CodeGenDAGPatterns.h 47.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the CodeGenDAGPatterns class, which is used to read and
// represent the patterns present in a .td file for instructions.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
#define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H

#include "CodeGenIntrinsics.h"
#include "CodeGenTarget.h"
#include "SDNodeProperties.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <array>
#include <functional>
#include <map>
#include <numeric>
#include <set>
#include <vector>

namespace llvm {

class Record;
class Init;
class ListInit;
class DagInit;
class SDNodeInfo;
class TreePattern;
class TreePatternNode;
class CodeGenDAGPatterns;

/// Shared pointer for TreePatternNode.
using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;

/// This represents a set of MVTs. Since the underlying type for the MVT
/// is uint8_t, there are at most 256 values. To reduce the number of memory
/// allocations and deallocations, represent the set as a sequence of bits.
/// To reduce the allocations even further, make MachineValueTypeSet own
/// the storage and use std::array as the bit container.
struct MachineValueTypeSet {
  static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
                             uint8_t>::value,
                "Change uint8_t here to the SimpleValueType's type");
  static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
  using WordType = uint64_t;
  static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
  static unsigned constexpr NumWords = Capacity/WordWidth;
  static_assert(NumWords*WordWidth == Capacity,
                "Capacity should be a multiple of WordWidth");

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  MachineValueTypeSet() {
    clear();
  }

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  unsigned size() const {
    unsigned Count = 0;
    for (WordType W : Words)
      Count += countPopulation(W);
    return Count;
  }
  LLVM_ATTRIBUTE_ALWAYS_INLINE
  void clear() {
    std::memset(Words.data(), 0, NumWords*sizeof(WordType));
  }
  LLVM_ATTRIBUTE_ALWAYS_INLINE
  bool empty() const {
    for (WordType W : Words)
      if (W != 0)
        return false;
    return true;
  }
  LLVM_ATTRIBUTE_ALWAYS_INLINE
  unsigned count(MVT T) const {
    return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
  }
  std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
    bool V = count(T.SimpleTy);
    Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
    return {*this, V};
  }
  MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
    for (unsigned i = 0; i != NumWords; ++i)
      Words[i] |= S.Words[i];
    return *this;
  }
  LLVM_ATTRIBUTE_ALWAYS_INLINE
  void erase(MVT T) {
    Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
  }

  struct const_iterator {
    // Some implementations of the C++ library require these traits to be
    // defined.
    using iterator_category = std::forward_iterator_tag;
    using value_type = MVT;
    using difference_type = ptrdiff_t;
    using pointer = const MVT*;
    using reference = const MVT&;

    LLVM_ATTRIBUTE_ALWAYS_INLINE
    MVT operator*() const {
      assert(Pos != Capacity);
      return MVT::SimpleValueType(Pos);
    }
    LLVM_ATTRIBUTE_ALWAYS_INLINE
    const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
      Pos = End ? Capacity : find_from_pos(0);
    }
    LLVM_ATTRIBUTE_ALWAYS_INLINE
    const_iterator &operator++() {
      assert(Pos != Capacity);
      Pos = find_from_pos(Pos+1);
      return *this;
    }

    LLVM_ATTRIBUTE_ALWAYS_INLINE
    bool operator==(const const_iterator &It) const {
      return Set == It.Set && Pos == It.Pos;
    }
    LLVM_ATTRIBUTE_ALWAYS_INLINE
    bool operator!=(const const_iterator &It) const {
      return !operator==(It);
    }

  private:
    unsigned find_from_pos(unsigned P) const {
      unsigned SkipWords = P / WordWidth;
      unsigned SkipBits = P % WordWidth;
      unsigned Count = SkipWords * WordWidth;

      // If P is in the middle of a word, process it manually here, because
      // the trailing bits need to be masked off to use findFirstSet.
      if (SkipBits != 0) {
        WordType W = Set->Words[SkipWords];
        W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
        if (W != 0)
          return Count + findFirstSet(W);
        Count += WordWidth;
        SkipWords++;
      }

      for (unsigned i = SkipWords; i != NumWords; ++i) {
        WordType W = Set->Words[i];
        if (W != 0)
          return Count + findFirstSet(W);
        Count += WordWidth;
      }
      return Capacity;
    }

    const MachineValueTypeSet *Set;
    unsigned Pos;
  };

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  const_iterator begin() const { return const_iterator(this, false); }
  LLVM_ATTRIBUTE_ALWAYS_INLINE
  const_iterator end()   const { return const_iterator(this, true); }

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  bool operator==(const MachineValueTypeSet &S) const {
    return Words == S.Words;
  }
  LLVM_ATTRIBUTE_ALWAYS_INLINE
  bool operator!=(const MachineValueTypeSet &S) const {
    return !operator==(S);
  }

private:
  friend struct const_iterator;
  std::array<WordType,NumWords> Words;
};

struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
  using SetType = MachineValueTypeSet;
  SmallVector<unsigned, 16> AddrSpaces;

  TypeSetByHwMode() = default;
  TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
  TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default;
  TypeSetByHwMode(MVT::SimpleValueType VT)
    : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
  TypeSetByHwMode(ValueTypeByHwMode VT)
    : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
  TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);

  SetType &getOrCreate(unsigned Mode) {
    if (hasMode(Mode))
      return get(Mode);
    return Map.insert({Mode,SetType()}).first->second;
  }

  bool isValueTypeByHwMode(bool AllowEmpty) const;
  ValueTypeByHwMode getValueTypeByHwMode() const;

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  bool isMachineValueType() const {
    return isDefaultOnly() && Map.begin()->second.size() == 1;
  }

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  MVT getMachineValueType() const {
    assert(isMachineValueType());
    return *Map.begin()->second.begin();
  }

  bool isPossible() const;

  LLVM_ATTRIBUTE_ALWAYS_INLINE
  bool isDefaultOnly() const {
    return Map.size() == 1 && Map.begin()->first == DefaultMode;
  }

  bool isPointer() const {
    return getValueTypeByHwMode().isPointer();
  }

  unsigned getPtrAddrSpace() const {
    assert(isPointer());
    return getValueTypeByHwMode().PtrAddrSpace;
  }

  bool insert(const ValueTypeByHwMode &VVT);
  bool constrain(const TypeSetByHwMode &VTS);
  template <typename Predicate> bool constrain(Predicate P);
  template <typename Predicate>
  bool assign_if(const TypeSetByHwMode &VTS, Predicate P);

  void writeToStream(raw_ostream &OS) const;
  static void writeToStream(const SetType &S, raw_ostream &OS);

  bool operator==(const TypeSetByHwMode &VTS) const;
  bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }

  void dump() const;
  bool validate() const;

private:
  unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
  /// Intersect two sets. Return true if anything has changed.
  bool intersect(SetType &Out, const SetType &In);
};

raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);

struct TypeInfer {
  TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}

  bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
    return VTS.isValueTypeByHwMode(AllowEmpty);
  }
  ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
                                bool AllowEmpty) const {
    assert(VTS.isValueTypeByHwMode(AllowEmpty));
    return VTS.getValueTypeByHwMode();
  }

  /// The protocol in the following functions (Merge*, force*, Enforce*,
  /// expand*) is to return "true" if a change has been made, "false"
  /// otherwise.

  bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
  bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
    return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
  }
  bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
    return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
  }

  /// Reduce the set \p Out to have at most one element for each mode.
  bool forceArbitrary(TypeSetByHwMode &Out);

  /// The following four functions ensure that upon return the set \p Out
  /// will only contain types of the specified kind: integer, floating-point,
  /// scalar, or vector.
  /// If \p Out is empty, all legal types of the specified kind will be added
  /// to it. Otherwise, all types that are not of the specified kind will be
  /// removed from \p Out.
  bool EnforceInteger(TypeSetByHwMode &Out);
  bool EnforceFloatingPoint(TypeSetByHwMode &Out);
  bool EnforceScalar(TypeSetByHwMode &Out);
  bool EnforceVector(TypeSetByHwMode &Out);

  /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
  /// unchanged.
  bool EnforceAny(TypeSetByHwMode &Out);
  /// Make sure that for each type in \p Small, there exists a larger type
  /// in \p Big.
  bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
  /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
  ///    for each type U in \p Elem, U is a scalar type.
  /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
  ///    (vector) type T in \p Vec, such that U is the element type of T.
  bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
  bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
                              const ValueTypeByHwMode &VVT);
  /// Ensure that for each type T in \p Sub, T is a vector type, and there
  /// exists a type U in \p Vec such that U is a vector type with the same
  /// element type as T and at least as many elements as T.
  bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
                                    TypeSetByHwMode &Sub);
  /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
  /// 2. Ensure that for each vector type T in \p V, there exists a vector
  ///    type U in \p W, such that T and U have the same number of elements.
  /// 3. Ensure that for each vector type U in \p W, there exists a vector
  ///    type T in \p V, such that T and U have the same number of elements
  ///    (reverse of 2).
  bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
  /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
  ///    such that T and U have equal size in bits.
  /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
  ///    such that T and U have equal size in bits (reverse of 1).
  bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);

  /// For each overloaded type (i.e. of form *Any), replace it with the
  /// corresponding subset of legal, specific types.
  void expandOverloads(TypeSetByHwMode &VTS);
  void expandOverloads(TypeSetByHwMode::SetType &Out,
                       const TypeSetByHwMode::SetType &Legal);

  struct ValidateOnExit {
    ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
  #ifndef NDEBUG
    ~ValidateOnExit();
  #else
    ~ValidateOnExit() {}  // Empty destructor with NDEBUG.
  #endif
    TypeInfer &Infer;
    TypeSetByHwMode &VTS;
  };

  struct SuppressValidation {
    SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
      Infer.Validate = false;
    }
    ~SuppressValidation() {
      Infer.Validate = SavedValidate;
    }
    TypeInfer &Infer;
    bool SavedValidate;
  };

  TreePattern &TP;
  unsigned ForceMode;     // Mode to use when set.
  bool CodeGen = false;   // Set during generation of matcher code.
  bool Validate = true;   // Indicate whether to validate types.

private:
  const TypeSetByHwMode &getLegalTypes();

  /// Cached legal types (in default mode).
  bool LegalTypesCached = false;
  TypeSetByHwMode LegalCache;
};

/// Set type used to track multiply used variables in patterns
typedef StringSet<> MultipleUseVarSet;

/// SDTypeConstraint - This is a discriminated union of constraints,
/// corresponding to the SDTypeConstraint tablegen class in Target.td.
struct SDTypeConstraint {
  SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);

  unsigned OperandNo;   // The operand # this constraint applies to.
  enum {
    SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
    SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
    SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
  } ConstraintType;

  union {   // The discriminated union.
    struct {
      unsigned OtherOperandNum;
    } SDTCisSameAs_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisVTSmallerThanOp_Info;
    struct {
      unsigned BigOperandNum;
    } SDTCisOpSmallerThanOp_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisEltOfVec_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisSubVecOfVec_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisSameNumEltsAs_Info;
    struct {
      unsigned OtherOperandNum;
    } SDTCisSameSizeAs_Info;
  } x;

  // The VT for SDTCisVT and SDTCVecEltisVT.
  // Must not be in the union because it has a non-trivial destructor.
  ValueTypeByHwMode VVT;

  /// ApplyTypeConstraint - Given a node in a pattern, apply this type
  /// constraint to the nodes operands.  This returns true if it makes a
  /// change, false otherwise.  If a type contradiction is found, an error
  /// is flagged.
  bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
                           TreePattern &TP) const;
};

/// ScopedName - A name of a node associated with a "scope" that indicates
/// the context (e.g. instance of Pattern or PatFrag) in which the name was
/// used. This enables substitution of pattern fragments while keeping track
/// of what name(s) were originally given to various nodes in the tree.
class ScopedName {
  unsigned Scope;
  std::string Identifier;
public:
  ScopedName(unsigned Scope, StringRef Identifier)
      : Scope(Scope), Identifier(std::string(Identifier)) {
    assert(Scope != 0 &&
           "Scope == 0 is used to indicate predicates without arguments");
  }

  unsigned getScope() const { return Scope; }
  const std::string &getIdentifier() const { return Identifier; }

  std::string getFullName() const;

  bool operator==(const ScopedName &o) const;
  bool operator!=(const ScopedName &o) const;
};

/// SDNodeInfo - One of these records is created for each SDNode instance in
/// the target .td file.  This represents the various dag nodes we will be
/// processing.
class SDNodeInfo {
  Record *Def;
  StringRef EnumName;
  StringRef SDClassName;
  unsigned Properties;
  unsigned NumResults;
  int NumOperands;
  std::vector<SDTypeConstraint> TypeConstraints;
public:
  // Parse the specified record.
  SDNodeInfo(Record *R, const CodeGenHwModes &CGH);

  unsigned getNumResults() const { return NumResults; }

  /// getNumOperands - This is the number of operands required or -1 if
  /// variadic.
  int getNumOperands() const { return NumOperands; }
  Record *getRecord() const { return Def; }
  StringRef getEnumName() const { return EnumName; }
  StringRef getSDClassName() const { return SDClassName; }

  const std::vector<SDTypeConstraint> &getTypeConstraints() const {
    return TypeConstraints;
  }

  /// getKnownType - If the type constraints on this node imply a fixed type
  /// (e.g. all stores return void, etc), then return it as an
  /// MVT::SimpleValueType.  Otherwise, return MVT::Other.
  MVT::SimpleValueType getKnownType(unsigned ResNo) const;

  /// hasProperty - Return true if this node has the specified property.
  ///
  bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }

  /// ApplyTypeConstraints - Given a node in a pattern, apply the type
  /// constraints for this node to the operands of the node.  This returns
  /// true if it makes a change, false otherwise.  If a type contradiction is
  /// found, an error is flagged.
  bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
};

/// TreePredicateFn - This is an abstraction that represents the predicates on
/// a PatFrag node.  This is a simple one-word wrapper around a pointer to
/// provide nice accessors.
class TreePredicateFn {
  /// PatFragRec - This is the TreePattern for the PatFrag that we
  /// originally came from.
  TreePattern *PatFragRec;
public:
  /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
  TreePredicateFn(TreePattern *N);


  TreePattern *getOrigPatFragRecord() const { return PatFragRec; }

  /// isAlwaysTrue - Return true if this is a noop predicate.
  bool isAlwaysTrue() const;

  bool isImmediatePattern() const { return hasImmCode(); }

  /// getImmediatePredicateCode - Return the code that evaluates this pattern if
  /// this is an immediate predicate.  It is an error to call this on a
  /// non-immediate pattern.
  std::string getImmediatePredicateCode() const {
    std::string Result = getImmCode();
    assert(!Result.empty() && "Isn't an immediate pattern!");
    return Result;
  }

  bool operator==(const TreePredicateFn &RHS) const {
    return PatFragRec == RHS.PatFragRec;
  }

  bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }

  /// Return the name to use in the generated code to reference this, this is
  /// "Predicate_foo" if from a pattern fragment "foo".
  std::string getFnName() const;

  /// getCodeToRunOnSDNode - Return the code for the function body that
  /// evaluates this predicate.  The argument is expected to be in "Node",
  /// not N.  This handles casting and conversion to a concrete node type as
  /// appropriate.
  std::string getCodeToRunOnSDNode() const;

  /// Get the data type of the argument to getImmediatePredicateCode().
  StringRef getImmType() const;

  /// Get a string that describes the type returned by getImmType() but is
  /// usable as part of an identifier.
  StringRef getImmTypeIdentifier() const;

  // Predicate code uses the PatFrag's captured operands.
  bool usesOperands() const;

  // Is the desired predefined predicate for a load?
  bool isLoad() const;
  // Is the desired predefined predicate for a store?
  bool isStore() const;
  // Is the desired predefined predicate for an atomic?
  bool isAtomic() const;

  /// Is this predicate the predefined unindexed load predicate?
  /// Is this predicate the predefined unindexed store predicate?
  bool isUnindexed() const;
  /// Is this predicate the predefined non-extending load predicate?
  bool isNonExtLoad() const;
  /// Is this predicate the predefined any-extend load predicate?
  bool isAnyExtLoad() const;
  /// Is this predicate the predefined sign-extend load predicate?
  bool isSignExtLoad() const;
  /// Is this predicate the predefined zero-extend load predicate?
  bool isZeroExtLoad() const;
  /// Is this predicate the predefined non-truncating store predicate?
  bool isNonTruncStore() const;
  /// Is this predicate the predefined truncating store predicate?
  bool isTruncStore() const;

  /// Is this predicate the predefined monotonic atomic predicate?
  bool isAtomicOrderingMonotonic() const;
  /// Is this predicate the predefined acquire atomic predicate?
  bool isAtomicOrderingAcquire() const;
  /// Is this predicate the predefined release atomic predicate?
  bool isAtomicOrderingRelease() const;
  /// Is this predicate the predefined acquire-release atomic predicate?
  bool isAtomicOrderingAcquireRelease() const;
  /// Is this predicate the predefined sequentially consistent atomic predicate?
  bool isAtomicOrderingSequentiallyConsistent() const;

  /// Is this predicate the predefined acquire-or-stronger atomic predicate?
  bool isAtomicOrderingAcquireOrStronger() const;
  /// Is this predicate the predefined weaker-than-acquire atomic predicate?
  bool isAtomicOrderingWeakerThanAcquire() const;

  /// Is this predicate the predefined release-or-stronger atomic predicate?
  bool isAtomicOrderingReleaseOrStronger() const;
  /// Is this predicate the predefined weaker-than-release atomic predicate?
  bool isAtomicOrderingWeakerThanRelease() const;

  /// If non-null, indicates that this predicate is a predefined memory VT
  /// predicate for a load/store and returns the ValueType record for the memory VT.
  Record *getMemoryVT() const;
  /// If non-null, indicates that this predicate is a predefined memory VT
  /// predicate (checking only the scalar type) for load/store and returns the
  /// ValueType record for the memory VT.
  Record *getScalarMemoryVT() const;

  ListInit *getAddressSpaces() const;
  int64_t getMinAlignment() const;

  // If true, indicates that GlobalISel-based C++ code was supplied.
  bool hasGISelPredicateCode() const;
  std::string getGISelPredicateCode() const;

private:
  bool hasPredCode() const;
  bool hasImmCode() const;
  std::string getPredCode() const;
  std::string getImmCode() const;
  bool immCodeUsesAPInt() const;
  bool immCodeUsesAPFloat() const;

  bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
};

struct TreePredicateCall {
  TreePredicateFn Fn;

  // Scope -- unique identifier for retrieving named arguments. 0 is used when
  // the predicate does not use named arguments.
  unsigned Scope;

  TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
    : Fn(Fn), Scope(Scope) {}

  bool operator==(const TreePredicateCall &o) const {
    return Fn == o.Fn && Scope == o.Scope;
  }
  bool operator!=(const TreePredicateCall &o) const {
    return !(*this == o);
  }
};

class TreePatternNode {
  /// The type of each node result.  Before and during type inference, each
  /// result may be a set of possible types.  After (successful) type inference,
  /// each is a single concrete type.
  std::vector<TypeSetByHwMode> Types;

  /// The index of each result in results of the pattern.
  std::vector<unsigned> ResultPerm;

  /// Operator - The Record for the operator if this is an interior node (not
  /// a leaf).
  Record *Operator;

  /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
  ///
  Init *Val;

  /// Name - The name given to this node with the :$foo notation.
  ///
  std::string Name;

  std::vector<ScopedName> NamesAsPredicateArg;

  /// PredicateCalls - The predicate functions to execute on this node to check
  /// for a match.  If this list is empty, no predicate is involved.
  std::vector<TreePredicateCall> PredicateCalls;

  /// TransformFn - The transformation function to execute on this node before
  /// it can be substituted into the resulting instruction on a pattern match.
  Record *TransformFn;

  std::vector<TreePatternNodePtr> Children;

public:
  TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
                  unsigned NumResults)
      : Operator(Op), Val(nullptr), TransformFn(nullptr),
        Children(std::move(Ch)) {
    Types.resize(NumResults);
    ResultPerm.resize(NumResults);
    std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
  }
  TreePatternNode(Init *val, unsigned NumResults)    // leaf ctor
    : Operator(nullptr), Val(val), TransformFn(nullptr) {
    Types.resize(NumResults);
    ResultPerm.resize(NumResults);
    std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
  }

  bool hasName() const { return !Name.empty(); }
  const std::string &getName() const { return Name; }
  void setName(StringRef N) { Name.assign(N.begin(), N.end()); }

  const std::vector<ScopedName> &getNamesAsPredicateArg() const {
    return NamesAsPredicateArg;
  }
  void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
    NamesAsPredicateArg = Names;
  }
  void addNameAsPredicateArg(const ScopedName &N) {
    NamesAsPredicateArg.push_back(N);
  }

  bool isLeaf() const { return Val != nullptr; }

  // Type accessors.
  unsigned getNumTypes() const { return Types.size(); }
  ValueTypeByHwMode getType(unsigned ResNo) const {
    return Types[ResNo].getValueTypeByHwMode();
  }
  const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
  const TypeSetByHwMode &getExtType(unsigned ResNo) const {
    return Types[ResNo];
  }
  TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
  void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
  MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
    return Types[ResNo].getMachineValueType().SimpleTy;
  }

  bool hasConcreteType(unsigned ResNo) const {
    return Types[ResNo].isValueTypeByHwMode(false);
  }
  bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
    return Types[ResNo].empty();
  }

  unsigned getNumResults() const { return ResultPerm.size(); }
  unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
  void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }

  Init *getLeafValue() const { assert(isLeaf()); return Val; }
  Record *getOperator() const { assert(!isLeaf()); return Operator; }

  unsigned getNumChildren() const { return Children.size(); }
  TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
  const TreePatternNodePtr &getChildShared(unsigned N) const {
    return Children[N];
  }
  void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }

  /// hasChild - Return true if N is any of our children.
  bool hasChild(const TreePatternNode *N) const {
    for (unsigned i = 0, e = Children.size(); i != e; ++i)
      if (Children[i].get() == N)
        return true;
    return false;
  }

  bool hasProperTypeByHwMode() const;
  bool hasPossibleType() const;
  bool setDefaultMode(unsigned Mode);

  bool hasAnyPredicate() const { return !PredicateCalls.empty(); }

  const std::vector<TreePredicateCall> &getPredicateCalls() const {
    return PredicateCalls;
  }
  void clearPredicateCalls() { PredicateCalls.clear(); }
  void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
    assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
    PredicateCalls = Calls;
  }
  void addPredicateCall(const TreePredicateCall &Call) {
    assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
    assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
    PredicateCalls.push_back(Call);
  }
  void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
    assert((Scope != 0) == Fn.usesOperands());
    addPredicateCall(TreePredicateCall(Fn, Scope));
  }

  Record *getTransformFn() const { return TransformFn; }
  void setTransformFn(Record *Fn) { TransformFn = Fn; }

  /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
  /// CodeGenIntrinsic information for it, otherwise return a null pointer.
  const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;

  /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
  /// return the ComplexPattern information, otherwise return null.
  const ComplexPattern *
  getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;

  /// Returns the number of MachineInstr operands that would be produced by this
  /// node if it mapped directly to an output Instruction's
  /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
  /// for Operands; otherwise 1.
  unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;

  /// NodeHasProperty - Return true if this node has the specified property.
  bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;

  /// TreeHasProperty - Return true if any node in this tree has the specified
  /// property.
  bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;

  /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
  /// marked isCommutative.
  bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;

  void print(raw_ostream &OS) const;
  void dump() const;

public:   // Higher level manipulation routines.

  /// clone - Return a new copy of this tree.
  ///
  TreePatternNodePtr clone() const;

  /// RemoveAllTypes - Recursively strip all the types of this tree.
  void RemoveAllTypes();

  /// isIsomorphicTo - Return true if this node is recursively isomorphic to
  /// the specified node.  For this comparison, all of the state of the node
  /// is considered, except for the assigned name.  Nodes with differing names
  /// that are otherwise identical are considered isomorphic.
  bool isIsomorphicTo(const TreePatternNode *N,
                      const MultipleUseVarSet &DepVars) const;

  /// SubstituteFormalArguments - Replace the formal arguments in this tree
  /// with actual values specified by ArgMap.
  void
  SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);

  /// InlinePatternFragments - If this pattern refers to any pattern
  /// fragments, return the set of inlined versions (this can be more than
  /// one if a PatFrags record has multiple alternatives).
  void InlinePatternFragments(TreePatternNodePtr T,
                              TreePattern &TP,
                              std::vector<TreePatternNodePtr> &OutAlternatives);

  /// ApplyTypeConstraints - Apply all of the type constraints relevant to
  /// this node and its children in the tree.  This returns true if it makes a
  /// change, false otherwise.  If a type contradiction is found, flag an error.
  bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);

  /// UpdateNodeType - Set the node type of N to VT if VT contains
  /// information.  If N already contains a conflicting type, then flag an
  /// error.  This returns true if any information was updated.
  ///
  bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
                      TreePattern &TP);
  bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
                      TreePattern &TP);
  bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
                      TreePattern &TP);

  // Update node type with types inferred from an instruction operand or result
  // def from the ins/outs lists.
  // Return true if the type changed.
  bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);

  /// ContainsUnresolvedType - Return true if this tree contains any
  /// unresolved types.
  bool ContainsUnresolvedType(TreePattern &TP) const;

  /// canPatternMatch - If it is impossible for this pattern to match on this
  /// target, fill in Reason and return false.  Otherwise, return true.
  bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
};

inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
  TPN.print(OS);
  return OS;
}


/// TreePattern - Represent a pattern, used for instructions, pattern
/// fragments, etc.
///
class TreePattern {
  /// Trees - The list of pattern trees which corresponds to this pattern.
  /// Note that PatFrag's only have a single tree.
  ///
  std::vector<TreePatternNodePtr> Trees;

  /// NamedNodes - This is all of the nodes that have names in the trees in this
  /// pattern.
  StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;

  /// TheRecord - The actual TableGen record corresponding to this pattern.
  ///
  Record *TheRecord;

  /// Args - This is a list of all of the arguments to this pattern (for
  /// PatFrag patterns), which are the 'node' markers in this pattern.
  std::vector<std::string> Args;

  /// CDP - the top-level object coordinating this madness.
  ///
  CodeGenDAGPatterns &CDP;

  /// isInputPattern - True if this is an input pattern, something to match.
  /// False if this is an output pattern, something to emit.
  bool isInputPattern;

  /// hasError - True if the currently processed nodes have unresolvable types
  /// or other non-fatal errors
  bool HasError;

  /// It's important that the usage of operands in ComplexPatterns is
  /// consistent: each named operand can be defined by at most one
  /// ComplexPattern. This records the ComplexPattern instance and the operand
  /// number for each operand encountered in a ComplexPattern to aid in that
  /// check.
  StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;

  TypeInfer Infer;

public:

  /// TreePattern constructor - Parse the specified DagInits into the
  /// current record.
  TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
              CodeGenDAGPatterns &ise);
  TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
              CodeGenDAGPatterns &ise);
  TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
              CodeGenDAGPatterns &ise);

  /// getTrees - Return the tree patterns which corresponds to this pattern.
  ///
  const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
  unsigned getNumTrees() const { return Trees.size(); }
  const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
  void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
  const TreePatternNodePtr &getOnlyTree() const {
    assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
    return Trees[0];
  }

  const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
    if (NamedNodes.empty())
      ComputeNamedNodes();
    return NamedNodes;
  }

  /// getRecord - Return the actual TableGen record corresponding to this
  /// pattern.
  ///
  Record *getRecord() const { return TheRecord; }

  unsigned getNumArgs() const { return Args.size(); }
  const std::string &getArgName(unsigned i) const {
    assert(i < Args.size() && "Argument reference out of range!");
    return Args[i];
  }
  std::vector<std::string> &getArgList() { return Args; }

  CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }

  /// InlinePatternFragments - If this pattern refers to any pattern
  /// fragments, inline them into place, giving us a pattern without any
  /// PatFrags references.  This may increase the number of trees in the
  /// pattern if a PatFrags has multiple alternatives.
  void InlinePatternFragments() {
    std::vector<TreePatternNodePtr> Copy = Trees;
    Trees.clear();
    for (unsigned i = 0, e = Copy.size(); i != e; ++i)
      Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
  }

  /// InferAllTypes - Infer/propagate as many types throughout the expression
  /// patterns as possible.  Return true if all types are inferred, false
  /// otherwise.  Bail out if a type contradiction is found.
  bool InferAllTypes(
      const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);

  /// error - If this is the first error in the current resolution step,
  /// print it and set the error flag.  Otherwise, continue silently.
  void error(const Twine &Msg);
  bool hasError() const {
    return HasError;
  }
  void resetError() {
    HasError = false;
  }

  TypeInfer &getInfer() { return Infer; }

  void print(raw_ostream &OS) const;
  void dump() const;

private:
  TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
  void ComputeNamedNodes();
  void ComputeNamedNodes(TreePatternNode *N);
};


inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
                                            const TypeSetByHwMode &InTy,
                                            TreePattern &TP) {
  TypeSetByHwMode VTS(InTy);
  TP.getInfer().expandOverloads(VTS);
  return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
}

inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
                                            MVT::SimpleValueType InTy,
                                            TreePattern &TP) {
  TypeSetByHwMode VTS(InTy);
  TP.getInfer().expandOverloads(VTS);
  return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
}

inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
                                            ValueTypeByHwMode InTy,
                                            TreePattern &TP) {
  TypeSetByHwMode VTS(InTy);
  TP.getInfer().expandOverloads(VTS);
  return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
}


/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
/// that has a set ExecuteAlways / DefaultOps field.
struct DAGDefaultOperand {
  std::vector<TreePatternNodePtr> DefaultOps;
};

class DAGInstruction {
  std::vector<Record*> Results;
  std::vector<Record*> Operands;
  std::vector<Record*> ImpResults;
  TreePatternNodePtr SrcPattern;
  TreePatternNodePtr ResultPattern;

public:
  DAGInstruction(const std::vector<Record*> &results,
                 const std::vector<Record*> &operands,
                 const std::vector<Record*> &impresults,
                 TreePatternNodePtr srcpattern = nullptr,
                 TreePatternNodePtr resultpattern = nullptr)
    : Results(results), Operands(operands), ImpResults(impresults),
      SrcPattern(srcpattern), ResultPattern(resultpattern) {}

  unsigned getNumResults() const { return Results.size(); }
  unsigned getNumOperands() const { return Operands.size(); }
  unsigned getNumImpResults() const { return ImpResults.size(); }
  const std::vector<Record*>& getImpResults() const { return ImpResults; }

  Record *getResult(unsigned RN) const {
    assert(RN < Results.size());
    return Results[RN];
  }

  Record *getOperand(unsigned ON) const {
    assert(ON < Operands.size());
    return Operands[ON];
  }

  Record *getImpResult(unsigned RN) const {
    assert(RN < ImpResults.size());
    return ImpResults[RN];
  }

  TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
  TreePatternNodePtr getResultPattern() const { return ResultPattern; }
};

/// This class represents a condition that has to be satisfied for a pattern
/// to be tried. It is a generalization of a class "Pattern" from Target.td:
/// in addition to the Target.td's predicates, this class can also represent
/// conditions associated with HW modes. Both types will eventually become
/// strings containing C++ code to be executed, the difference is in how
/// these strings are generated.
class Predicate {
public:
  Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) {
    assert(R->isSubClassOf("Predicate") &&
           "Predicate objects should only be created for records derived"
           "from Predicate class");
  }
  Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()),
    IfCond(C), IsHwMode(true) {}

  /// Return a string which contains the C++ condition code that will serve
  /// as a predicate during instruction selection.
  std::string getCondString() const {
    // The string will excute in a subclass of SelectionDAGISel.
    // Cast to std::string explicitly to avoid ambiguity with StringRef.
    std::string C = IsHwMode
                        ? std::string("MF->getSubtarget().checkFeatures(\"" +
                                      Features + "\")")
                        : std::string(Def->getValueAsString("CondString"));
    if (C.empty())
      return "";
    return IfCond ? C : "!("+C+')';
  }

  bool operator==(const Predicate &P) const {
    return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def;
  }
  bool operator<(const Predicate &P) const {
    if (IsHwMode != P.IsHwMode)
      return IsHwMode < P.IsHwMode;
    assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode");
    if (IfCond != P.IfCond)
      return IfCond < P.IfCond;
    if (Def)
      return LessRecord()(Def, P.Def);
    return Features < P.Features;
  }
  Record *Def;            ///< Predicate definition from .td file, null for
                          ///< HW modes.
  std::string Features;   ///< Feature string for HW mode.
  bool IfCond;            ///< The boolean value that the condition has to
                          ///< evaluate to for this predicate to be true.
  bool IsHwMode;          ///< Does this predicate correspond to a HW mode?
};

/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
/// processed to produce isel.
class PatternToMatch {
public:
  PatternToMatch(Record *srcrecord, std::vector<Predicate> preds,
                 TreePatternNodePtr src, TreePatternNodePtr dst,
                 std::vector<Record *> dstregs, int complexity,
                 unsigned uid, unsigned setmode = 0)
      : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
        Predicates(std::move(preds)), Dstregs(std::move(dstregs)),
        AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}

  Record          *SrcRecord;   // Originating Record for the pattern.
  TreePatternNodePtr SrcPattern;      // Source pattern to match.
  TreePatternNodePtr DstPattern;      // Resulting pattern.
  std::vector<Predicate> Predicates;  // Top level predicate conditions
                                      // to match.
  std::vector<Record*> Dstregs; // Physical register defs being matched.
  int              AddedComplexity; // Add to matching pattern complexity.
  unsigned         ID;          // Unique ID for the record.
  unsigned         ForceMode;   // Force this mode in type inference when set.

  Record          *getSrcRecord()  const { return SrcRecord; }
  TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
  TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
  TreePatternNode *getDstPattern() const { return DstPattern.get(); }
  TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
  const std::vector<Record*> &getDstRegs() const { return Dstregs; }
  int         getAddedComplexity() const { return AddedComplexity; }
  const std::vector<Predicate> &getPredicates() const { return Predicates; }

  std::string getPredicateCheck() const;

  /// Compute the complexity metric for the input pattern.  This roughly
  /// corresponds to the number of nodes that are covered.
  int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
};

class CodeGenDAGPatterns {
  RecordKeeper &Records;
  CodeGenTarget Target;
  CodeGenIntrinsicTable Intrinsics;

  std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
  std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
      SDNodeXForms;
  std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
  std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
      PatternFragments;
  std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
  std::map<Record*, DAGInstruction, LessRecordByID> Instructions;

  // Specific SDNode definitions:
  Record *intrinsic_void_sdnode;
  Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;

  /// PatternsToMatch - All of the things we are matching on the DAG.  The first
  /// value is the pattern to match, the second pattern is the result to
  /// emit.
  std::vector<PatternToMatch> PatternsToMatch;

  TypeSetByHwMode LegalVTS;

  using PatternRewriterFn = std::function<void (TreePattern *)>;
  PatternRewriterFn PatternRewriter;

  unsigned NumScopes = 0;

public:
  CodeGenDAGPatterns(RecordKeeper &R,
                     PatternRewriterFn PatternRewriter = nullptr);

  CodeGenTarget &getTargetInfo() { return Target; }
  const CodeGenTarget &getTargetInfo() const { return Target; }
  const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }

  Record *getSDNodeNamed(const std::string &Name) const;

  const SDNodeInfo &getSDNodeInfo(Record *R) const {
    auto F = SDNodes.find(R);
    assert(F != SDNodes.end() && "Unknown node!");
    return F->second;
  }

  // Node transformation lookups.
  typedef std::pair<Record*, std::string> NodeXForm;
  const NodeXForm &getSDNodeTransform(Record *R) const {
    auto F = SDNodeXForms.find(R);
    assert(F != SDNodeXForms.end() && "Invalid transform!");
    return F->second;
  }

  const ComplexPattern &getComplexPattern(Record *R) const {
    auto F = ComplexPatterns.find(R);
    assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
    return F->second;
  }

  const CodeGenIntrinsic &getIntrinsic(Record *R) const {
    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
      if (Intrinsics[i].TheDef == R) return Intrinsics[i];
    llvm_unreachable("Unknown intrinsic!");
  }

  const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
    if (IID-1 < Intrinsics.size())
      return Intrinsics[IID-1];
    llvm_unreachable("Bad intrinsic ID!");
  }

  unsigned getIntrinsicID(Record *R) const {
    for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
      if (Intrinsics[i].TheDef == R) return i;
    llvm_unreachable("Unknown intrinsic!");
  }

  const DAGDefaultOperand &getDefaultOperand(Record *R) const {
    auto F = DefaultOperands.find(R);
    assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
    return F->second;
  }

  // Pattern Fragment information.
  TreePattern *getPatternFragment(Record *R) const {
    auto F = PatternFragments.find(R);
    assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
    return F->second.get();
  }
  TreePattern *getPatternFragmentIfRead(Record *R) const {
    auto F = PatternFragments.find(R);
    if (F == PatternFragments.end())
      return nullptr;
    return F->second.get();
  }

  typedef std::map<Record *, std::unique_ptr<TreePattern>,
                   LessRecordByID>::const_iterator pf_iterator;
  pf_iterator pf_begin() const { return PatternFragments.begin(); }
  pf_iterator pf_end() const { return PatternFragments.end(); }
  iterator_range<pf_iterator> ptfs() const { return PatternFragments; }

  // Patterns to match information.
  typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
  ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
  ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
  iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }

  /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
  typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
  void parseInstructionPattern(
      CodeGenInstruction &CGI, ListInit *Pattern,
      DAGInstMap &DAGInsts);

  const DAGInstruction &getInstruction(Record *R) const {
    auto F = Instructions.find(R);
    assert(F != Instructions.end() && "Unknown instruction!");
    return F->second;
  }

  Record *get_intrinsic_void_sdnode() const {
    return intrinsic_void_sdnode;
  }
  Record *get_intrinsic_w_chain_sdnode() const {
    return intrinsic_w_chain_sdnode;
  }
  Record *get_intrinsic_wo_chain_sdnode() const {
    return intrinsic_wo_chain_sdnode;
  }

  unsigned allocateScope() { return ++NumScopes; }

  bool operandHasDefault(Record *Op) const {
    return Op->isSubClassOf("OperandWithDefaultOps") &&
      !getDefaultOperand(Op).DefaultOps.empty();
  }

private:
  void ParseNodeInfo();
  void ParseNodeTransforms();
  void ParseComplexPatterns();
  void ParsePatternFragments(bool OutFrags = false);
  void ParseDefaultOperands();
  void ParseInstructions();
  void ParsePatterns();
  void ExpandHwModeBasedTypes();
  void InferInstructionFlags();
  void GenerateVariants();
  void VerifyInstructionFlags();

  std::vector<Predicate> makePredList(ListInit *L);

  void ParseOnePattern(Record *TheDef,
                       TreePattern &Pattern, TreePattern &Result,
                       const std::vector<Record *> &InstImpResults);
  void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
  void FindPatternInputsAndOutputs(
      TreePattern &I, TreePatternNodePtr Pat,
      std::map<std::string, TreePatternNodePtr> &InstInputs,
      MapVector<std::string, TreePatternNodePtr,
                std::map<std::string, unsigned>> &InstResults,
      std::vector<Record *> &InstImpResults);
};


inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
                                             TreePattern &TP) const {
    bool MadeChange = false;
    for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
      MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
    return MadeChange;
  }

} // end namespace llvm

#endif