xray-converter.cpp 16.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
//===- xray-converter.cpp: XRay Trace Conversion --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements the trace conversion functions.
//
//===----------------------------------------------------------------------===//
#include "xray-converter.h"

#include "trie-node.h"
#include "xray-registry.h"
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/XRay/InstrumentationMap.h"
#include "llvm/XRay/Trace.h"
#include "llvm/XRay/YAMLXRayRecord.h"

using namespace llvm;
using namespace xray;

// llvm-xray convert
// ----------------------------------------------------------------------------
static cl::SubCommand Convert("convert", "Trace Format Conversion");
static cl::opt<std::string> ConvertInput(cl::Positional,
                                         cl::desc("<xray log file>"),
                                         cl::Required, cl::sub(Convert));
enum class ConvertFormats { BINARY, YAML, CHROME_TRACE_EVENT };
static cl::opt<ConvertFormats> ConvertOutputFormat(
    "output-format", cl::desc("output format"),
    cl::values(clEnumValN(ConvertFormats::BINARY, "raw", "output in binary"),
               clEnumValN(ConvertFormats::YAML, "yaml", "output in yaml"),
               clEnumValN(ConvertFormats::CHROME_TRACE_EVENT, "trace_event",
                          "Output in chrome's trace event format. "
                          "May be visualized with the Catapult trace viewer.")),
    cl::sub(Convert));
static cl::alias ConvertOutputFormat2("f", cl::aliasopt(ConvertOutputFormat),
                                      cl::desc("Alias for -output-format"));
static cl::opt<std::string>
    ConvertOutput("output", cl::value_desc("output file"), cl::init("-"),
                  cl::desc("output file; use '-' for stdout"),
                  cl::sub(Convert));
static cl::alias ConvertOutput2("o", cl::aliasopt(ConvertOutput),
                                cl::desc("Alias for -output"));

static cl::opt<bool>
    ConvertSymbolize("symbolize",
                     cl::desc("symbolize function ids from the input log"),
                     cl::init(false), cl::sub(Convert));
static cl::alias ConvertSymbolize2("y", cl::aliasopt(ConvertSymbolize),
                                   cl::desc("Alias for -symbolize"));

static cl::opt<std::string>
    ConvertInstrMap("instr_map",
                    cl::desc("binary with the instrumentation map, or "
                             "a separate instrumentation map"),
                    cl::value_desc("binary with xray_instr_map"),
                    cl::sub(Convert), cl::init(""));
static cl::alias ConvertInstrMap2("m", cl::aliasopt(ConvertInstrMap),
                                  cl::desc("Alias for -instr_map"));
static cl::opt<bool> ConvertSortInput(
    "sort",
    cl::desc("determines whether to sort input log records by timestamp"),
    cl::sub(Convert), cl::init(true));
static cl::alias ConvertSortInput2("s", cl::aliasopt(ConvertSortInput),
                                   cl::desc("Alias for -sort"));

using llvm::yaml::Output;

void TraceConverter::exportAsYAML(const Trace &Records, raw_ostream &OS) {
  YAMLXRayTrace Trace;
  const auto &FH = Records.getFileHeader();
  Trace.Header = {FH.Version, FH.Type, FH.ConstantTSC, FH.NonstopTSC,
                  FH.CycleFrequency};
  Trace.Records.reserve(Records.size());
  for (const auto &R : Records) {
    Trace.Records.push_back({R.RecordType, R.CPU, R.Type, R.FuncId,
                             Symbolize ? FuncIdHelper.SymbolOrNumber(R.FuncId)
                                       : llvm::to_string(R.FuncId),
                             R.TSC, R.TId, R.PId, R.CallArgs, R.Data});
  }
  Output Out(OS, nullptr, 0);
  Out.setWriteDefaultValues(false);
  Out << Trace;
}

void TraceConverter::exportAsRAWv1(const Trace &Records, raw_ostream &OS) {
  // First write out the file header, in the correct endian-appropriate format
  // (XRay assumes currently little endian).
  support::endian::Writer Writer(OS, support::endianness::little);
  const auto &FH = Records.getFileHeader();
  Writer.write(FH.Version);
  Writer.write(FH.Type);
  uint32_t Bitfield{0};
  if (FH.ConstantTSC)
    Bitfield |= 1uL;
  if (FH.NonstopTSC)
    Bitfield |= 1uL << 1;
  Writer.write(Bitfield);
  Writer.write(FH.CycleFrequency);

  // There's 16 bytes of padding at the end of the file header.
  static constexpr uint32_t Padding4B = 0;
  Writer.write(Padding4B);
  Writer.write(Padding4B);
  Writer.write(Padding4B);
  Writer.write(Padding4B);

  // Then write out the rest of the records, still in an endian-appropriate
  // format.
  for (const auto &R : Records) {
    switch (R.Type) {
    case RecordTypes::ENTER:
    case RecordTypes::ENTER_ARG:
      Writer.write(R.RecordType);
      Writer.write(static_cast<uint8_t>(R.CPU));
      Writer.write(uint8_t{0});
      break;
    case RecordTypes::EXIT:
      Writer.write(R.RecordType);
      Writer.write(static_cast<uint8_t>(R.CPU));
      Writer.write(uint8_t{1});
      break;
    case RecordTypes::TAIL_EXIT:
      Writer.write(R.RecordType);
      Writer.write(static_cast<uint8_t>(R.CPU));
      Writer.write(uint8_t{2});
      break;
    case RecordTypes::CUSTOM_EVENT:
    case RecordTypes::TYPED_EVENT:
      // Skip custom and typed event records for v1 logs.
      continue;
    }
    Writer.write(R.FuncId);
    Writer.write(R.TSC);
    Writer.write(R.TId);

    if (FH.Version >= 3)
      Writer.write(R.PId);
    else
      Writer.write(Padding4B);

    Writer.write(Padding4B);
    Writer.write(Padding4B);
  }
}

namespace {

// A structure that allows building a dictionary of stack ids for the Chrome
// trace event format.
struct StackIdData {
  // Each Stack of function calls has a unique ID.
  unsigned id;

  // Bookkeeping so that IDs can be maintained uniquely across threads.
  // Traversal keeps sibling pointers to other threads stacks. This is helpful
  // to determine when a thread encounters a new stack and should assign a new
  // unique ID.
  SmallVector<TrieNode<StackIdData> *, 4> siblings;
};

using StackTrieNode = TrieNode<StackIdData>;

// A helper function to find the sibling nodes for an encountered function in a
// thread of execution. Relies on the invariant that each time a new node is
// traversed in a thread, sibling bidirectional pointers are maintained.
SmallVector<StackTrieNode *, 4>
findSiblings(StackTrieNode *parent, int32_t FnId, uint32_t TId,
             const DenseMap<uint32_t, SmallVector<StackTrieNode *, 4>>
                 &StackRootsByThreadId) {

  SmallVector<StackTrieNode *, 4> Siblings{};

  if (parent == nullptr) {
    for (auto map_iter : StackRootsByThreadId) {
      // Only look for siblings in other threads.
      if (map_iter.first != TId)
        for (auto node_iter : map_iter.second) {
          if (node_iter->FuncId == FnId)
            Siblings.push_back(node_iter);
        }
    }
    return Siblings;
  }

  for (auto *ParentSibling : parent->ExtraData.siblings)
    for (auto node_iter : ParentSibling->Callees)
      if (node_iter->FuncId == FnId)
        Siblings.push_back(node_iter);

  return Siblings;
}

// Given a function being invoked in a thread with id TId, finds and returns the
// StackTrie representing the function call stack. If no node exists, creates
// the node. Assigns unique IDs to stacks newly encountered among all threads
// and keeps sibling links up to when creating new nodes.
StackTrieNode *findOrCreateStackNode(
    StackTrieNode *Parent, int32_t FuncId, uint32_t TId,
    DenseMap<uint32_t, SmallVector<StackTrieNode *, 4>> &StackRootsByThreadId,
    DenseMap<unsigned, StackTrieNode *> &StacksByStackId, unsigned *id_counter,
    std::forward_list<StackTrieNode> &NodeStore) {
  SmallVector<StackTrieNode *, 4> &ParentCallees =
      Parent == nullptr ? StackRootsByThreadId[TId] : Parent->Callees;
  auto match = find_if(ParentCallees, [FuncId](StackTrieNode *ParentCallee) {
    return FuncId == ParentCallee->FuncId;
  });
  if (match != ParentCallees.end())
    return *match;

  SmallVector<StackTrieNode *, 4> siblings =
      findSiblings(Parent, FuncId, TId, StackRootsByThreadId);
  if (siblings.empty()) {
    NodeStore.push_front({FuncId, Parent, {}, {(*id_counter)++, {}}});
    StackTrieNode *CurrentStack = &NodeStore.front();
    StacksByStackId[*id_counter - 1] = CurrentStack;
    ParentCallees.push_back(CurrentStack);
    return CurrentStack;
  }
  unsigned stack_id = siblings[0]->ExtraData.id;
  NodeStore.push_front({FuncId, Parent, {}, {stack_id, std::move(siblings)}});
  StackTrieNode *CurrentStack = &NodeStore.front();
  for (auto *sibling : CurrentStack->ExtraData.siblings)
    sibling->ExtraData.siblings.push_back(CurrentStack);
  ParentCallees.push_back(CurrentStack);
  return CurrentStack;
}

void writeTraceViewerRecord(uint16_t Version, raw_ostream &OS, int32_t FuncId,
                            uint32_t TId, uint32_t PId, bool Symbolize,
                            const FuncIdConversionHelper &FuncIdHelper,
                            double EventTimestampUs,
                            const StackTrieNode &StackCursor,
                            StringRef FunctionPhenotype) {
  OS << "    ";
  if (Version >= 3) {
    OS << llvm::formatv(
        R"({ "name" : "{0}", "ph" : "{1}", "tid" : "{2}", "pid" : "{3}", )"
        R"("ts" : "{4:f4}", "sf" : "{5}" })",
        (Symbolize ? FuncIdHelper.SymbolOrNumber(FuncId)
                   : llvm::to_string(FuncId)),
        FunctionPhenotype, TId, PId, EventTimestampUs,
        StackCursor.ExtraData.id);
  } else {
    OS << llvm::formatv(
        R"({ "name" : "{0}", "ph" : "{1}", "tid" : "{2}", "pid" : "1", )"
        R"("ts" : "{3:f3}", "sf" : "{4}" })",
        (Symbolize ? FuncIdHelper.SymbolOrNumber(FuncId)
                   : llvm::to_string(FuncId)),
        FunctionPhenotype, TId, EventTimestampUs, StackCursor.ExtraData.id);
  }
}

} // namespace

void TraceConverter::exportAsChromeTraceEventFormat(const Trace &Records,
                                                    raw_ostream &OS) {
  const auto &FH = Records.getFileHeader();
  auto Version = FH.Version;
  auto CycleFreq = FH.CycleFrequency;

  unsigned id_counter = 0;

  OS << "{\n  \"traceEvents\": [";
  DenseMap<uint32_t, StackTrieNode *> StackCursorByThreadId{};
  DenseMap<uint32_t, SmallVector<StackTrieNode *, 4>> StackRootsByThreadId{};
  DenseMap<unsigned, StackTrieNode *> StacksByStackId{};
  std::forward_list<StackTrieNode> NodeStore{};
  int loop_count = 0;
  for (const auto &R : Records) {
    if (loop_count++ == 0)
      OS << "\n";
    else
      OS << ",\n";

    // Chrome trace event format always wants data in micros.
    // CyclesPerMicro = CycleHertz / 10^6
    // TSC / CyclesPerMicro == TSC * 10^6 / CycleHertz == MicroTimestamp
    // Could lose some precision here by converting the TSC to a double to
    // multiply by the period in micros. 52 bit mantissa is a good start though.
    // TODO: Make feature request to Chrome Trace viewer to accept ticks and a
    // frequency or do some more involved calculation to avoid dangers of
    // conversion.
    double EventTimestampUs = double(1000000) / CycleFreq * double(R.TSC);
    StackTrieNode *&StackCursor = StackCursorByThreadId[R.TId];
    switch (R.Type) {
    case RecordTypes::CUSTOM_EVENT:
    case RecordTypes::TYPED_EVENT:
      // TODO: Support typed and custom event rendering on Chrome Trace Viewer.
      break;
    case RecordTypes::ENTER:
    case RecordTypes::ENTER_ARG:
      StackCursor = findOrCreateStackNode(StackCursor, R.FuncId, R.TId,
                                          StackRootsByThreadId, StacksByStackId,
                                          &id_counter, NodeStore);
      // Each record is represented as a json dictionary with function name,
      // type of B for begin or E for end, thread id, process id,
      // timestamp in microseconds, and a stack frame id. The ids are logged
      // in an id dictionary after the events.
      writeTraceViewerRecord(Version, OS, R.FuncId, R.TId, R.PId, Symbolize,
                             FuncIdHelper, EventTimestampUs, *StackCursor, "B");
      break;
    case RecordTypes::EXIT:
    case RecordTypes::TAIL_EXIT:
      // No entries to record end for.
      if (StackCursor == nullptr)
        break;
      // Should we emit an END record anyway or account this condition?
      // (And/Or in loop termination below)
      StackTrieNode *PreviousCursor = nullptr;
      do {
        if (PreviousCursor != nullptr) {
          OS << ",\n";
        }
        writeTraceViewerRecord(Version, OS, StackCursor->FuncId, R.TId, R.PId,
                               Symbolize, FuncIdHelper, EventTimestampUs,
                               *StackCursor, "E");
        PreviousCursor = StackCursor;
        StackCursor = StackCursor->Parent;
      } while (PreviousCursor->FuncId != R.FuncId && StackCursor != nullptr);
      break;
    }
  }
  OS << "\n  ],\n"; // Close the Trace Events array.
  OS << "  "
     << "\"displayTimeUnit\": \"ns\",\n";

  // The stackFrames dictionary substantially reduces size of the output file by
  // avoiding repeating the entire call stack of function names for each entry.
  OS << R"(  "stackFrames": {)";
  int stack_frame_count = 0;
  for (auto map_iter : StacksByStackId) {
    if (stack_frame_count++ == 0)
      OS << "\n";
    else
      OS << ",\n";
    OS << "    ";
    OS << llvm::formatv(
        R"("{0}" : { "name" : "{1}")", map_iter.first,
        (Symbolize ? FuncIdHelper.SymbolOrNumber(map_iter.second->FuncId)
                   : llvm::to_string(map_iter.second->FuncId)));
    if (map_iter.second->Parent != nullptr)
      OS << llvm::formatv(R"(, "parent": "{0}")",
                          map_iter.second->Parent->ExtraData.id);
    OS << " }";
  }
  OS << "\n  }\n"; // Close the stack frames map.
  OS << "}\n";     // Close the JSON entry.
}

namespace llvm {
namespace xray {

static CommandRegistration Unused(&Convert, []() -> Error {
  // FIXME: Support conversion to BINARY when upgrading XRay trace versions.
  InstrumentationMap Map;
  if (!ConvertInstrMap.empty()) {
    auto InstrumentationMapOrError = loadInstrumentationMap(ConvertInstrMap);
    if (!InstrumentationMapOrError)
      return joinErrors(make_error<StringError>(
                            Twine("Cannot open instrumentation map '") +
                                ConvertInstrMap + "'",
                            std::make_error_code(std::errc::invalid_argument)),
                        InstrumentationMapOrError.takeError());
    Map = std::move(*InstrumentationMapOrError);
  }

  const auto &FunctionAddresses = Map.getFunctionAddresses();
  symbolize::LLVMSymbolizer Symbolizer;
  llvm::xray::FuncIdConversionHelper FuncIdHelper(ConvertInstrMap, Symbolizer,
                                                  FunctionAddresses);
  llvm::xray::TraceConverter TC(FuncIdHelper, ConvertSymbolize);
  std::error_code EC;
  raw_fd_ostream OS(ConvertOutput, EC,
                    ConvertOutputFormat == ConvertFormats::BINARY
                        ? sys::fs::OpenFlags::OF_None
                        : sys::fs::OpenFlags::OF_Text);
  if (EC)
    return make_error<StringError>(
        Twine("Cannot open file '") + ConvertOutput + "' for writing.", EC);

  auto TraceOrErr = loadTraceFile(ConvertInput, ConvertSortInput);
  if (!TraceOrErr)
    return joinErrors(
        make_error<StringError>(
            Twine("Failed loading input file '") + ConvertInput + "'.",
            std::make_error_code(std::errc::executable_format_error)),
        TraceOrErr.takeError());

  auto &T = *TraceOrErr;
  switch (ConvertOutputFormat) {
  case ConvertFormats::YAML:
    TC.exportAsYAML(T, OS);
    break;
  case ConvertFormats::BINARY:
    TC.exportAsRAWv1(T, OS);
    break;
  case ConvertFormats::CHROME_TRACE_EVENT:
    TC.exportAsChromeTraceEventFormat(T, OS);
    break;
  }
  return Error::success();
});

} // namespace xray
} // namespace llvm