
      SuperRegClasses.push_back(std::make_pair(&RC, SuperRegClassesBV));
  }
  llvm::sort(SuperRegClasses,
             [&](const std::pair<CodeGenRegisterClass *, BitVector> &A,
                 const std::pair<CodeGenRegisterClass *, BitVector> &B) {
               return SizeOrder(A.first, B.first);
             });

  // Find the biggest subclass and subreg class such that R:subidx is in the
  // subreg class for all R in subclass.
  //
  // For example:
  // All registers in X86's GR64 have a sub_32bit subregister but no class
  // exists that contains all the 32-bit subregisters because GR64 contains RIP
  // but GR32 does not contain EIP. Instead, we constrain SuperRegRC to
  // GR32_with_sub_8bit (which is identical to GR32_with_sub_32bit) and then,
  // having excluded RIP, we are able to find a SubRegRC (GR32).
  CodeGenRegisterClass *ChosenSuperRegClass = nullptr;
  CodeGenRegisterClass *SubRegRC = nullptr;
  for (auto *SuperRegRC : SuperRegRCs) {
    for (const auto &SuperRegClassPair : SuperRegClasses) {
      const BitVector &SuperRegClassBV = SuperRegClassPair.second;
      if (SuperRegClassBV[SuperRegRC->EnumValue]) {
        SubRegRC = SuperRegClassPair.first;
        ChosenSuperRegClass = SuperRegRC;

        // If SubRegRC is bigger than SuperRegRC then there are members of
        // SubRegRC that don't have super registers via SubIdx. Keep looking to
        // find a better fit and fall back on this one if there isn't one.
        //
        // This is intended to prevent X86 from making odd choices such as
        // picking LOW32_ADDR_ACCESS_RBP instead of GR32 in the example above.
        // LOW32_ADDR_ACCESS_RBP is a valid choice but contains registers that
        // aren't subregisters of SuperRegRC whereas GR32 has a direct 1:1
        // mapping.
        if (SuperRegRC->getMembers().size() >= SubRegRC->getMembers().size())
          return std::make_pair(ChosenSuperRegClass, SubRegRC);
      }
    }

    // If we found a fit but it wasn't quite ideal because SubRegRC had excess
    // registers, then we're done.
    if (ChosenSuperRegClass)
      return std::make_pair(ChosenSuperRegClass, SubRegRC);
  }

  return None;
}

void CodeGenRegisterClass::getSuperRegClasses(const CodeGenSubRegIndex *SubIdx,
                                              BitVector &Out) const {
  auto FindI = SuperRegClasses.find(SubIdx);
  if (FindI == SuperRegClasses.end())
    return;
  for (CodeGenRegisterClass *RC : FindI->second)
    Out.set(RC->EnumValue);
}

// Populate a unique sorted list of units from a register set.
void CodeGenRegisterClass::buildRegUnitSet(const CodeGenRegBank &RegBank,
  std::vector<unsigned> &RegUnits) const {
  std::vector<unsigned> TmpUnits;
  for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) {
    const RegUnit &RU = RegBank.getRegUnit(*UnitI);
    if (!RU.Artificial)
      TmpUnits.push_back(*UnitI);
  }
  llvm::sort(TmpUnits);
  std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
                   std::back_inserter(RegUnits));
}

//===----------------------------------------------------------------------===//
//                               CodeGenRegBank
//===----------------------------------------------------------------------===//

CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records,
                               const CodeGenHwModes &Modes) : CGH(Modes) {
  // Configure register Sets to understand register classes and tuples.
  Sets.addFieldExpander("RegisterClass", "MemberList");
  Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
  Sets.addExpander("RegisterTuples",
                   std::make_unique<TupleExpander>(SynthDefs));

  // Read in the user-defined (named) sub-register indices.
  // More indices will be synthesized later.
  std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
  llvm::sort(SRIs, LessRecord());
  for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
    getSubRegIdx(SRIs[i]);
  // Build composite maps from ComposedOf fields.
  for (auto &Idx : SubRegIndices)
    Idx.updateComponents(*this);

  // Read in the register definitions.
  std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
  llvm::sort(Regs, LessRecordRegister());
  // Assign the enumeration values.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
    getReg(Regs[i]);

  // Expand tuples and number the new registers.
  std::vector<Record*> Tups =
    Records.getAllDerivedDefinitions("RegisterTuples");

  for (Record *R : Tups) {
    std::vector<Record *> TupRegs = *Sets.expand(R);
    llvm::sort(TupRegs, LessRecordRegister());
    for (Record *RC : TupRegs)
      getReg(RC);
  }

  // Now all the registers are known. Build the object graph of explicit
  // register-register references.
  for (auto &Reg : Registers)
    Reg.buildObjectGraph(*this);

  // Compute register name map.
  for (auto &Reg : Registers)
    // FIXME: This could just be RegistersByName[name] = register, except that
    // causes some failures in MIPS - perhaps they have duplicate register name
    // entries? (or maybe there's a reason for it - I don't know much about this
    // code, just drive-by refactoring)
    RegistersByName.insert(
        std::make_pair(Reg.TheDef->getValueAsString("AsmName"), &Reg));

  // Precompute all sub-register maps.
  // This will create Composite entries for all inferred sub-register indices.
  for (auto &Reg : Registers)
    Reg.computeSubRegs(*this);

  // Compute transitive closure of subregister index ConcatenationOf vectors
  // and initialize ConcatIdx map.
  for (CodeGenSubRegIndex &SRI : SubRegIndices) {
    SRI.computeConcatTransitiveClosure();
    if (!SRI.ConcatenationOf.empty())
      ConcatIdx.insert(std::make_pair(
          SmallVector<CodeGenSubRegIndex*,8>(SRI.ConcatenationOf.begin(),
                                             SRI.ConcatenationOf.end()), &SRI));
  }

  // Infer even more sub-registers by combining leading super-registers.
  for (auto &Reg : Registers)
    if (Reg.CoveredBySubRegs)
      Reg.computeSecondarySubRegs(*this);

  // After the sub-register graph is complete, compute the topologically
  // ordered SuperRegs list.
  for (auto &Reg : Registers)
    Reg.computeSuperRegs(*this);

  // For each pair of Reg:SR, if both are non-artificial, mark the
  // corresponding sub-register index as non-artificial.
  for (auto &Reg : Registers) {
    if (Reg.Artificial)
      continue;
    for (auto P : Reg.getSubRegs()) {
      const CodeGenRegister *SR = P.second;
      if (!SR->Artificial)
        P.first->Artificial = false;
    }
  }

  // Native register units are associated with a leaf register. They've all been
  // discovered now.
  NumNativeRegUnits = RegUnits.size();

  // Read in register class definitions.
  std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
  if (RCs.empty())
    PrintFatalError("No 'RegisterClass' subclasses defined!");

  // Allocate user-defined register classes.
  for (auto *R : RCs) {
    RegClasses.emplace_back(*this, R);
    CodeGenRegisterClass &RC = RegClasses.back();
    if (!RC.Artificial)
      addToMaps(&RC);
  }

  // Infer missing classes to create a full algebra.
  computeInferredRegisterClasses();

  // Order register classes topologically and assign enum values.
  RegClasses.sort(TopoOrderRC);
  unsigned i = 0;
  for (auto &RC : RegClasses)
    RC.EnumValue = i++;
  CodeGenRegisterClass::computeSubClasses(*this);
}

// Create a synthetic CodeGenSubRegIndex without a corresponding Record.
CodeGenSubRegIndex*
CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
  SubRegIndices.emplace_back(Name, Namespace, SubRegIndices.size() + 1);
  return &SubRegIndices.back();
}

CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
  CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
  if (Idx)
    return Idx;
  SubRegIndices.emplace_back(Def, SubRegIndices.size() + 1);
  Idx = &SubRegIndices.back();
  return Idx;
}

const CodeGenSubRegIndex *
CodeGenRegBank::findSubRegIdx(const Record* Def) const {
  auto I = Def2SubRegIdx.find(Def);
  return (I == Def2SubRegIdx.end()) ? nullptr : I->second;
}

CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
  CodeGenRegister *&Reg = Def2Reg[Def];
  if (Reg)
    return Reg;
  Registers.emplace_back(Def, Registers.size() + 1);
  Reg = &Registers.back();
  return Reg;
}

void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
  if (Record *Def = RC->getDef())
    Def2RC.insert(std::make_pair(Def, RC));

  // Duplicate classes are rejected by insert().
  // That's OK, we only care about the properties handled by CGRC::Key.
  CodeGenRegisterClass::Key K(*RC);
  Key2RC.insert(std::make_pair(K, RC));
}

// Create a synthetic sub-class if it is missing.
CodeGenRegisterClass*
CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
                                    const CodeGenRegister::Vec *Members,
                                    StringRef Name) {
  // Synthetic sub-class has the same size and alignment as RC.
  CodeGenRegisterClass::Key K(Members, RC->RSI);
  RCKeyMap::const_iterator FoundI = Key2RC.find(K);
  if (FoundI != Key2RC.end())
    return FoundI->second;

  // Sub-class doesn't exist, create a new one.
  RegClasses.emplace_back(*this, Name, K);
  addToMaps(&RegClasses.back());
  return &RegClasses.back();
}

CodeGenRegisterClass *CodeGenRegBank::getRegClass(const Record *Def) const {
  if (CodeGenRegisterClass *RC = Def2RC.lookup(Def))
    return RC;

  PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
}

CodeGenSubRegIndex*
CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
                                        CodeGenSubRegIndex *B) {
  // Look for an existing entry.
  CodeGenSubRegIndex *Comp = A->compose(B);
  if (Comp)
    return Comp;

  // None exists, synthesize one.
  std::string Name = A->getName() + "_then_" + B->getName();
  Comp = createSubRegIndex(Name, A->getNamespace());
  A->addComposite(B, Comp);
  return Comp;
}

CodeGenSubRegIndex *CodeGenRegBank::
getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) {
  assert(Parts.size() > 1 && "Need two parts to concatenate");
#ifndef NDEBUG
  for (CodeGenSubRegIndex *Idx : Parts) {
    assert(Idx->ConcatenationOf.empty() && "No transitive closure?");
  }
#endif

  // Look for an existing entry.
  CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
  if (Idx)
    return Idx;

  // None exists, synthesize one.
  std::string Name = Parts.front()->getName();
  // Determine whether all parts are contiguous.
  bool isContinuous = true;
  unsigned Size = Parts.front()->Size;
  unsigned LastOffset = Parts.front()->Offset;
  unsigned LastSize = Parts.front()->Size;
  for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
    Name += '_';
    Name += Parts[i]->getName();
    Size += Parts[i]->Size;
    if (Parts[i]->Offset != (LastOffset + LastSize))
      isContinuous = false;
    LastOffset = Parts[i]->Offset;
    LastSize = Parts[i]->Size;
  }
  Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
  Idx->Size = Size;
  Idx->Offset = isContinuous ? Parts.front()->Offset : -1;
  Idx->ConcatenationOf.assign(Parts.begin(), Parts.end());
  return Idx;
}

void CodeGenRegBank::computeComposites() {
  using RegMap = std::map<const CodeGenRegister*, const CodeGenRegister*>;

  // Subreg -> { Reg->Reg }, where the right-hand side is the mapping from
  // register to (sub)register associated with the action of the left-hand
  // side subregister.
  std::map<const CodeGenSubRegIndex*, RegMap> SubRegAction;
  for (const CodeGenRegister &R : Registers) {
    const CodeGenRegister::SubRegMap &SM = R.getSubRegs();
    for (std::pair<const CodeGenSubRegIndex*, const CodeGenRegister*> P : SM)
      SubRegAction[P.first].insert({&R, P.second});
  }

  // Calculate the composition of two subregisters as compositions of their
  // associated actions.
  auto compose = [&SubRegAction] (const CodeGenSubRegIndex *Sub1,
                                  const CodeGenSubRegIndex *Sub2) {
    RegMap C;
    const RegMap &Img1 = SubRegAction.at(Sub1);
    const RegMap &Img2 = SubRegAction.at(Sub2);
    for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Img1) {
      auto F = Img2.find(P.second);
      if (F != Img2.end())
        C.insert({P.first, F->second});
    }
    return C;
  };

  // Check if the two maps agree on the intersection of their domains.
  auto agree = [] (const RegMap &Map1, const RegMap &Map2) {
    // Technically speaking, an empty map agrees with any other map, but
    // this could flag false positives. We're interested in non-vacuous
    // agreements.
    if (Map1.empty() || Map2.empty())
      return false;
    for (std::pair<const CodeGenRegister*, const CodeGenRegister*> P : Map1) {
      auto F = Map2.find(P.first);
      if (F == Map2.end() || P.second != F->second)
        return false;
    }
    return true;
  };

  using CompositePair = std::pair<const CodeGenSubRegIndex*,
                                  const CodeGenSubRegIndex*>;
  SmallSet<CompositePair,4> UserDefined;
  for (const CodeGenSubRegIndex &Idx : SubRegIndices)
    for (auto P : Idx.getComposites())
      UserDefined.insert(std::make_pair(&Idx, P.first));

  // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
  // and many registers will share TopoSigs on regular architectures.
  BitVector TopoSigs(getNumTopoSigs());

  for (const auto &Reg1 : Registers) {
    // Skip identical subreg structures already processed.
    if (TopoSigs.test(Reg1.getTopoSig()))
      continue;
    TopoSigs.set(Reg1.getTopoSig());

    const CodeGenRegister::SubRegMap &SRM1 = Reg1.getSubRegs();
    for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
         e1 = SRM1.end(); i1 != e1; ++i1) {
      CodeGenSubRegIndex *Idx1 = i1->first;
      CodeGenRegister *Reg2 = i1->second;
      // Ignore identity compositions.
      if (&Reg1 == Reg2)
        continue;
      const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
      // Try composing Idx1 with another SubRegIndex.
      for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
           e2 = SRM2.end(); i2 != e2; ++i2) {
        CodeGenSubRegIndex *Idx2 = i2->first;
        CodeGenRegister *Reg3 = i2->second;
        // Ignore identity compositions.
        if (Reg2 == Reg3)
          continue;
        // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
        CodeGenSubRegIndex *Idx3 = Reg1.getSubRegIndex(Reg3);
        assert(Idx3 && "Sub-register doesn't have an index");

        // Conflicting composition? Emit a warning but allow it.
        if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) {
          // If the composition was not user-defined, always emit a warning.
          if (!UserDefined.count({Idx1, Idx2}) ||
              agree(compose(Idx1, Idx2), SubRegAction.at(Idx3)))
            PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
                         " and " + Idx2->getQualifiedName() +
                         " compose ambiguously as " + Prev->getQualifiedName() +
                         " or " + Idx3->getQualifiedName());
        }          
      }
    }
  }
}

// Compute lane masks. This is similar to register units, but at the
// sub-register index level. Each bit in the lane mask is like a register unit
// class, and two lane masks will have a bit in common if two sub-register
// indices overlap in some register.
//
// Conservatively share a lane mask bit if two sub-register indices overlap in
// some registers, but not in others. That shouldn't happen a lot.
void CodeGenRegBank::computeSubRegLaneMasks() {
  // First assign individual bits to all the leaf indices.
  unsigned Bit = 0;
  // Determine mask of lanes that cover their registers.
  CoveringLanes = LaneBitmask::getAll();
  for (auto &Idx : SubRegIndices) {
    if (Idx.getComposites().empty()) {
      if (Bit > LaneBitmask::BitWidth) {
        PrintFatalError(
          Twine("Ran out of lanemask bits to represent subregister ")
          + Idx.getName());
      }
      Idx.LaneMask = LaneBitmask::getLane(Bit);
      ++Bit;
    } else {
      Idx.LaneMask = LaneBitmask::getNone();
    }
  }

  // Compute transformation sequences for composeSubRegIndexLaneMask. The idea
  // here is that for each possible target subregister we look at the leafs
  // in the subregister graph that compose for this target and create
  // transformation sequences for the lanemasks. Each step in the sequence
  // consists of a bitmask and a bitrotate operation. As the rotation amounts
  // are usually the same for many subregisters we can easily combine the steps
  // by combining the masks.
  for (const auto &Idx : SubRegIndices) {
    const auto &Composites = Idx.getComposites();
    auto &LaneTransforms = Idx.CompositionLaneMaskTransform;

    if (Composites.empty()) {
      // Moving from a class with no subregisters we just had a single lane:
      // The subregister must be a leaf subregister and only occupies 1 bit.
      // Move the bit from the class without subregisters into that position.
      unsigned DstBit = Idx.LaneMask.getHighestLane();
      assert(Idx.LaneMask == LaneBitmask::getLane(DstBit) &&
             "Must be a leaf subregister");
      MaskRolPair MaskRol = { LaneBitmask::getLane(0), (uint8_t)DstBit };
      LaneTransforms.push_back(MaskRol);
    } else {
      // Go through all leaf subregisters and find the ones that compose with
      // Idx. These make out all possible valid bits in the lane mask we want to
      // transform. Looking only at the leafs ensure that only a single bit in
      // the mask is set.
      unsigned NextBit = 0;
      for (auto &Idx2 : SubRegIndices) {
        // Skip non-leaf subregisters.
        if (!Idx2.getComposites().empty())
          continue;
        // Replicate the behaviour from the lane mask generation loop above.
        unsigned SrcBit = NextBit;
        LaneBitmask SrcMask = LaneBitmask::getLane(SrcBit);
        if (NextBit < LaneBitmask::BitWidth-1)
          ++NextBit;
        assert(Idx2.LaneMask == SrcMask);

        // Get the composed subregister if there is any.
        auto C = Composites.find(&Idx2);
        if (C == Composites.end())
          continue;
        const CodeGenSubRegIndex *Composite = C->second;
        // The Composed subreg should be a leaf subreg too
        assert(Composite->getComposites().empty());

        // Create Mask+Rotate operation and merge with existing ops if possible.
        unsigned DstBit = Composite->LaneMask.getHighestLane();
        int Shift = DstBit - SrcBit;
        uint8_t RotateLeft = Shift >= 0 ? (uint8_t)Shift
                                        : LaneBitmask::BitWidth + Shift;
        for (auto &I : LaneTransforms) {
          if (I.RotateLeft == RotateLeft) {
            I.Mask |= SrcMask;
            SrcMask = LaneBitmask::getNone();
          }
        }
        if (SrcMask.any()) {
          MaskRolPair MaskRol = { SrcMask, RotateLeft };
          LaneTransforms.push_back(MaskRol);
        }
      }
    }

    // Optimize if the transformation consists of one step only: Set mask to
    // 0xffffffff (including some irrelevant invalid bits) so that it should
    // merge with more entries later while compressing the table.
    if (LaneTransforms.size() == 1)
      LaneTransforms[0].Mask = LaneBitmask::getAll();

    // Further compression optimization: For invalid compositions resulting
    // in a sequence with 0 entries we can just pick any other. Choose
    // Mask 0xffffffff with Rotation 0.
    if (LaneTransforms.size() == 0) {
      MaskRolPair P = { LaneBitmask::getAll(), 0 };
      LaneTransforms.push_back(P);
    }
  }

  // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
  // by the sub-register graph? This doesn't occur in any known targets.

  // Inherit lanes from composites.
  for (const auto &Idx : SubRegIndices) {
    LaneBitmask Mask = Idx.computeLaneMask();
    // If some super-registers without CoveredBySubRegs use this index, we can
    // no longer assume that the lanes are covering their registers.
    if (!Idx.AllSuperRegsCovered)
      CoveringLanes &= ~Mask;
  }

  // Compute lane mask combinations for register classes.
  for (auto &RegClass : RegClasses) {
    LaneBitmask LaneMask;
    for (const auto &SubRegIndex : SubRegIndices) {
      if (RegClass.getSubClassWithSubReg(&SubRegIndex) == nullptr)
        continue;
      LaneMask |= SubRegIndex.LaneMask;
    }

    // For classes without any subregisters set LaneMask to 1 instead of 0.
    // This makes it easier for client code to handle classes uniformly.
    if (LaneMask.none())
      LaneMask = LaneBitmask::getLane(0);

    RegClass.LaneMask = LaneMask;
  }
}

namespace {

// UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
// the transitive closure of the union of overlapping register
// classes. Together, the UberRegSets form a partition of the registers. If we
// consider overlapping register classes to be connected, then each UberRegSet
// is a set of connected components.
//
// An UberRegSet will likely be a horizontal slice of register names of
// the same width. Nontrivial subregisters should then be in a separate
// UberRegSet. But this property isn't required for valid computation of
// register unit weights.
//
// A Weight field caches the max per-register unit weight in each UberRegSet.
//
// A set of SingularDeterminants flags single units of some register in this set
// for which the unit weight equals the set weight. These units should not have
// their weight increased.
struct UberRegSet {
  CodeGenRegister::Vec Regs;
  unsigned Weight = 0;
  CodeGenRegister::RegUnitList SingularDeterminants;

  UberRegSet() = default;
};

} // end anonymous namespace

// Partition registers into UberRegSets, where each set is the transitive
// closure of the union of overlapping register classes.
//
// UberRegSets[0] is a special non-allocatable set.
static void computeUberSets(std::vector<UberRegSet> &UberSets,
                            std::vector<UberRegSet*> &RegSets,
                            CodeGenRegBank &RegBank) {
  const auto &Registers = RegBank.getRegisters();

  // The Register EnumValue is one greater than its index into Registers.
  assert(Registers.size() == Registers.back().EnumValue &&
         "register enum value mismatch");

  // For simplicitly make the SetID the same as EnumValue.
  IntEqClasses UberSetIDs(Registers.size()+1);
  std::set<unsigned> AllocatableRegs;
  for (auto &RegClass : RegBank.getRegClasses()) {
    if (!RegClass.Allocatable)
      continue;

    const CodeGenRegister::Vec &Regs = RegClass.getMembers();
    if (Regs.empty())
      continue;

    unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
    assert(USetID && "register number 0 is invalid");

    AllocatableRegs.insert((*Regs.begin())->EnumValue);
    for (auto I = std::next(Regs.begin()), E = Regs.end(); I != E; ++I) {
      AllocatableRegs.insert((*I)->EnumValue);
      UberSetIDs.join(USetID, (*I)->EnumValue);
    }
  }
  // Combine non-allocatable regs.
  for (const auto &Reg : Registers) {
    unsigned RegNum = Reg.EnumValue;
    if (AllocatableRegs.count(RegNum))
      continue;

    UberSetIDs.join(0, RegNum);
  }
  UberSetIDs.compress();

  // Make the first UberSet a special unallocatable set.
  unsigned ZeroID = UberSetIDs[0];

  // Insert Registers into the UberSets formed by union-find.
  // Do not resize after this.
  UberSets.resize(UberSetIDs.getNumClasses());
  unsigned i = 0;
  for (const CodeGenRegister &Reg : Registers) {
    unsigned USetID = UberSetIDs[Reg.EnumValue];
    if (!USetID)
      USetID = ZeroID;
    else if (USetID == ZeroID)
      USetID = 0;

    UberRegSet *USet = &UberSets[USetID];
    USet->Regs.push_back(&Reg);
    sortAndUniqueRegisters(USet->Regs);
    RegSets[i++] = USet;
  }
}

// Recompute each UberSet weight after changing unit weights.
static void computeUberWeights(std::vector<UberRegSet> &UberSets,
                               CodeGenRegBank &RegBank) {
  // Skip the first unallocatable set.
  for (std::vector<UberRegSet>::iterator I = std::next(UberSets.begin()),
         E = UberSets.end(); I != E; ++I) {

    // Initialize all unit weights in this set, and remember the max units/reg.
    const CodeGenRegister *Reg = nullptr;
    unsigned MaxWeight = 0, Weight = 0;
    for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
      if (Reg != UnitI.getReg()) {
        if (Weight > MaxWeight)
          MaxWeight = Weight;
        Reg = UnitI.getReg();
        Weight = 0;
      }
      if (!RegBank.getRegUnit(*UnitI).Artificial) {
        unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
        if (!UWeight) {
          UWeight = 1;
          RegBank.increaseRegUnitWeight(*UnitI, UWeight);
        }
        Weight += UWeight;
      }
    }
    if (Weight > MaxWeight)
      MaxWeight = Weight;
    if (I->Weight != MaxWeight) {
      LLVM_DEBUG(dbgs() << "UberSet " << I - UberSets.begin() << " Weight "
                        << MaxWeight;
                 for (auto &Unit
                      : I->Regs) dbgs()
                 << " " << Unit->getName();
                 dbgs() << "\n");
      // Update the set weight.
      I->Weight = MaxWeight;
    }

    // Find singular determinants.
    for (const auto R : I->Regs) {
      if (R->getRegUnits().count() == 1 && R->getWeight(RegBank) == I->Weight) {
        I->SingularDeterminants |= R->getRegUnits();
      }
    }
  }
}

// normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
// a register and its subregisters so that they have the same weight as their
// UberSet. Self-recursion processes the subregister tree in postorder so
// subregisters are normalized first.
//
// Side effects:
// - creates new adopted register units
// - causes superregisters to inherit adopted units
// - increases the weight of "singular" units
// - induces recomputation of UberWeights.
static bool normalizeWeight(CodeGenRegister *Reg,
                            std::vector<UberRegSet> &UberSets,
                            std::vector<UberRegSet*> &RegSets,
                            BitVector &NormalRegs,
                            CodeGenRegister::RegUnitList &NormalUnits,
                            CodeGenRegBank &RegBank) {
  NormalRegs.resize(std::max(Reg->EnumValue + 1, NormalRegs.size()));
  if (NormalRegs.test(Reg->EnumValue))
    return false;
  NormalRegs.set(Reg->EnumValue);

  bool Changed = false;
  const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
  for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
         SRE = SRM.end(); SRI != SRE; ++SRI) {
    if (SRI->second == Reg)
      continue; // self-cycles happen

    Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
                               NormalRegs, NormalUnits, RegBank);
  }
  // Postorder register normalization.

  // Inherit register units newly adopted by subregisters.
  if (Reg->inheritRegUnits(RegBank))
    computeUberWeights(UberSets, RegBank);

  // Check if this register is too skinny for its UberRegSet.
  UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];

  unsigned RegWeight = Reg->getWeight(RegBank);
  if (UberSet->Weight > RegWeight) {
    // A register unit's weight can be adjusted only if it is the singular unit
    // for this register, has not been used to normalize a subregister's set,
    // and has not already been used to singularly determine this UberRegSet.
    unsigned AdjustUnit = *Reg->getRegUnits().begin();
    if (Reg->getRegUnits().count() != 1
        || hasRegUnit(NormalUnits, AdjustUnit)
        || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
      // We don't have an adjustable unit, so adopt a new one.
      AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
      Reg->adoptRegUnit(AdjustUnit);
      // Adopting a unit does not immediately require recomputing set weights.
    }
    else {
      // Adjust the existing single unit.
      if (!RegBank.getRegUnit(AdjustUnit).Artificial)
        RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
      // The unit may be shared among sets and registers within this set.
      computeUberWeights(UberSets, RegBank);
    }
    Changed = true;
  }

  // Mark these units normalized so superregisters can't change their weights.
  NormalUnits |= Reg->getRegUnits();

  return Changed;
}

// Compute a weight for each register unit created during getSubRegs.
//
// The goal is that two registers in the same class will have the same weight,
// where each register's weight is defined as sum of its units' weights.
void CodeGenRegBank::computeRegUnitWeights() {
  std::vector<UberRegSet> UberSets;
  std::vector<UberRegSet*> RegSets(Registers.size());
  computeUberSets(UberSets, RegSets, *this);
  // UberSets and RegSets are now immutable.

  computeUberWeights(UberSets, *this);

  // Iterate over each Register, normalizing the unit weights until reaching
  // a fix point.
  unsigned NumIters = 0;
  for (bool Changed = true; Changed; ++NumIters) {
    assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
    Changed = false;
    for (auto &Reg : Registers) {
      CodeGenRegister::RegUnitList NormalUnits;
      BitVector NormalRegs;
      Changed |= normalizeWeight(&Reg, UberSets, RegSets, NormalRegs,
                                 NormalUnits, *this);
    }
  }
}

// Find a set in UniqueSets with the same elements as Set.
// Return an iterator into UniqueSets.
static std::vector<RegUnitSet>::const_iterator
findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
               const RegUnitSet &Set) {
  std::vector<RegUnitSet>::const_iterator
    I = UniqueSets.begin(), E = UniqueSets.end();
  for(;I != E; ++I) {
    if (I->Units == Set.Units)
      break;
  }
  return I;
}

// Return true if the RUSubSet is a subset of RUSuperSet.
static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
                            const std::vector<unsigned> &RUSuperSet) {
  return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
                       RUSubSet.begin(), RUSubSet.end());
}

/// Iteratively prune unit sets. Prune subsets that are close to the superset,
/// but with one or two registers removed. We occasionally have registers like
/// APSR and PC thrown in with the general registers. We also see many
/// special-purpose register subsets, such as tail-call and Thumb
/// encodings. Generating all possible overlapping sets is combinatorial and
/// overkill for modeling pressure. Ideally we could fix this statically in
/// tablegen by (1) having the target define register classes that only include
/// the allocatable registers and marking other classes as non-allocatable and
/// (2) having a way to mark special purpose classes as "don't-care" classes for
/// the purpose of pressure.  However, we make an attempt to handle targets that
/// are not nicely defined by merging nearly identical register unit sets
/// statically. This generates smaller tables. Then, dynamically, we adjust the
/// set limit by filtering the reserved registers.
///
/// Merge sets only if the units have the same weight. For example, on ARM,
/// Q-tuples with ssub index 0 include all S regs but also include D16+. We
/// should not expand the S set to include D regs.
void CodeGenRegBank::pruneUnitSets() {
  assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");

  // Form an equivalence class of UnitSets with no significant difference.
  std::vector<unsigned> SuperSetIDs;
  for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
       SubIdx != EndIdx; ++SubIdx) {
    const RegUnitSet &SubSet = RegUnitSets[SubIdx];
    unsigned SuperIdx = 0;
    for (; SuperIdx != EndIdx; ++SuperIdx) {
      if (SuperIdx == SubIdx)
        continue;

      unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight;
      const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
      if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
          && (SubSet.Units.size() + 3 > SuperSet.Units.size())
          && UnitWeight == RegUnits[SuperSet.Units[0]].Weight
          && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) {
        LLVM_DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx
                          << "\n");
        // We can pick any of the set names for the merged set. Go for the
        // shortest one to avoid picking the name of one of the classes that are
        // artificially created by tablegen. So "FPR128_lo" instead of
        // "QQQQ_with_qsub3_in_FPR128_lo".
        if (RegUnitSets[SubIdx].Name.size() < RegUnitSets[SuperIdx].Name.size())
          RegUnitSets[SuperIdx].Name = RegUnitSets[SubIdx].Name;
        break;
      }
    }
    if (SuperIdx == EndIdx)
      SuperSetIDs.push_back(SubIdx);
  }
  // Populate PrunedUnitSets with each equivalence class's superset.
  std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
  for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
    unsigned SuperIdx = SuperSetIDs[i];
    PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
    PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
  }
  RegUnitSets.swap(PrunedUnitSets);
}

// Create a RegUnitSet for each RegClass that contains all units in the class
// including adopted units that are necessary to model register pressure. Then
// iteratively compute RegUnitSets such that the union of any two overlapping
// RegUnitSets is repreresented.
//
// RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
// RegUnitSet that is a superset of that RegUnitClass.
void CodeGenRegBank::computeRegUnitSets() {
  assert(RegUnitSets.empty() && "dirty RegUnitSets");

  // Compute a unique RegUnitSet for each RegClass.
  auto &RegClasses = getRegClasses();
  for (auto &RC : RegClasses) {
    if (!RC.Allocatable || RC.Artificial || !RC.GeneratePressureSet)
      continue;

    // Speculatively grow the RegUnitSets to hold the new set.
    RegUnitSets.resize(RegUnitSets.size() + 1);
    RegUnitSets.back().Name = RC.getName();

    // Compute a sorted list of units in this class.
    RC.buildRegUnitSet(*this, RegUnitSets.back().Units);

    // Find an existing RegUnitSet.
    std::vector<RegUnitSet>::const_iterator SetI =
      findRegUnitSet(RegUnitSets, RegUnitSets.back());
    if (SetI != std::prev(RegUnitSets.end()))
      RegUnitSets.pop_back();
  }

  LLVM_DEBUG(dbgs() << "\nBefore pruning:\n"; for (unsigned USIdx = 0,
                                                   USEnd = RegUnitSets.size();
                                                   USIdx < USEnd; ++USIdx) {
    dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
    for (auto &U : RegUnitSets[USIdx].Units)
      printRegUnitName(U);
    dbgs() << "\n";
  });

  // Iteratively prune unit sets.
  pruneUnitSets();

  LLVM_DEBUG(dbgs() << "\nBefore union:\n"; for (unsigned USIdx = 0,
                                                 USEnd = RegUnitSets.size();
                                                 USIdx < USEnd; ++USIdx) {
    dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
    for (auto &U : RegUnitSets[USIdx].Units)
      printRegUnitName(U);
    dbgs() << "\n";
  } dbgs() << "\nUnion sets:\n");

  // Iterate over all unit sets, including new ones added by this loop.
  unsigned NumRegUnitSubSets = RegUnitSets.size();
  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
    // In theory, this is combinatorial. In practice, it needs to be bounded
    // by a small number of sets for regpressure to be efficient.
    // If the assert is hit, we need to implement pruning.
    assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");

    // Compare new sets with all original classes.
    for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
         SearchIdx != EndIdx; ++SearchIdx) {
      std::set<unsigned> Intersection;
      std::set_intersection(RegUnitSets[Idx].Units.begin(),
                            RegUnitSets[Idx].Units.end(),
                            RegUnitSets[SearchIdx].Units.begin(),
                            RegUnitSets[SearchIdx].Units.end(),
                            std::inserter(Intersection, Intersection.begin()));
      if (Intersection.empty())
        continue;

      // Speculatively grow the RegUnitSets to hold the new set.
      RegUnitSets.resize(RegUnitSets.size() + 1);
      RegUnitSets.back().Name =
        RegUnitSets[Idx].Name + "_with_" + RegUnitSets[SearchIdx].Name;

      std::set_union(RegUnitSets[Idx].Units.begin(),
                     RegUnitSets[Idx].Units.end(),
                     RegUnitSets[SearchIdx].Units.begin(),
                     RegUnitSets[SearchIdx].Units.end(),
                     std::inserter(RegUnitSets.back().Units,
                                   RegUnitSets.back().Units.begin()));

      // Find an existing RegUnitSet, or add the union to the unique sets.
      std::vector<RegUnitSet>::const_iterator SetI =
        findRegUnitSet(RegUnitSets, RegUnitSets.back());
      if (SetI != std::prev(RegUnitSets.end()))
        RegUnitSets.pop_back();
      else {
        LLVM_DEBUG(dbgs() << "UnitSet " << RegUnitSets.size() - 1 << " "
                          << RegUnitSets.back().Name << ":";
                   for (auto &U
                        : RegUnitSets.back().Units) printRegUnitName(U);
                   dbgs() << "\n";);
      }
    }
  }

  // Iteratively prune unit sets after inferring supersets.
  pruneUnitSets();

  LLVM_DEBUG(
      dbgs() << "\n"; for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
                           USIdx < USEnd; ++USIdx) {
        dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name << ":";
        for (auto &U : RegUnitSets[USIdx].Units)
          printRegUnitName(U);
        dbgs() << "\n";
      });

  // For each register class, list the UnitSets that are supersets.
  RegClassUnitSets.resize(RegClasses.size());
  int RCIdx = -1;
  for (auto &RC : RegClasses) {
    ++RCIdx;
    if (!RC.Allocatable)
      continue;

    // Recompute the sorted list of units in this class.
    std::vector<unsigned> RCRegUnits;
    RC.buildRegUnitSet(*this, RCRegUnits);

    // Don't increase pressure for unallocatable regclasses.
    if (RCRegUnits.empty())
      continue;

    LLVM_DEBUG(dbgs() << "RC " << RC.getName() << " Units: \n";
               for (auto U
                    : RCRegUnits) printRegUnitName(U);
               dbgs() << "\n  UnitSetIDs:");

    // Find all supersets.
    for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
         USIdx != USEnd; ++USIdx) {
      if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) {
        LLVM_DEBUG(dbgs() << " " << USIdx);
        RegClassUnitSets[RCIdx].push_back(USIdx);
      }
    }
    LLVM_DEBUG(dbgs() << "\n");
    assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
  }

  // For each register unit, ensure that we have the list of UnitSets that
  // contain the unit. Normally, this matches an existing list of UnitSets for a
  // register class. If not, we create a new entry in RegClassUnitSets as a
  // "fake" register class.
  for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
       UnitIdx < UnitEnd; ++UnitIdx) {
    std::vector<unsigned> RUSets;
    for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
      RegUnitSet &RUSet = RegUnitSets[i];
      if (!is_contained(RUSet.Units, UnitIdx))
        continue;
      RUSets.push_back(i);
    }
    unsigned RCUnitSetsIdx = 0;
    for (unsigned e = RegClassUnitSets.size();
         RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
      if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
        break;
      }
    }
    RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
    if (RCUnitSetsIdx == RegClassUnitSets.size()) {
      // Create a new list of UnitSets as a "fake" register class.
      RegClassUnitSets.resize(RCUnitSetsIdx + 1);
      RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
    }
  }
}

void CodeGenRegBank::computeRegUnitLaneMasks() {
  for (auto &Register : Registers) {
    // Create an initial lane mask for all register units.
    const auto &RegUnits = Register.getRegUnits();
    CodeGenRegister::RegUnitLaneMaskList
        RegUnitLaneMasks(RegUnits.count(), LaneBitmask::getNone());
    // Iterate through SubRegisters.
    typedef CodeGenRegister::SubRegMap SubRegMap;
    const SubRegMap &SubRegs = Register.getSubRegs();
    for (SubRegMap::const_iterator S = SubRegs.begin(),
         SE = SubRegs.end(); S != SE; ++S) {
      CodeGenRegister *SubReg = S->second;
      // Ignore non-leaf subregisters, their lane masks are fully covered by
      // the leaf subregisters anyway.
      if (!SubReg->getSubRegs().empty())
        continue;
      CodeGenSubRegIndex *SubRegIndex = S->first;
      const CodeGenRegister *SubRegister = S->second;
      LaneBitmask LaneMask = SubRegIndex->LaneMask;
      // Distribute LaneMask to Register Units touched.
      for (unsigned SUI : SubRegister->getRegUnits()) {
        bool Found = false;
        unsigned u = 0;
        for (unsigned RU : RegUnits) {
          if (SUI == RU) {
            RegUnitLaneMasks[u] |= LaneMask;
            assert(!Found);
            Found = true;
          }
          ++u;
        }
        (void)Found;
        assert(Found);
      }
    }
    Register.setRegUnitLaneMasks(RegUnitLaneMasks);
  }
}

void CodeGenRegBank::computeDerivedInfo() {
  computeComposites();
  computeSubRegLaneMasks();

  // Compute a weight for each register unit created during getSubRegs.
  // This may create adopted register units (with unit # >= NumNativeRegUnits).
  computeRegUnitWeights();

  // Compute a unique set of RegUnitSets. One for each RegClass and inferred
  // supersets for the union of overlapping sets.
  computeRegUnitSets();

  computeRegUnitLaneMasks();

  // Compute register class HasDisjunctSubRegs/CoveredBySubRegs flag.
  for (CodeGenRegisterClass &RC : RegClasses) {
    RC.HasDisjunctSubRegs = false;
    RC.CoveredBySubRegs = true;
    for (const CodeGenRegister *Reg : RC.getMembers()) {
      RC.HasDisjunctSubRegs |= Reg->HasDisjunctSubRegs;
      RC.CoveredBySubRegs &= Reg->CoveredBySubRegs;
    }
  }

  // Get the weight of each set.
  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
    RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units);

  // Find the order of each set.
  RegUnitSetOrder.reserve(RegUnitSets.size());
  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx)
    RegUnitSetOrder.push_back(Idx);

  llvm::stable_sort(RegUnitSetOrder, [this](unsigned ID1, unsigned ID2) {
    return getRegPressureSet(ID1).Units.size() <
           getRegPressureSet(ID2).Units.size();
  });
  for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
    RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx;
  }
}

//
// Synthesize missing register class intersections.
//
// Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
// returns a maximal register class for all X.
//
void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
  assert(!RegClasses.empty());
  // Stash the iterator to the last element so that this loop doesn't visit
  // elements added by the getOrCreateSubClass call within it.
  for (auto I = RegClasses.begin(), E = std::prev(RegClasses.end());
       I != std::next(E); ++I) {
    CodeGenRegisterClass *RC1 = RC;
    CodeGenRegisterClass *RC2 = &*I;
    if (RC1 == RC2)
      continue;

    // Compute the set intersection of RC1 and RC2.
    const CodeGenRegister::Vec &Memb1 = RC1->getMembers();
    const CodeGenRegister::Vec &Memb2 = RC2->getMembers();
    CodeGenRegister::Vec Intersection;
    std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(),
                          Memb2.end(),
                          std::inserter(Intersection, Intersection.begin()),
                          deref<std::less<>>());

    // Skip disjoint class pairs.
    if (Intersection.empty())
      continue;

    // If RC1 and RC2 have different spill sizes or alignments, use the
    // stricter one for sub-classing.  If they are equal, prefer RC1.
    if (RC2->RSI.hasStricterSpillThan(RC1->RSI))
      std::swap(RC1, RC2);

    getOrCreateSubClass(RC1, &Intersection,
                        RC1->getName() + "_and_" + RC2->getName());
  }
}

//
// Synthesize missing sub-classes for getSubClassWithSubReg().
//
// Make sure that the set of registers in RC with a given SubIdx sub-register
// form a register class.  Update RC->SubClassWithSubReg.
//
void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
  // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
  typedef std::map<const CodeGenSubRegIndex *, CodeGenRegister::Vec,
                   deref<std::less<>>>
      SubReg2SetMap;

  // Compute the set of registers supporting each SubRegIndex.
  SubReg2SetMap SRSets;
  for (const auto R : RC->getMembers()) {
    if (R->Artificial)
      continue;
    const CodeGenRegister::SubRegMap &SRM = R->getSubRegs();
    for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
         E = SRM.end(); I != E; ++I) {
      if (!I->first->Artificial)
        SRSets[I->first].push_back(R);
    }
  }

  for (auto I : SRSets)
    sortAndUniqueRegisters(I.second);

  // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
  // numerical order to visit synthetic indices last.
  for (const auto &SubIdx : SubRegIndices) {
    if (SubIdx.Artificial)
      continue;
    SubReg2SetMap::const_iterator I = SRSets.find(&SubIdx);
    // Unsupported SubRegIndex. Skip it.
    if (I == SRSets.end())
      continue;
    // In most cases, all RC registers support the SubRegIndex.
    if (I->second.size() == RC->getMembers().size()) {
      RC->setSubClassWithSubReg(&SubIdx, RC);
      continue;
    }
    // This is a real subset.  See if we have a matching class.
    CodeGenRegisterClass *SubRC =
      getOrCreateSubClass(RC, &I->second,
                          RC->getName() + "_with_" + I->first->getName());
    RC->setSubClassWithSubReg(&SubIdx, SubRC);
  }
}

//
// Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
//
// Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
// has a maximal result for any SubIdx and any X >= FirstSubRegRC.
//

void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
                                                std::list<CodeGenRegisterClass>::iterator FirstSubRegRC) {
  SmallVector<std::pair<const CodeGenRegister*,
                        const CodeGenRegister*>, 16> SSPairs;
  BitVector TopoSigs(getNumTopoSigs());

  // Iterate in SubRegIndex numerical order to visit synthetic indices last.
  for (auto &SubIdx : SubRegIndices) {
    // Skip indexes that aren't fully supported by RC's registers. This was
    // computed by inferSubClassWithSubReg() above which should have been
    // called first.
    if (RC->getSubClassWithSubReg(&SubIdx) != RC)
      continue;

    // Build list of (Super, Sub) pairs for this SubIdx.
    SSPairs.clear();
    TopoSigs.reset();
    for (const auto Super : RC->getMembers()) {
      const CodeGenRegister *Sub = Super->getSubRegs().find(&SubIdx)->second;
      assert(Sub && "Missing sub-register");
      SSPairs.push_back(std::make_pair(Super, Sub));
      TopoSigs.set(Sub->getTopoSig());
    }

    // Iterate over sub-register class candidates.  Ignore classes created by
    // this loop. They will never be useful.
    // Store an iterator to the last element (not end) so that this loop doesn't
    // visit newly inserted elements.
    assert(!RegClasses.empty());
    for (auto I = FirstSubRegRC, E = std::prev(RegClasses.end());
         I != std::next(E); ++I) {
      CodeGenRegisterClass &SubRC = *I;
      if (SubRC.Artificial)
        continue;
      // Topological shortcut: SubRC members have the wrong shape.
      if (!TopoSigs.anyCommon(SubRC.getTopoSigs()))
        continue;
      // Compute the subset of RC that maps into SubRC.
      CodeGenRegister::Vec SubSetVec;
      for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
        if (SubRC.contains(SSPairs[i].second))
          SubSetVec.push_back(SSPairs[i].first);

      if (SubSetVec.empty())
        continue;

      // RC injects completely into SubRC.
      sortAndUniqueRegisters(SubSetVec);
      if (SubSetVec.size() == SSPairs.size()) {
        SubRC.addSuperRegClass(&SubIdx, RC);
        continue;
      }

      // Only a subset of RC maps into SubRC. Make sure it is represented by a
      // class.
      getOrCreateSubClass(RC, &SubSetVec, RC->getName() + "_with_" +
                                          SubIdx.getName() + "_in_" +
                                          SubRC.getName());
    }
  }
}

//
// Infer missing register classes.
//
void CodeGenRegBank::computeInferredRegisterClasses() {
  assert(!RegClasses.empty());
  // When this function is called, the register classes have not been sorted
  // and assigned EnumValues yet.  That means getSubClasses(),
  // getSuperClasses(), and hasSubClass() functions are defunct.

  // Use one-before-the-end so it doesn't move forward when new elements are
  // added.
  auto FirstNewRC = std::prev(RegClasses.end());

  // Visit all register classes, including the ones being added by the loop.
  // Watch out for iterator invalidation here.
  for (auto I = RegClasses.begin(), E = RegClasses.end(); I != E; ++I) {
    CodeGenRegisterClass *RC = &*I;
    if (RC->Artificial)
      continue;

    // Synthesize answers for getSubClassWithSubReg().
    inferSubClassWithSubReg(RC);

    // Synthesize answers for getCommonSubClass().
    inferCommonSubClass(RC);

    // Synthesize answers for getMatchingSuperRegClass().
    inferMatchingSuperRegClass(RC);

    // New register classes are created while this loop is running, and we need
    // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
    // to match old super-register classes with sub-register classes created
    // after inferMatchingSuperRegClass was called.  At this point,
    // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
    // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
    if (I == FirstNewRC) {
      auto NextNewRC = std::prev(RegClasses.end());
      for (auto I2 = RegClasses.begin(), E2 = std::next(FirstNewRC); I2 != E2;
           ++I2)
        inferMatchingSuperRegClass(&*I2, E2);
      FirstNewRC = NextNewRC;
    }
  }
}

/// getRegisterClassForRegister - Find the register class that contains the
/// specified physical register.  If the register is not in a register class,
/// return null. If the register is in multiple classes, and the classes have a
/// superset-subset relationship and the same set of types, return the
/// superclass.  Otherwise return null.
const CodeGenRegisterClass*
CodeGenRegBank::getRegClassForRegister(Record *R) {
  const CodeGenRegister *Reg = getReg(R);
  const CodeGenRegisterClass *FoundRC = nullptr;
  for (const auto &RC : getRegClasses()) {
    if (!RC.contains(Reg))
      continue;

    // If this is the first class that contains the register,
    // make a note of it and go on to the next class.
    if (!FoundRC) {
      FoundRC = &RC;
      continue;
    }

    // If a register's classes have different types, return null.
    if (RC.getValueTypes() != FoundRC->getValueTypes())
      return nullptr;

    // Check to see if the previously found class that contains
    // the register is a subclass of the current class. If so,
    // prefer the superclass.
    if (RC.hasSubClass(FoundRC)) {
      FoundRC = &RC;
      continue;
    }

    // Check to see if the previously found class that contains
    // the register is a superclass of the current class. If so,
    // prefer the superclass.
    if (FoundRC->hasSubClass(&RC))
      continue;

    // Multiple classes, and neither is a superclass of the other.
    // Return null.
    return nullptr;
  }
  return FoundRC;
}

const CodeGenRegisterClass *
CodeGenRegBank::getMinimalPhysRegClass(Record *RegRecord,
                                       ValueTypeByHwMode *VT) {
  const CodeGenRegister *Reg = getReg(RegRecord);
  const CodeGenRegisterClass *BestRC = nullptr;
  for (const auto &RC : getRegClasses()) {
    if ((!VT || RC.hasType(*VT)) &&
        RC.contains(Reg) && (!BestRC || BestRC->hasSubClass(&RC)))
      BestRC = &RC;
  }

  assert(BestRC && "Couldn't find the register class");
  return BestRC;
}

BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
  SetVector<const CodeGenRegister*> Set;

  // First add Regs with all sub-registers.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    CodeGenRegister *Reg = getReg(Regs[i]);
    if (Set.insert(Reg))
      // Reg is new, add all sub-registers.
      // The pre-ordering is not important here.
      Reg->addSubRegsPreOrder(Set, *this);
  }

  // Second, find all super-registers that are completely covered by the set.
  for (unsigned i = 0; i != Set.size(); ++i) {
    const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
    for (unsigned j = 0, e = SR.size(); j != e; ++j) {
      const CodeGenRegister *Super = SR[j];
      if (!Super->CoveredBySubRegs || Set.count(Super))
        continue;
      // This new super-register is covered by its sub-registers.
      bool AllSubsInSet = true;
      const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
      for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
             E = SRM.end(); I != E; ++I)
        if (!Set.count(I->second)) {
          AllSubsInSet = false;
          break;
        }
      // All sub-registers in Set, add Super as well.
      // We will visit Super later to recheck its super-registers.
      if (AllSubsInSet)
        Set.insert(Super);
    }
  }

  // Convert to BitVector.
  BitVector BV(Registers.size() + 1);
  for (unsigned i = 0, e = Set.size(); i != e; ++i)
    BV.set(Set[i]->EnumValue);
  return BV;
}

void CodeGenRegBank::printRegUnitName(unsigned Unit) const {
  if (Unit < NumNativeRegUnits)
    dbgs() << ' ' << RegUnits[Unit].Roots[0]->getName();
  else
    dbgs() << " #" << Unit;
}