llvm-objdump.cpp 111 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
//===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This program is a utility that works like binutils "objdump", that is, it
// dumps out a plethora of information about an object file depending on the
// flags.
//
// The flags and output of this program should be near identical to those of
// binutils objdump.
//
//===----------------------------------------------------------------------===//

#include "llvm-objdump.h"
#include "COFFDump.h"
#include "ELFDump.h"
#include "MachODump.h"
#include "WasmDump.h"
#include "XCOFFDump.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/FaultMaps.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/COFFImportFile.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/MachOUniversal.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/Wasm.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cctype>
#include <cstring>
#include <system_error>
#include <unordered_map>
#include <utility>

using namespace llvm;
using namespace llvm::object;
using namespace llvm::objdump;

#define DEBUG_TYPE "objdump"

static cl::OptionCategory ObjdumpCat("llvm-objdump Options");

static cl::opt<uint64_t> AdjustVMA(
    "adjust-vma",
    cl::desc("Increase the displayed address by the specified offset"),
    cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));

static cl::opt<bool>
    AllHeaders("all-headers",
               cl::desc("Display all available header information"),
               cl::cat(ObjdumpCat));
static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
                                 cl::NotHidden, cl::Grouping,
                                 cl::aliasopt(AllHeaders));

static cl::opt<std::string>
    ArchName("arch-name",
             cl::desc("Target arch to disassemble for, "
                      "see -version for available targets"),
             cl::cat(ObjdumpCat));

cl::opt<bool>
    objdump::ArchiveHeaders("archive-headers",
                            cl::desc("Display archive header information"),
                            cl::cat(ObjdumpCat));
static cl::alias ArchiveHeadersShort("a",
                                     cl::desc("Alias for --archive-headers"),
                                     cl::NotHidden, cl::Grouping,
                                     cl::aliasopt(ArchiveHeaders));

cl::opt<bool> objdump::Demangle("demangle", cl::desc("Demangle symbols names"),
                                cl::init(false), cl::cat(ObjdumpCat));
static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
                               cl::NotHidden, cl::Grouping,
                               cl::aliasopt(Demangle));

cl::opt<bool> objdump::Disassemble(
    "disassemble",
    cl::desc("Display assembler mnemonics for the machine instructions"),
    cl::cat(ObjdumpCat));
static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
                                  cl::NotHidden, cl::Grouping,
                                  cl::aliasopt(Disassemble));

cl::opt<bool> objdump::DisassembleAll(
    "disassemble-all",
    cl::desc("Display assembler mnemonics for the machine instructions"),
    cl::cat(ObjdumpCat));
static cl::alias DisassembleAllShort("D",
                                     cl::desc("Alias for --disassemble-all"),
                                     cl::NotHidden, cl::Grouping,
                                     cl::aliasopt(DisassembleAll));

cl::opt<bool> objdump::SymbolDescription(
    "symbol-description",
    cl::desc("Add symbol description for disassembly. This "
             "option is for XCOFF files only"),
    cl::init(false), cl::cat(ObjdumpCat));

static cl::list<std::string>
    DisassembleSymbols("disassemble-symbols", cl::CommaSeparated,
                       cl::desc("List of symbols to disassemble. "
                                "Accept demangled names when --demangle is "
                                "specified, otherwise accept mangled names"),
                       cl::cat(ObjdumpCat));

static cl::opt<bool> DisassembleZeroes(
    "disassemble-zeroes",
    cl::desc("Do not skip blocks of zeroes when disassembling"),
    cl::cat(ObjdumpCat));
static cl::alias
    DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
                           cl::NotHidden, cl::Grouping,
                           cl::aliasopt(DisassembleZeroes));

static cl::list<std::string>
    DisassemblerOptions("disassembler-options",
                        cl::desc("Pass target specific disassembler options"),
                        cl::value_desc("options"), cl::CommaSeparated,
                        cl::cat(ObjdumpCat));
static cl::alias
    DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
                             cl::NotHidden, cl::Grouping, cl::Prefix,
                             cl::CommaSeparated,
                             cl::aliasopt(DisassemblerOptions));

cl::opt<DIDumpType> objdump::DwarfDumpType(
    "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
    cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
    cl::cat(ObjdumpCat));

static cl::opt<bool> DynamicRelocations(
    "dynamic-reloc",
    cl::desc("Display the dynamic relocation entries in the file"),
    cl::cat(ObjdumpCat));
static cl::alias DynamicRelocationShort("R",
                                        cl::desc("Alias for --dynamic-reloc"),
                                        cl::NotHidden, cl::Grouping,
                                        cl::aliasopt(DynamicRelocations));

static cl::opt<bool>
    FaultMapSection("fault-map-section",
                    cl::desc("Display contents of faultmap section"),
                    cl::cat(ObjdumpCat));

static cl::opt<bool>
    FileHeaders("file-headers",
                cl::desc("Display the contents of the overall file header"),
                cl::cat(ObjdumpCat));
static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
                                  cl::NotHidden, cl::Grouping,
                                  cl::aliasopt(FileHeaders));

cl::opt<bool>
    objdump::SectionContents("full-contents",
                             cl::desc("Display the content of each section"),
                             cl::cat(ObjdumpCat));
static cl::alias SectionContentsShort("s",
                                      cl::desc("Alias for --full-contents"),
                                      cl::NotHidden, cl::Grouping,
                                      cl::aliasopt(SectionContents));

static cl::list<std::string> InputFilenames(cl::Positional,
                                            cl::desc("<input object files>"),
                                            cl::ZeroOrMore,
                                            cl::cat(ObjdumpCat));

static cl::opt<bool>
    PrintLines("line-numbers",
               cl::desc("Display source line numbers with "
                        "disassembly. Implies disassemble object"),
               cl::cat(ObjdumpCat));
static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
                                 cl::NotHidden, cl::Grouping,
                                 cl::aliasopt(PrintLines));

static cl::opt<bool> MachOOpt("macho",
                              cl::desc("Use MachO specific object file parser"),
                              cl::cat(ObjdumpCat));
static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
                        cl::Grouping, cl::aliasopt(MachOOpt));

cl::opt<std::string> objdump::MCPU(
    "mcpu", cl::desc("Target a specific cpu type (-mcpu=help for details)"),
    cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));

cl::list<std::string> objdump::MAttrs("mattr", cl::CommaSeparated,
                                      cl::desc("Target specific attributes"),
                                      cl::value_desc("a1,+a2,-a3,..."),
                                      cl::cat(ObjdumpCat));

cl::opt<bool> objdump::NoShowRawInsn(
    "no-show-raw-insn",
    cl::desc(
        "When disassembling instructions, do not print the instruction bytes."),
    cl::cat(ObjdumpCat));

cl::opt<bool> objdump::NoLeadingAddr("no-leading-addr",
                                     cl::desc("Print no leading address"),
                                     cl::cat(ObjdumpCat));

static cl::opt<bool> RawClangAST(
    "raw-clang-ast",
    cl::desc("Dump the raw binary contents of the clang AST section"),
    cl::cat(ObjdumpCat));

cl::opt<bool>
    objdump::Relocations("reloc",
                         cl::desc("Display the relocation entries in the file"),
                         cl::cat(ObjdumpCat));
static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
                                  cl::NotHidden, cl::Grouping,
                                  cl::aliasopt(Relocations));

cl::opt<bool>
    objdump::PrintImmHex("print-imm-hex",
                         cl::desc("Use hex format for immediate values"),
                         cl::cat(ObjdumpCat));

cl::opt<bool>
    objdump::PrivateHeaders("private-headers",
                            cl::desc("Display format specific file headers"),
                            cl::cat(ObjdumpCat));
static cl::alias PrivateHeadersShort("p",
                                     cl::desc("Alias for --private-headers"),
                                     cl::NotHidden, cl::Grouping,
                                     cl::aliasopt(PrivateHeaders));

cl::list<std::string>
    objdump::FilterSections("section",
                            cl::desc("Operate on the specified sections only. "
                                     "With -macho dump segment,section"),
                            cl::cat(ObjdumpCat));
static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
                                 cl::NotHidden, cl::Grouping, cl::Prefix,
                                 cl::aliasopt(FilterSections));

cl::opt<bool> objdump::SectionHeaders(
    "section-headers",
    cl::desc("Display summaries of the headers for each section."),
    cl::cat(ObjdumpCat));
static cl::alias SectionHeadersShort("headers",
                                     cl::desc("Alias for --section-headers"),
                                     cl::NotHidden,
                                     cl::aliasopt(SectionHeaders));
static cl::alias SectionHeadersShorter("h",
                                       cl::desc("Alias for --section-headers"),
                                       cl::NotHidden, cl::Grouping,
                                       cl::aliasopt(SectionHeaders));

static cl::opt<bool>
    ShowLMA("show-lma",
            cl::desc("Display LMA column when dumping ELF section headers"),
            cl::cat(ObjdumpCat));

static cl::opt<bool> PrintSource(
    "source",
    cl::desc(
        "Display source inlined with disassembly. Implies disassemble object"),
    cl::cat(ObjdumpCat));
static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
                                  cl::NotHidden, cl::Grouping,
                                  cl::aliasopt(PrintSource));

static cl::opt<uint64_t>
    StartAddress("start-address", cl::desc("Disassemble beginning at address"),
                 cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
static cl::opt<uint64_t> StopAddress("stop-address",
                                     cl::desc("Stop disassembly at address"),
                                     cl::value_desc("address"),
                                     cl::init(UINT64_MAX), cl::cat(ObjdumpCat));

cl::opt<bool> objdump::SymbolTable("syms", cl::desc("Display the symbol table"),
                                   cl::cat(ObjdumpCat));
static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
                                  cl::NotHidden, cl::Grouping,
                                  cl::aliasopt(SymbolTable));

static cl::opt<bool> SymbolizeOperands(
    "symbolize-operands",
    cl::desc("Symbolize instruction operands when disassembling"),
    cl::cat(ObjdumpCat));

static cl::opt<bool> DynamicSymbolTable(
    "dynamic-syms",
    cl::desc("Display the contents of the dynamic symbol table"),
    cl::cat(ObjdumpCat));
static cl::alias DynamicSymbolTableShort("T",
                                         cl::desc("Alias for --dynamic-syms"),
                                         cl::NotHidden, cl::Grouping,
                                         cl::aliasopt(DynamicSymbolTable));

cl::opt<std::string> objdump::TripleName(
    "triple",
    cl::desc(
        "Target triple to disassemble for, see -version for available targets"),
    cl::cat(ObjdumpCat));

cl::opt<bool> objdump::UnwindInfo("unwind-info",
                                  cl::desc("Display unwind information"),
                                  cl::cat(ObjdumpCat));
static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
                                 cl::NotHidden, cl::Grouping,
                                 cl::aliasopt(UnwindInfo));

static cl::opt<bool>
    Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
         cl::cat(ObjdumpCat));
static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));

enum DebugVarsFormat {
  DVDisabled,
  DVUnicode,
  DVASCII,
};

static cl::opt<DebugVarsFormat> DbgVariables(
    "debug-vars", cl::init(DVDisabled),
    cl::desc("Print the locations (in registers or memory) of "
             "source-level variables alongside disassembly"),
    cl::ValueOptional,
    cl::values(clEnumValN(DVUnicode, "", "unicode"),
               clEnumValN(DVUnicode, "unicode", "unicode"),
               clEnumValN(DVASCII, "ascii", "unicode")),
    cl::cat(ObjdumpCat));

static cl::opt<int>
    DbgIndent("debug-vars-indent", cl::init(40),
              cl::desc("Distance to indent the source-level variable display, "
                       "relative to the start of the disassembly"),
              cl::cat(ObjdumpCat));

static cl::extrahelp
    HelpResponse("\nPass @FILE as argument to read options from FILE.\n");

static StringSet<> DisasmSymbolSet;
StringSet<> objdump::FoundSectionSet;
static StringRef ToolName;

namespace {
struct FilterResult {
  // True if the section should not be skipped.
  bool Keep;

  // True if the index counter should be incremented, even if the section should
  // be skipped. For example, sections may be skipped if they are not included
  // in the --section flag, but we still want those to count toward the section
  // count.
  bool IncrementIndex;
};
} // namespace

static FilterResult checkSectionFilter(object::SectionRef S) {
  if (FilterSections.empty())
    return {/*Keep=*/true, /*IncrementIndex=*/true};

  Expected<StringRef> SecNameOrErr = S.getName();
  if (!SecNameOrErr) {
    consumeError(SecNameOrErr.takeError());
    return {/*Keep=*/false, /*IncrementIndex=*/false};
  }
  StringRef SecName = *SecNameOrErr;

  // StringSet does not allow empty key so avoid adding sections with
  // no name (such as the section with index 0) here.
  if (!SecName.empty())
    FoundSectionSet.insert(SecName);

  // Only show the section if it's in the FilterSections list, but always
  // increment so the indexing is stable.
  return {/*Keep=*/is_contained(FilterSections, SecName),
          /*IncrementIndex=*/true};
}

SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O,
                                         uint64_t *Idx) {
  // Start at UINT64_MAX so that the first index returned after an increment is
  // zero (after the unsigned wrap).
  if (Idx)
    *Idx = UINT64_MAX;
  return SectionFilter(
      [Idx](object::SectionRef S) {
        FilterResult Result = checkSectionFilter(S);
        if (Idx != nullptr && Result.IncrementIndex)
          *Idx += 1;
        return Result.Keep;
      },
      O);
}

std::string objdump::getFileNameForError(const object::Archive::Child &C,
                                         unsigned Index) {
  Expected<StringRef> NameOrErr = C.getName();
  if (NameOrErr)
    return std::string(NameOrErr.get());
  // If we have an error getting the name then we print the index of the archive
  // member. Since we are already in an error state, we just ignore this error.
  consumeError(NameOrErr.takeError());
  return "<file index: " + std::to_string(Index) + ">";
}

void objdump::reportWarning(Twine Message, StringRef File) {
  // Output order between errs() and outs() matters especially for archive
  // files where the output is per member object.
  outs().flush();
  WithColor::warning(errs(), ToolName)
      << "'" << File << "': " << Message << "\n";
}

LLVM_ATTRIBUTE_NORETURN void objdump::reportError(StringRef File,
                                                  Twine Message) {
  outs().flush();
  WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n";
  exit(1);
}

LLVM_ATTRIBUTE_NORETURN void objdump::reportError(Error E, StringRef FileName,
                                                  StringRef ArchiveName,
                                                  StringRef ArchitectureName) {
  assert(E);
  outs().flush();
  WithColor::error(errs(), ToolName);
  if (ArchiveName != "")
    errs() << ArchiveName << "(" << FileName << ")";
  else
    errs() << "'" << FileName << "'";
  if (!ArchitectureName.empty())
    errs() << " (for architecture " << ArchitectureName << ")";
  errs() << ": ";
  logAllUnhandledErrors(std::move(E), errs());
  exit(1);
}

static void reportCmdLineWarning(Twine Message) {
  WithColor::warning(errs(), ToolName) << Message << "\n";
}

LLVM_ATTRIBUTE_NORETURN static void reportCmdLineError(Twine Message) {
  WithColor::error(errs(), ToolName) << Message << "\n";
  exit(1);
}

static void warnOnNoMatchForSections() {
  SetVector<StringRef> MissingSections;
  for (StringRef S : FilterSections) {
    if (FoundSectionSet.count(S))
      return;
    // User may specify a unnamed section. Don't warn for it.
    if (!S.empty())
      MissingSections.insert(S);
  }

  // Warn only if no section in FilterSections is matched.
  for (StringRef S : MissingSections)
    reportCmdLineWarning("section '" + S +
                         "' mentioned in a -j/--section option, but not "
                         "found in any input file");
}

static const Target *getTarget(const ObjectFile *Obj) {
  // Figure out the target triple.
  Triple TheTriple("unknown-unknown-unknown");
  if (TripleName.empty()) {
    TheTriple = Obj->makeTriple();
  } else {
    TheTriple.setTriple(Triple::normalize(TripleName));
    auto Arch = Obj->getArch();
    if (Arch == Triple::arm || Arch == Triple::armeb)
      Obj->setARMSubArch(TheTriple);
  }

  // Get the target specific parser.
  std::string Error;
  const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
                                                         Error);
  if (!TheTarget)
    reportError(Obj->getFileName(), "can't find target: " + Error);

  // Update the triple name and return the found target.
  TripleName = TheTriple.getTriple();
  return TheTarget;
}

bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) {
  return A.getOffset() < B.getOffset();
}

static Error getRelocationValueString(const RelocationRef &Rel,
                                      SmallVectorImpl<char> &Result) {
  const ObjectFile *Obj = Rel.getObject();
  if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
    return getELFRelocationValueString(ELF, Rel, Result);
  if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
    return getCOFFRelocationValueString(COFF, Rel, Result);
  if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
    return getWasmRelocationValueString(Wasm, Rel, Result);
  if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
    return getMachORelocationValueString(MachO, Rel, Result);
  if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj))
    return getXCOFFRelocationValueString(XCOFF, Rel, Result);
  llvm_unreachable("unknown object file format");
}

/// Indicates whether this relocation should hidden when listing
/// relocations, usually because it is the trailing part of a multipart
/// relocation that will be printed as part of the leading relocation.
static bool getHidden(RelocationRef RelRef) {
  auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
  if (!MachO)
    return false;

  unsigned Arch = MachO->getArch();
  DataRefImpl Rel = RelRef.getRawDataRefImpl();
  uint64_t Type = MachO->getRelocationType(Rel);

  // On arches that use the generic relocations, GENERIC_RELOC_PAIR
  // is always hidden.
  if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
    return Type == MachO::GENERIC_RELOC_PAIR;

  if (Arch == Triple::x86_64) {
    // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
    // an X86_64_RELOC_SUBTRACTOR.
    if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
      DataRefImpl RelPrev = Rel;
      RelPrev.d.a--;
      uint64_t PrevType = MachO->getRelocationType(RelPrev);
      if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
        return true;
    }
  }

  return false;
}

namespace {

/// Get the column at which we want to start printing the instruction
/// disassembly, taking into account anything which appears to the left of it.
unsigned getInstStartColumn(const MCSubtargetInfo &STI) {
  return NoShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24;
}

/// Stores a single expression representing the location of a source-level
/// variable, along with the PC range for which that expression is valid.
struct LiveVariable {
  DWARFLocationExpression LocExpr;
  const char *VarName;
  DWARFUnit *Unit;
  const DWARFDie FuncDie;

  LiveVariable(const DWARFLocationExpression &LocExpr, const char *VarName,
               DWARFUnit *Unit, const DWARFDie FuncDie)
      : LocExpr(LocExpr), VarName(VarName), Unit(Unit), FuncDie(FuncDie) {}

  bool liveAtAddress(object::SectionedAddress Addr) {
    if (LocExpr.Range == None)
      return false;
    return LocExpr.Range->SectionIndex == Addr.SectionIndex &&
           LocExpr.Range->LowPC <= Addr.Address &&
           LocExpr.Range->HighPC > Addr.Address;
  }

  void print(raw_ostream &OS, const MCRegisterInfo &MRI) const {
    DataExtractor Data({LocExpr.Expr.data(), LocExpr.Expr.size()},
                       Unit->getContext().isLittleEndian(), 0);
    DWARFExpression Expression(Data, Unit->getAddressByteSize());
    Expression.printCompact(OS, MRI);
  }
};

/// Helper class for printing source variable locations alongside disassembly.
class LiveVariablePrinter {
  // Information we want to track about one column in which we are printing a
  // variable live range.
  struct Column {
    unsigned VarIdx = NullVarIdx;
    bool LiveIn = false;
    bool LiveOut = false;
    bool MustDrawLabel  = false;

    bool isActive() const { return VarIdx != NullVarIdx; }

    static constexpr unsigned NullVarIdx = std::numeric_limits<unsigned>::max();
  };

  // All live variables we know about in the object/image file.
  std::vector<LiveVariable> LiveVariables;

  // The columns we are currently drawing.
  IndexedMap<Column> ActiveCols;

  const MCRegisterInfo &MRI;
  const MCSubtargetInfo &STI;

  void addVariable(DWARFDie FuncDie, DWARFDie VarDie) {
    uint64_t FuncLowPC, FuncHighPC, SectionIndex;
    FuncDie.getLowAndHighPC(FuncLowPC, FuncHighPC, SectionIndex);
    const char *VarName = VarDie.getName(DINameKind::ShortName);
    DWARFUnit *U = VarDie.getDwarfUnit();

    Expected<DWARFLocationExpressionsVector> Locs =
        VarDie.getLocations(dwarf::DW_AT_location);
    if (!Locs) {
      // If the variable doesn't have any locations, just ignore it. We don't
      // report an error or warning here as that could be noisy on optimised
      // code.
      consumeError(Locs.takeError());
      return;
    }

    for (const DWARFLocationExpression &LocExpr : *Locs) {
      if (LocExpr.Range) {
        LiveVariables.emplace_back(LocExpr, VarName, U, FuncDie);
      } else {
        // If the LocExpr does not have an associated range, it is valid for
        // the whole of the function.
        // TODO: technically it is not valid for any range covered by another
        // LocExpr, does that happen in reality?
        DWARFLocationExpression WholeFuncExpr{
            DWARFAddressRange(FuncLowPC, FuncHighPC, SectionIndex),
            LocExpr.Expr};
        LiveVariables.emplace_back(WholeFuncExpr, VarName, U, FuncDie);
      }
    }
  }

  void addFunction(DWARFDie D) {
    for (const DWARFDie &Child : D.children()) {
      if (Child.getTag() == dwarf::DW_TAG_variable ||
          Child.getTag() == dwarf::DW_TAG_formal_parameter)
        addVariable(D, Child);
      else
        addFunction(Child);
    }
  }

  // Get the column number (in characters) at which the first live variable
  // line should be printed.
  unsigned getIndentLevel() const {
    return DbgIndent + getInstStartColumn(STI);
  }

  // Indent to the first live-range column to the right of the currently
  // printed line, and return the index of that column.
  // TODO: formatted_raw_ostream uses "column" to mean a number of characters
  // since the last \n, and we use it to mean the number of slots in which we
  // put live variable lines. Pick a less overloaded word.
  unsigned moveToFirstVarColumn(formatted_raw_ostream &OS) {
    // Logical column number: column zero is the first column we print in, each
    // logical column is 2 physical columns wide.
    unsigned FirstUnprintedLogicalColumn =
        std::max((int)(OS.getColumn() - getIndentLevel() + 1) / 2, 0);
    // Physical column number: the actual column number in characters, with
    // zero being the left-most side of the screen.
    unsigned FirstUnprintedPhysicalColumn =
        getIndentLevel() + FirstUnprintedLogicalColumn * 2;

    if (FirstUnprintedPhysicalColumn > OS.getColumn())
      OS.PadToColumn(FirstUnprintedPhysicalColumn);

    return FirstUnprintedLogicalColumn;
  }

  unsigned findFreeColumn() {
    for (unsigned ColIdx = 0; ColIdx < ActiveCols.size(); ++ColIdx)
      if (!ActiveCols[ColIdx].isActive())
        return ColIdx;

    size_t OldSize = ActiveCols.size();
    ActiveCols.grow(std::max<size_t>(OldSize * 2, 1));
    return OldSize;
  }

public:
  LiveVariablePrinter(const MCRegisterInfo &MRI, const MCSubtargetInfo &STI)
      : LiveVariables(), ActiveCols(Column()), MRI(MRI), STI(STI) {}

  void dump() const {
    for (const LiveVariable &LV : LiveVariables) {
      dbgs() << LV.VarName << " @ " << LV.LocExpr.Range << ": ";
      LV.print(dbgs(), MRI);
      dbgs() << "\n";
    }
  }

  void addCompileUnit(DWARFDie D) {
    if (D.getTag() == dwarf::DW_TAG_subprogram)
      addFunction(D);
    else
      for (const DWARFDie &Child : D.children())
        addFunction(Child);
  }

  /// Update to match the state of the instruction between ThisAddr and
  /// NextAddr. In the common case, any live range active at ThisAddr is
  /// live-in to the instruction, and any live range active at NextAddr is
  /// live-out of the instruction. If IncludeDefinedVars is false, then live
  /// ranges starting at NextAddr will be ignored.
  void update(object::SectionedAddress ThisAddr,
              object::SectionedAddress NextAddr, bool IncludeDefinedVars) {
    // First, check variables which have already been assigned a column, so
    // that we don't change their order.
    SmallSet<unsigned, 8> CheckedVarIdxs;
    for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) {
      if (!ActiveCols[ColIdx].isActive())
        continue;
      CheckedVarIdxs.insert(ActiveCols[ColIdx].VarIdx);
      LiveVariable &LV = LiveVariables[ActiveCols[ColIdx].VarIdx];
      ActiveCols[ColIdx].LiveIn = LV.liveAtAddress(ThisAddr);
      ActiveCols[ColIdx].LiveOut = LV.liveAtAddress(NextAddr);
      LLVM_DEBUG(dbgs() << "pass 1, " << ThisAddr.Address << "-"
                        << NextAddr.Address << ", " << LV.VarName << ", Col "
                        << ColIdx << ": LiveIn=" << ActiveCols[ColIdx].LiveIn
                        << ", LiveOut=" << ActiveCols[ColIdx].LiveOut << "\n");

      if (!ActiveCols[ColIdx].LiveIn && !ActiveCols[ColIdx].LiveOut)
        ActiveCols[ColIdx].VarIdx = Column::NullVarIdx;
    }

    // Next, look for variables which don't already have a column, but which
    // are now live.
    if (IncludeDefinedVars) {
      for (unsigned VarIdx = 0, End = LiveVariables.size(); VarIdx < End;
           ++VarIdx) {
        if (CheckedVarIdxs.count(VarIdx))
          continue;
        LiveVariable &LV = LiveVariables[VarIdx];
        bool LiveIn = LV.liveAtAddress(ThisAddr);
        bool LiveOut = LV.liveAtAddress(NextAddr);
        if (!LiveIn && !LiveOut)
          continue;

        unsigned ColIdx = findFreeColumn();
        LLVM_DEBUG(dbgs() << "pass 2, " << ThisAddr.Address << "-"
                          << NextAddr.Address << ", " << LV.VarName << ", Col "
                          << ColIdx << ": LiveIn=" << LiveIn
                          << ", LiveOut=" << LiveOut << "\n");
        ActiveCols[ColIdx].VarIdx = VarIdx;
        ActiveCols[ColIdx].LiveIn = LiveIn;
        ActiveCols[ColIdx].LiveOut = LiveOut;
        ActiveCols[ColIdx].MustDrawLabel = true;
      }
    }
  }

  enum class LineChar {
    RangeStart,
    RangeMid,
    RangeEnd,
    LabelVert,
    LabelCornerNew,
    LabelCornerActive,
    LabelHoriz,
  };
  const char *getLineChar(LineChar C) const {
    bool IsASCII = DbgVariables == DVASCII;
    switch (C) {
    case LineChar::RangeStart:
      return IsASCII ? "^" : u8"\u2548";
    case LineChar::RangeMid:
      return IsASCII ? "|" : u8"\u2503";
    case LineChar::RangeEnd:
      return IsASCII ? "v" : u8"\u253b";
    case LineChar::LabelVert:
      return IsASCII ? "|" : u8"\u2502";
    case LineChar::LabelCornerNew:
      return IsASCII ? "/" : u8"\u250c";
    case LineChar::LabelCornerActive:
      return IsASCII ? "|" : u8"\u2520";
    case LineChar::LabelHoriz:
      return IsASCII ? "-" : u8"\u2500";
    }
    llvm_unreachable("Unhandled LineChar enum");
  }

  /// Print live ranges to the right of an existing line. This assumes the
  /// line is not an instruction, so doesn't start or end any live ranges, so
  /// we only need to print active ranges or empty columns. If AfterInst is
  /// true, this is being printed after the last instruction fed to update(),
  /// otherwise this is being printed before it.
  void printAfterOtherLine(formatted_raw_ostream &OS, bool AfterInst) {
    if (ActiveCols.size()) {
      unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
      for (size_t ColIdx = FirstUnprintedColumn, End = ActiveCols.size();
           ColIdx < End; ++ColIdx) {
        if (ActiveCols[ColIdx].isActive()) {
          if ((AfterInst && ActiveCols[ColIdx].LiveOut) ||
              (!AfterInst && ActiveCols[ColIdx].LiveIn))
            OS << getLineChar(LineChar::RangeMid);
          else if (!AfterInst && ActiveCols[ColIdx].LiveOut)
            OS << getLineChar(LineChar::LabelVert);
          else
            OS << " ";
        }
        OS << " ";
      }
    }
    OS << "\n";
  }

  /// Print any live variable range info needed to the right of a
  /// non-instruction line of disassembly. This is where we print the variable
  /// names and expressions, with thin line-drawing characters connecting them
  /// to the live range which starts at the next instruction. If MustPrint is
  /// true, we have to print at least one line (with the continuation of any
  /// already-active live ranges) because something has already been printed
  /// earlier on this line.
  void printBetweenInsts(formatted_raw_ostream &OS, bool MustPrint) {
    bool PrintedSomething = false;
    for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx) {
      if (ActiveCols[ColIdx].isActive() && ActiveCols[ColIdx].MustDrawLabel) {
        // First we need to print the live range markers for any active
        // columns to the left of this one.
        OS.PadToColumn(getIndentLevel());
        for (unsigned ColIdx2 = 0; ColIdx2 < ColIdx; ++ColIdx2) {
          if (ActiveCols[ColIdx2].isActive()) {
            if (ActiveCols[ColIdx2].MustDrawLabel &&
                           !ActiveCols[ColIdx2].LiveIn)
              OS << getLineChar(LineChar::LabelVert) << " ";
            else
              OS << getLineChar(LineChar::RangeMid) << " ";
          } else
            OS << "  ";
        }

        // Then print the variable name and location of the new live range,
        // with box drawing characters joining it to the live range line.
        OS << getLineChar(ActiveCols[ColIdx].LiveIn
                              ? LineChar::LabelCornerActive
                              : LineChar::LabelCornerNew)
           << getLineChar(LineChar::LabelHoriz) << " ";
        WithColor(OS, raw_ostream::GREEN)
            << LiveVariables[ActiveCols[ColIdx].VarIdx].VarName;
        OS << " = ";
        {
          WithColor ExprColor(OS, raw_ostream::CYAN);
          LiveVariables[ActiveCols[ColIdx].VarIdx].print(OS, MRI);
        }

        // If there are any columns to the right of the expression we just
        // printed, then continue their live range lines.
        unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
        for (unsigned ColIdx2 = FirstUnprintedColumn, End = ActiveCols.size();
             ColIdx2 < End; ++ColIdx2) {
          if (ActiveCols[ColIdx2].isActive() && ActiveCols[ColIdx2].LiveIn)
            OS << getLineChar(LineChar::RangeMid) << " ";
          else
            OS << "  ";
        }

        OS << "\n";
        PrintedSomething = true;
      }
    }

    for (unsigned ColIdx = 0, End = ActiveCols.size(); ColIdx < End; ++ColIdx)
      if (ActiveCols[ColIdx].isActive())
        ActiveCols[ColIdx].MustDrawLabel = false;

    // If we must print something (because we printed a line/column number),
    // but don't have any new variables to print, then print a line which
    // just continues any existing live ranges.
    if (MustPrint && !PrintedSomething)
      printAfterOtherLine(OS, false);
  }

  /// Print the live variable ranges to the right of a disassembled instruction.
  void printAfterInst(formatted_raw_ostream &OS) {
    if (!ActiveCols.size())
      return;
    unsigned FirstUnprintedColumn = moveToFirstVarColumn(OS);
    for (unsigned ColIdx = FirstUnprintedColumn, End = ActiveCols.size();
         ColIdx < End; ++ColIdx) {
      if (!ActiveCols[ColIdx].isActive())
        OS << "  ";
      else if (ActiveCols[ColIdx].LiveIn && ActiveCols[ColIdx].LiveOut)
        OS << getLineChar(LineChar::RangeMid) << " ";
      else if (ActiveCols[ColIdx].LiveOut)
        OS << getLineChar(LineChar::RangeStart) << " ";
      else if (ActiveCols[ColIdx].LiveIn)
        OS << getLineChar(LineChar::RangeEnd) << " ";
      else
        llvm_unreachable("var must be live in or out!");
    }
  }
};

class SourcePrinter {
protected:
  DILineInfo OldLineInfo;
  const ObjectFile *Obj = nullptr;
  std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
  // File name to file contents of source.
  std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
  // Mark the line endings of the cached source.
  std::unordered_map<std::string, std::vector<StringRef>> LineCache;
  // Keep track of missing sources.
  StringSet<> MissingSources;
  // Only emit 'no debug info' warning once.
  bool WarnedNoDebugInfo;

private:
  bool cacheSource(const DILineInfo& LineInfoFile);

  void printLines(formatted_raw_ostream &OS, const DILineInfo &LineInfo,
                  StringRef Delimiter, LiveVariablePrinter &LVP);

  void printSources(formatted_raw_ostream &OS, const DILineInfo &LineInfo,
                    StringRef ObjectFilename, StringRef Delimiter,
                    LiveVariablePrinter &LVP);

public:
  SourcePrinter() = default;
  SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch)
      : Obj(Obj), WarnedNoDebugInfo(false) {
    symbolize::LLVMSymbolizer::Options SymbolizerOpts;
    SymbolizerOpts.PrintFunctions =
        DILineInfoSpecifier::FunctionNameKind::LinkageName;
    SymbolizerOpts.Demangle = Demangle;
    SymbolizerOpts.DefaultArch = std::string(DefaultArch);
    Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
  }
  virtual ~SourcePrinter() = default;
  virtual void printSourceLine(formatted_raw_ostream &OS,
                               object::SectionedAddress Address,
                               StringRef ObjectFilename,
                               LiveVariablePrinter &LVP,
                               StringRef Delimiter = "; ");
};

bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
  std::unique_ptr<MemoryBuffer> Buffer;
  if (LineInfo.Source) {
    Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
  } else {
    auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
    if (!BufferOrError) {
      if (MissingSources.insert(LineInfo.FileName).second)
        reportWarning("failed to find source " + LineInfo.FileName,
                      Obj->getFileName());
      return false;
    }
    Buffer = std::move(*BufferOrError);
  }
  // Chomp the file to get lines
  const char *BufferStart = Buffer->getBufferStart(),
             *BufferEnd = Buffer->getBufferEnd();
  std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
  const char *Start = BufferStart;
  for (const char *I = BufferStart; I != BufferEnd; ++I)
    if (*I == '\n') {
      Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
      Start = I + 1;
    }
  if (Start < BufferEnd)
    Lines.emplace_back(Start, BufferEnd - Start);
  SourceCache[LineInfo.FileName] = std::move(Buffer);
  return true;
}

void SourcePrinter::printSourceLine(formatted_raw_ostream &OS,
                                    object::SectionedAddress Address,
                                    StringRef ObjectFilename,
                                    LiveVariablePrinter &LVP,
                                    StringRef Delimiter) {
  if (!Symbolizer)
    return;

  DILineInfo LineInfo = DILineInfo();
  auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address);
  std::string ErrorMessage;
  if (!ExpectedLineInfo)
    ErrorMessage = toString(ExpectedLineInfo.takeError());
  else
    LineInfo = *ExpectedLineInfo;

  if (LineInfo.FileName == DILineInfo::BadString) {
    if (!WarnedNoDebugInfo) {
      std::string Warning =
          "failed to parse debug information for " + ObjectFilename.str();
      if (!ErrorMessage.empty())
        Warning += ": " + ErrorMessage;
      reportWarning(Warning, ObjectFilename);
      WarnedNoDebugInfo = true;
    }
  }

  if (PrintLines)
    printLines(OS, LineInfo, Delimiter, LVP);
  if (PrintSource)
    printSources(OS, LineInfo, ObjectFilename, Delimiter, LVP);
  OldLineInfo = LineInfo;
}

void SourcePrinter::printLines(formatted_raw_ostream &OS,
                               const DILineInfo &LineInfo, StringRef Delimiter,
                               LiveVariablePrinter &LVP) {
  bool PrintFunctionName = LineInfo.FunctionName != DILineInfo::BadString &&
                           LineInfo.FunctionName != OldLineInfo.FunctionName;
  if (PrintFunctionName) {
    OS << Delimiter << LineInfo.FunctionName;
    // If demangling is successful, FunctionName will end with "()". Print it
    // only if demangling did not run or was unsuccessful.
    if (!StringRef(LineInfo.FunctionName).endswith("()"))
      OS << "()";
    OS << ":\n";
  }
  if (LineInfo.FileName != DILineInfo::BadString && LineInfo.Line != 0 &&
      (OldLineInfo.Line != LineInfo.Line ||
       OldLineInfo.FileName != LineInfo.FileName || PrintFunctionName)) {
    OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line;
    LVP.printBetweenInsts(OS, true);
  }
}

void SourcePrinter::printSources(formatted_raw_ostream &OS,
                                 const DILineInfo &LineInfo,
                                 StringRef ObjectFilename, StringRef Delimiter,
                                 LiveVariablePrinter &LVP) {
  if (LineInfo.FileName == DILineInfo::BadString || LineInfo.Line == 0 ||
      (OldLineInfo.Line == LineInfo.Line &&
       OldLineInfo.FileName == LineInfo.FileName))
    return;

  if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
    if (!cacheSource(LineInfo))
      return;
  auto LineBuffer = LineCache.find(LineInfo.FileName);
  if (LineBuffer != LineCache.end()) {
    if (LineInfo.Line > LineBuffer->second.size()) {
      reportWarning(
          formatv(
              "debug info line number {0} exceeds the number of lines in {1}",
              LineInfo.Line, LineInfo.FileName),
          ObjectFilename);
      return;
    }
    // Vector begins at 0, line numbers are non-zero
    OS << Delimiter << LineBuffer->second[LineInfo.Line - 1];
    LVP.printBetweenInsts(OS, true);
  }
}

static bool isAArch64Elf(const ObjectFile *Obj) {
  const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
  return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
}

static bool isArmElf(const ObjectFile *Obj) {
  const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
  return Elf && Elf->getEMachine() == ELF::EM_ARM;
}

static bool hasMappingSymbols(const ObjectFile *Obj) {
  return isArmElf(Obj) || isAArch64Elf(Obj);
}

static void printRelocation(formatted_raw_ostream &OS, StringRef FileName,
                            const RelocationRef &Rel, uint64_t Address,
                            bool Is64Bits) {
  StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
  SmallString<16> Name;
  SmallString<32> Val;
  Rel.getTypeName(Name);
  if (Error E = getRelocationValueString(Rel, Val))
    reportError(std::move(E), FileName);
  OS << format(Fmt.data(), Address) << Name << "\t" << Val;
}

class PrettyPrinter {
public:
  virtual ~PrettyPrinter() = default;
  virtual void
  printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
            object::SectionedAddress Address, formatted_raw_ostream &OS,
            StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
            StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
            LiveVariablePrinter &LVP) {
    if (SP && (PrintSource || PrintLines))
      SP->printSourceLine(OS, Address, ObjectFilename, LVP);
    LVP.printBetweenInsts(OS, false);

    size_t Start = OS.tell();
    if (!NoLeadingAddr)
      OS << format("%8" PRIx64 ":", Address.Address);
    if (!NoShowRawInsn) {
      OS << ' ';
      dumpBytes(Bytes, OS);
    }

    // The output of printInst starts with a tab. Print some spaces so that
    // the tab has 1 column and advances to the target tab stop.
    unsigned TabStop = getInstStartColumn(STI);
    unsigned Column = OS.tell() - Start;
    OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);

    if (MI) {
      // See MCInstPrinter::printInst. On targets where a PC relative immediate
      // is relative to the next instruction and the length of a MCInst is
      // difficult to measure (x86), this is the address of the next
      // instruction.
      uint64_t Addr =
          Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0);
      IP.printInst(MI, Addr, "", STI, OS);
    } else
      OS << "\t<unknown>";
  }
};
PrettyPrinter PrettyPrinterInst;

class HexagonPrettyPrinter : public PrettyPrinter {
public:
  void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
                 formatted_raw_ostream &OS) {
    uint32_t opcode =
      (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
    if (!NoLeadingAddr)
      OS << format("%8" PRIx64 ":", Address);
    if (!NoShowRawInsn) {
      OS << "\t";
      dumpBytes(Bytes.slice(0, 4), OS);
      OS << format("\t%08" PRIx32, opcode);
    }
  }
  void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
                 object::SectionedAddress Address, formatted_raw_ostream &OS,
                 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
                 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
                 LiveVariablePrinter &LVP) override {
    if (SP && (PrintSource || PrintLines))
      SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
    if (!MI) {
      printLead(Bytes, Address.Address, OS);
      OS << " <unknown>";
      return;
    }
    std::string Buffer;
    {
      raw_string_ostream TempStream(Buffer);
      IP.printInst(MI, Address.Address, "", STI, TempStream);
    }
    StringRef Contents(Buffer);
    // Split off bundle attributes
    auto PacketBundle = Contents.rsplit('\n');
    // Split off first instruction from the rest
    auto HeadTail = PacketBundle.first.split('\n');
    auto Preamble = " { ";
    auto Separator = "";

    // Hexagon's packets require relocations to be inline rather than
    // clustered at the end of the packet.
    std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
    std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
    auto PrintReloc = [&]() -> void {
      while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
        if (RelCur->getOffset() == Address.Address) {
          printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false);
          return;
        }
        ++RelCur;
      }
    };

    while (!HeadTail.first.empty()) {
      OS << Separator;
      Separator = "\n";
      if (SP && (PrintSource || PrintLines))
        SP->printSourceLine(OS, Address, ObjectFilename, LVP, "");
      printLead(Bytes, Address.Address, OS);
      OS << Preamble;
      Preamble = "   ";
      StringRef Inst;
      auto Duplex = HeadTail.first.split('\v');
      if (!Duplex.second.empty()) {
        OS << Duplex.first;
        OS << "; ";
        Inst = Duplex.second;
      }
      else
        Inst = HeadTail.first;
      OS << Inst;
      HeadTail = HeadTail.second.split('\n');
      if (HeadTail.first.empty())
        OS << " } " << PacketBundle.second;
      PrintReloc();
      Bytes = Bytes.slice(4);
      Address.Address += 4;
    }
  }
};
HexagonPrettyPrinter HexagonPrettyPrinterInst;

class AMDGCNPrettyPrinter : public PrettyPrinter {
public:
  void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
                 object::SectionedAddress Address, formatted_raw_ostream &OS,
                 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
                 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
                 LiveVariablePrinter &LVP) override {
    if (SP && (PrintSource || PrintLines))
      SP->printSourceLine(OS, Address, ObjectFilename, LVP);

    if (MI) {
      SmallString<40> InstStr;
      raw_svector_ostream IS(InstStr);

      IP.printInst(MI, Address.Address, "", STI, IS);

      OS << left_justify(IS.str(), 60);
    } else {
      // an unrecognized encoding - this is probably data so represent it
      // using the .long directive, or .byte directive if fewer than 4 bytes
      // remaining
      if (Bytes.size() >= 4) {
        OS << format("\t.long 0x%08" PRIx32 " ",
                     support::endian::read32<support::little>(Bytes.data()));
        OS.indent(42);
      } else {
          OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
          for (unsigned int i = 1; i < Bytes.size(); i++)
            OS << format(", 0x%02" PRIx8, Bytes[i]);
          OS.indent(55 - (6 * Bytes.size()));
      }
    }

    OS << format("// %012" PRIX64 ":", Address.Address);
    if (Bytes.size() >= 4) {
      // D should be casted to uint32_t here as it is passed by format to
      // snprintf as vararg.
      for (uint32_t D : makeArrayRef(
               reinterpret_cast<const support::little32_t *>(Bytes.data()),
               Bytes.size() / 4))
        OS << format(" %08" PRIX32, D);
    } else {
      for (unsigned char B : Bytes)
        OS << format(" %02" PRIX8, B);
    }

    if (!Annot.empty())
      OS << " // " << Annot;
  }
};
AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;

class BPFPrettyPrinter : public PrettyPrinter {
public:
  void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
                 object::SectionedAddress Address, formatted_raw_ostream &OS,
                 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
                 StringRef ObjectFilename, std::vector<RelocationRef> *Rels,
                 LiveVariablePrinter &LVP) override {
    if (SP && (PrintSource || PrintLines))
      SP->printSourceLine(OS, Address, ObjectFilename, LVP);
    if (!NoLeadingAddr)
      OS << format("%8" PRId64 ":", Address.Address / 8);
    if (!NoShowRawInsn) {
      OS << "\t";
      dumpBytes(Bytes, OS);
    }
    if (MI)
      IP.printInst(MI, Address.Address, "", STI, OS);
    else
      OS << "\t<unknown>";
  }
};
BPFPrettyPrinter BPFPrettyPrinterInst;

PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
  switch(Triple.getArch()) {
  default:
    return PrettyPrinterInst;
  case Triple::hexagon:
    return HexagonPrettyPrinterInst;
  case Triple::amdgcn:
    return AMDGCNPrettyPrinterInst;
  case Triple::bpfel:
  case Triple::bpfeb:
    return BPFPrettyPrinterInst;
  }
}
}

static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
  assert(Obj->isELF());
  if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
    return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
  if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
    return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
  if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
    return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
  if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
    return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
  llvm_unreachable("Unsupported binary format");
}

template <class ELFT> static void
addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
                     std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
  for (auto Symbol : Obj->getDynamicSymbolIterators()) {
    uint8_t SymbolType = Symbol.getELFType();
    if (SymbolType == ELF::STT_SECTION)
      continue;

    uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
    // ELFSymbolRef::getAddress() returns size instead of value for common
    // symbols which is not desirable for disassembly output. Overriding.
    if (SymbolType == ELF::STT_COMMON)
      Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value;

    StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
    if (Name.empty())
      continue;

    section_iterator SecI =
        unwrapOrError(Symbol.getSection(), Obj->getFileName());
    if (SecI == Obj->section_end())
      continue;

    AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
  }
}

static void
addDynamicElfSymbols(const ObjectFile *Obj,
                     std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
  assert(Obj->isELF());
  if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
    addDynamicElfSymbols(Elf32LEObj, AllSymbols);
  else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
    addDynamicElfSymbols(Elf64LEObj, AllSymbols);
  else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
    addDynamicElfSymbols(Elf32BEObj, AllSymbols);
  else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
    addDynamicElfSymbols(Elf64BEObj, AllSymbols);
  else
    llvm_unreachable("Unsupported binary format");
}

static void addPltEntries(const ObjectFile *Obj,
                          std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
                          StringSaver &Saver) {
  Optional<SectionRef> Plt = None;
  for (const SectionRef &Section : Obj->sections()) {
    Expected<StringRef> SecNameOrErr = Section.getName();
    if (!SecNameOrErr) {
      consumeError(SecNameOrErr.takeError());
      continue;
    }
    if (*SecNameOrErr == ".plt")
      Plt = Section;
  }
  if (!Plt)
    return;
  if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
    for (auto PltEntry : ElfObj->getPltAddresses()) {
      if (PltEntry.first) {
        SymbolRef Symbol(*PltEntry.first, ElfObj);
        uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
        if (Expected<StringRef> NameOrErr = Symbol.getName()) {
          if (!NameOrErr->empty())
            AllSymbols[*Plt].emplace_back(
                PltEntry.second, Saver.save((*NameOrErr + "@plt").str()),
                SymbolType);
          continue;
        } else {
          // The warning has been reported in disassembleObject().
          consumeError(NameOrErr.takeError());
        }
      }
      reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) +
                        " references an invalid symbol",
                    Obj->getFileName());
    }
  }
}

// Normally the disassembly output will skip blocks of zeroes. This function
// returns the number of zero bytes that can be skipped when dumping the
// disassembly of the instructions in Buf.
static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
  // Find the number of leading zeroes.
  size_t N = 0;
  while (N < Buf.size() && !Buf[N])
    ++N;

  // We may want to skip blocks of zero bytes, but unless we see
  // at least 8 of them in a row.
  if (N < 8)
    return 0;

  // We skip zeroes in multiples of 4 because do not want to truncate an
  // instruction if it starts with a zero byte.
  return N & ~0x3;
}

// Returns a map from sections to their relocations.
static std::map<SectionRef, std::vector<RelocationRef>>
getRelocsMap(object::ObjectFile const &Obj) {
  std::map<SectionRef, std::vector<RelocationRef>> Ret;
  uint64_t I = (uint64_t)-1;
  for (SectionRef Sec : Obj.sections()) {
    ++I;
    Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection();
    if (!RelocatedOrErr)
      reportError(Obj.getFileName(),
                  "section (" + Twine(I) +
                      "): failed to get a relocated section: " +
                      toString(RelocatedOrErr.takeError()));

    section_iterator Relocated = *RelocatedOrErr;
    if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep)
      continue;
    std::vector<RelocationRef> &V = Ret[*Relocated];
    for (const RelocationRef &R : Sec.relocations())
      V.push_back(R);
    // Sort relocations by address.
    llvm::stable_sort(V, isRelocAddressLess);
  }
  return Ret;
}

// Used for --adjust-vma to check if address should be adjusted by the
// specified value for a given section.
// For ELF we do not adjust non-allocatable sections like debug ones,
// because they are not loadable.
// TODO: implement for other file formats.
static bool shouldAdjustVA(const SectionRef &Section) {
  const ObjectFile *Obj = Section.getObject();
  if (Obj->isELF())
    return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
  return false;
}


typedef std::pair<uint64_t, char> MappingSymbolPair;
static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
                                 uint64_t Address) {
  auto It =
      partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
        return Val.first <= Address;
      });
  // Return zero for any address before the first mapping symbol; this means
  // we should use the default disassembly mode, depending on the target.
  if (It == MappingSymbols.begin())
    return '\x00';
  return (It - 1)->second;
}

static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index,
                               uint64_t End, const ObjectFile *Obj,
                               ArrayRef<uint8_t> Bytes,
                               ArrayRef<MappingSymbolPair> MappingSymbols,
                               raw_ostream &OS) {
  support::endianness Endian =
      Obj->isLittleEndian() ? support::little : support::big;
  OS << format("%8" PRIx64 ":\t", SectionAddr + Index);
  if (Index + 4 <= End) {
    dumpBytes(Bytes.slice(Index, 4), OS);
    OS << "\t.word\t"
           << format_hex(support::endian::read32(Bytes.data() + Index, Endian),
                         10);
    return 4;
  }
  if (Index + 2 <= End) {
    dumpBytes(Bytes.slice(Index, 2), OS);
    OS << "\t\t.short\t"
           << format_hex(support::endian::read16(Bytes.data() + Index, Endian),
                         6);
    return 2;
  }
  dumpBytes(Bytes.slice(Index, 1), OS);
  OS << "\t\t.byte\t" << format_hex(Bytes[0], 4);
  return 1;
}

static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
                        ArrayRef<uint8_t> Bytes) {
  // print out data up to 8 bytes at a time in hex and ascii
  uint8_t AsciiData[9] = {'\0'};
  uint8_t Byte;
  int NumBytes = 0;

  for (; Index < End; ++Index) {
    if (NumBytes == 0)
      outs() << format("%8" PRIx64 ":", SectionAddr + Index);
    Byte = Bytes.slice(Index)[0];
    outs() << format(" %02x", Byte);
    AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';

    uint8_t IndentOffset = 0;
    NumBytes++;
    if (Index == End - 1 || NumBytes > 8) {
      // Indent the space for less than 8 bytes data.
      // 2 spaces for byte and one for space between bytes
      IndentOffset = 3 * (8 - NumBytes);
      for (int Excess = NumBytes; Excess < 8; Excess++)
        AsciiData[Excess] = '\0';
      NumBytes = 8;
    }
    if (NumBytes == 8) {
      AsciiData[8] = '\0';
      outs() << std::string(IndentOffset, ' ') << "         ";
      outs() << reinterpret_cast<char *>(AsciiData);
      outs() << '\n';
      NumBytes = 0;
    }
  }
}

SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj,
                                       const SymbolRef &Symbol) {
  const StringRef FileName = Obj->getFileName();
  const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName);
  const StringRef Name = unwrapOrError(Symbol.getName(), FileName);

  if (Obj->isXCOFF() && SymbolDescription) {
    const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj);
    DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl();

    const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p);
    Optional<XCOFF::StorageMappingClass> Smc =
        getXCOFFSymbolCsectSMC(XCOFFObj, Symbol);
    return SymbolInfoTy(Addr, Name, Smc, SymbolIndex,
                        isLabel(XCOFFObj, Symbol));
  } else
    return SymbolInfoTy(Addr, Name,
                        Obj->isELF() ? getElfSymbolType(Obj, Symbol)
                                     : (uint8_t)ELF::STT_NOTYPE);
}

static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj,
                                          const uint64_t Addr, StringRef &Name,
                                          uint8_t Type) {
  if (Obj->isXCOFF() && SymbolDescription)
    return SymbolInfoTy(Addr, Name, None, None, false);
  else
    return SymbolInfoTy(Addr, Name, Type);
}

static void
collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA,
                          MCDisassembler *DisAsm, MCInstPrinter *IP,
                          const MCSubtargetInfo *STI, uint64_t SectionAddr,
                          uint64_t Start, uint64_t End,
                          std::unordered_map<uint64_t, std::string> &Labels) {
  // So far only supports X86.
  if (!STI->getTargetTriple().isX86())
    return;

  Labels.clear();
  unsigned LabelCount = 0;
  Start += SectionAddr;
  End += SectionAddr;
  uint64_t Index = Start;
  while (Index < End) {
    // Disassemble a real instruction and record function-local branch labels.
    MCInst Inst;
    uint64_t Size;
    bool Disassembled = DisAsm->getInstruction(
        Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls());
    if (Size == 0)
      Size = 1;

    if (Disassembled && MIA) {
      uint64_t Target;
      bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target);
      if (TargetKnown && (Target >= Start && Target < End) &&
          !Labels.count(Target))
        Labels[Target] = ("L" + Twine(LabelCount++)).str();
    }

    Index += Size;
  }
}

static StringRef getSegmentName(const MachOObjectFile *MachO,
                                const SectionRef &Section) {
  if (MachO) {
    DataRefImpl DR = Section.getRawDataRefImpl();
    StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
    return SegmentName;
  }
  return "";
}

static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
                              MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
                              MCDisassembler *SecondaryDisAsm,
                              const MCInstrAnalysis *MIA, MCInstPrinter *IP,
                              const MCSubtargetInfo *PrimarySTI,
                              const MCSubtargetInfo *SecondarySTI,
                              PrettyPrinter &PIP,
                              SourcePrinter &SP, bool InlineRelocs) {
  const MCSubtargetInfo *STI = PrimarySTI;
  MCDisassembler *DisAsm = PrimaryDisAsm;
  bool PrimaryIsThumb = false;
  if (isArmElf(Obj))
    PrimaryIsThumb = STI->checkFeatures("+thumb-mode");

  std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
  if (InlineRelocs)
    RelocMap = getRelocsMap(*Obj);
  bool Is64Bits = Obj->getBytesInAddress() > 4;

  // Create a mapping from virtual address to symbol name.  This is used to
  // pretty print the symbols while disassembling.
  std::map<SectionRef, SectionSymbolsTy> AllSymbols;
  SectionSymbolsTy AbsoluteSymbols;
  const StringRef FileName = Obj->getFileName();
  const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);
  for (const SymbolRef &Symbol : Obj->symbols()) {
    Expected<StringRef> NameOrErr = Symbol.getName();
    if (!NameOrErr) {
      reportWarning(toString(NameOrErr.takeError()), FileName);
      continue;
    }
    if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription))
      continue;

    if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION)
      continue;

    // Don't ask a Mach-O STAB symbol for its section unless you know that
    // STAB symbol's section field refers to a valid section index. Otherwise
    // the symbol may error trying to load a section that does not exist.
    if (MachO) {
      DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
      uint8_t NType = (MachO->is64Bit() ?
                       MachO->getSymbol64TableEntry(SymDRI).n_type:
                       MachO->getSymbolTableEntry(SymDRI).n_type);
      if (NType & MachO::N_STAB)
        continue;
    }

    section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
    if (SecI != Obj->section_end())
      AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol));
    else
      AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol));
  }

  if (AllSymbols.empty() && Obj->isELF())
    addDynamicElfSymbols(Obj, AllSymbols);

  BumpPtrAllocator A;
  StringSaver Saver(A);
  addPltEntries(Obj, AllSymbols, Saver);

  // Create a mapping from virtual address to section. An empty section can
  // cause more than one section at the same address. Sort such sections to be
  // before same-addressed non-empty sections so that symbol lookups prefer the
  // non-empty section.
  std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
  for (SectionRef Sec : Obj->sections())
    SectionAddresses.emplace_back(Sec.getAddress(), Sec);
  llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) {
    if (LHS.first != RHS.first)
      return LHS.first < RHS.first;
    return LHS.second.getSize() < RHS.second.getSize();
  });

  // Linked executables (.exe and .dll files) typically don't include a real
  // symbol table but they might contain an export table.
  if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
    for (const auto &ExportEntry : COFFObj->export_directories()) {
      StringRef Name;
      if (Error E = ExportEntry.getSymbolName(Name))
        reportError(std::move(E), Obj->getFileName());
      if (Name.empty())
        continue;

      uint32_t RVA;
      if (Error E = ExportEntry.getExportRVA(RVA))
        reportError(std::move(E), Obj->getFileName());

      uint64_t VA = COFFObj->getImageBase() + RVA;
      auto Sec = partition_point(
          SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
            return O.first <= VA;
          });
      if (Sec != SectionAddresses.begin()) {
        --Sec;
        AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
      } else
        AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
    }
  }

  // Sort all the symbols, this allows us to use a simple binary search to find
  // Multiple symbols can have the same address. Use a stable sort to stabilize
  // the output.
  StringSet<> FoundDisasmSymbolSet;
  for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
    stable_sort(SecSyms.second);
  stable_sort(AbsoluteSymbols);

  std::unique_ptr<DWARFContext> DICtx;
  LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI);

  if (DbgVariables != DVDisabled) {
    DICtx = DWARFContext::create(*Obj);
    for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units())
      LVP.addCompileUnit(CU->getUnitDIE(false));
  }

  LLVM_DEBUG(LVP.dump());

  for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
    if (FilterSections.empty() && !DisassembleAll &&
        (!Section.isText() || Section.isVirtual()))
      continue;

    uint64_t SectionAddr = Section.getAddress();
    uint64_t SectSize = Section.getSize();
    if (!SectSize)
      continue;

    // Get the list of all the symbols in this section.
    SectionSymbolsTy &Symbols = AllSymbols[Section];
    std::vector<MappingSymbolPair> MappingSymbols;
    if (hasMappingSymbols(Obj)) {
      for (const auto &Symb : Symbols) {
        uint64_t Address = Symb.Addr;
        StringRef Name = Symb.Name;
        if (Name.startswith("$d"))
          MappingSymbols.emplace_back(Address - SectionAddr, 'd');
        if (Name.startswith("$x"))
          MappingSymbols.emplace_back(Address - SectionAddr, 'x');
        if (Name.startswith("$a"))
          MappingSymbols.emplace_back(Address - SectionAddr, 'a');
        if (Name.startswith("$t"))
          MappingSymbols.emplace_back(Address - SectionAddr, 't');
      }
    }

    llvm::sort(MappingSymbols);

    if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
      // AMDGPU disassembler uses symbolizer for printing labels
      std::unique_ptr<MCRelocationInfo> RelInfo(
        TheTarget->createMCRelocationInfo(TripleName, Ctx));
      if (RelInfo) {
        std::unique_ptr<MCSymbolizer> Symbolizer(
          TheTarget->createMCSymbolizer(
            TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
        DisAsm->setSymbolizer(std::move(Symbolizer));
      }
    }

    StringRef SegmentName = getSegmentName(MachO, Section);
    StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName());
    // If the section has no symbol at the start, just insert a dummy one.
    if (Symbols.empty() || Symbols[0].Addr != 0) {
      Symbols.insert(Symbols.begin(),
                     createDummySymbolInfo(Obj, SectionAddr, SectionName,
                                           Section.isText() ? ELF::STT_FUNC
                                                            : ELF::STT_OBJECT));
    }

    SmallString<40> Comments;
    raw_svector_ostream CommentStream(Comments);

    ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
        unwrapOrError(Section.getContents(), Obj->getFileName()));

    uint64_t VMAAdjustment = 0;
    if (shouldAdjustVA(Section))
      VMAAdjustment = AdjustVMA;

    uint64_t Size;
    uint64_t Index;
    bool PrintedSection = false;
    std::vector<RelocationRef> Rels = RelocMap[Section];
    std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
    std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
    // Disassemble symbol by symbol.
    for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
      std::string SymbolName = Symbols[SI].Name.str();
      if (Demangle)
        SymbolName = demangle(SymbolName);

      // Skip if --disassemble-symbols is not empty and the symbol is not in
      // the list.
      if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName))
        continue;

      uint64_t Start = Symbols[SI].Addr;
      if (Start < SectionAddr || StopAddress <= Start)
        continue;
      else
        FoundDisasmSymbolSet.insert(SymbolName);

      // The end is the section end, the beginning of the next symbol, or
      // --stop-address.
      uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
      if (SI + 1 < SE)
        End = std::min(End, Symbols[SI + 1].Addr);
      if (Start >= End || End <= StartAddress)
        continue;
      Start -= SectionAddr;
      End -= SectionAddr;

      if (!PrintedSection) {
        PrintedSection = true;
        outs() << "\nDisassembly of section ";
        if (!SegmentName.empty())
          outs() << SegmentName << ",";
        outs() << SectionName << ":\n";
      }

      if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
        if (Symbols[SI].Type == ELF::STT_AMDGPU_HSA_KERNEL) {
          // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
          Start += 256;
        }
        if (SI == SE - 1 ||
            Symbols[SI + 1].Type == ELF::STT_AMDGPU_HSA_KERNEL) {
          // cut trailing zeroes at the end of kernel
          // cut up to 256 bytes
          const uint64_t EndAlign = 256;
          const auto Limit = End - (std::min)(EndAlign, End - Start);
          while (End > Limit &&
            *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
            End -= 4;
        }
      }

      outs() << '\n';
      if (!NoLeadingAddr)
        outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
                         SectionAddr + Start + VMAAdjustment);
      if (Obj->isXCOFF() && SymbolDescription) {
        outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n";
      } else
        outs() << '<' << SymbolName << ">:\n";

      // Don't print raw contents of a virtual section. A virtual section
      // doesn't have any contents in the file.
      if (Section.isVirtual()) {
        outs() << "...\n";
        continue;
      }

      auto Status = DisAsm->onSymbolStart(Symbols[SI], Size,
                                          Bytes.slice(Start, End - Start),
                                          SectionAddr + Start, CommentStream);
      // To have round trippable disassembly, we fall back to decoding the
      // remaining bytes as instructions.
      //
      // If there is a failure, we disassemble the failed region as bytes before
      // falling back. The target is expected to print nothing in this case.
      //
      // If there is Success or SoftFail i.e no 'real' failure, we go ahead by
      // Size bytes before falling back.
      // So if the entire symbol is 'eaten' by the target:
      //   Start += Size  // Now Start = End and we will never decode as
      //                  // instructions
      //
      // Right now, most targets return None i.e ignore to treat a symbol
      // separately. But WebAssembly decodes preludes for some symbols.
      //
      if (Status.hasValue()) {
        if (Status.getValue() == MCDisassembler::Fail) {
          outs() << "// Error in decoding " << SymbolName
                 << " : Decoding failed region as bytes.\n";
          for (uint64_t I = 0; I < Size; ++I) {
            outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true)
                   << "\n";
          }
        }
      } else {
        Size = 0;
      }

      Start += Size;

      Index = Start;
      if (SectionAddr < StartAddress)
        Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);

      // If there is a data/common symbol inside an ELF text section and we are
      // only disassembling text (applicable all architectures), we are in a
      // situation where we must print the data and not disassemble it.
      if (Obj->isELF() && !DisassembleAll && Section.isText()) {
        uint8_t SymTy = Symbols[SI].Type;
        if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
          dumpELFData(SectionAddr, Index, End, Bytes);
          Index = End;
        }
      }

      bool CheckARMELFData = hasMappingSymbols(Obj) &&
                             Symbols[SI].Type != ELF::STT_OBJECT &&
                             !DisassembleAll;
      bool DumpARMELFData = false;
      formatted_raw_ostream FOS(outs());

      std::unordered_map<uint64_t, std::string> AllLabels;
      if (SymbolizeOperands)
        collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI,
                                  SectionAddr, Index, End, AllLabels);

      while (Index < End) {
        // ARM and AArch64 ELF binaries can interleave data and text in the
        // same section. We rely on the markers introduced to understand what
        // we need to dump. If the data marker is within a function, it is
        // denoted as a word/short etc.
        if (CheckARMELFData) {
          char Kind = getMappingSymbolKind(MappingSymbols, Index);
          DumpARMELFData = Kind == 'd';
          if (SecondarySTI) {
            if (Kind == 'a') {
              STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
              DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
            } else if (Kind == 't') {
              STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
              DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
            }
          }
        }

        if (DumpARMELFData) {
          Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
                                MappingSymbols, FOS);
        } else {
          // When -z or --disassemble-zeroes are given we always dissasemble
          // them. Otherwise we might want to skip zero bytes we see.
          if (!DisassembleZeroes) {
            uint64_t MaxOffset = End - Index;
            // For --reloc: print zero blocks patched by relocations, so that
            // relocations can be shown in the dump.
            if (RelCur != RelEnd)
              MaxOffset = RelCur->getOffset() - Index;

            if (size_t N =
                    countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
              FOS << "\t\t..." << '\n';
              Index += N;
              continue;
            }
          }

          // Print local label if there's any.
          auto Iter = AllLabels.find(SectionAddr + Index);
          if (Iter != AllLabels.end())
            FOS << "<" << Iter->second << ">:\n";

          // Disassemble a real instruction or a data when disassemble all is
          // provided
          MCInst Inst;
          bool Disassembled =
              DisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
                                     SectionAddr + Index, CommentStream);
          if (Size == 0)
            Size = 1;

          LVP.update({Index, Section.getIndex()},
                     {Index + Size, Section.getIndex()}, Index + Size != End);

          PIP.printInst(
              *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
              {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS,
              "", *STI, &SP, Obj->getFileName(), &Rels, LVP);
          FOS << CommentStream.str();
          Comments.clear();

          // If disassembly has failed, avoid analysing invalid/incomplete
          // instruction information. Otherwise, try to resolve the target
          // address (jump target or memory operand address) and print it on the
          // right of the instruction.
          if (Disassembled && MIA) {
            uint64_t Target;
            bool PrintTarget =
                MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target);
            if (!PrintTarget)
              if (Optional<uint64_t> MaybeTarget =
                      MIA->evaluateMemoryOperandAddress(
                          Inst, SectionAddr + Index, Size)) {
                Target = *MaybeTarget;
                PrintTarget = true;
                // Do not print real address when symbolizing.
                if (!SymbolizeOperands)
                  FOS << "  # " << Twine::utohexstr(Target);
              }
            if (PrintTarget) {
              // In a relocatable object, the target's section must reside in
              // the same section as the call instruction or it is accessed
              // through a relocation.
              //
              // In a non-relocatable object, the target may be in any section.
              // In that case, locate the section(s) containing the target
              // address and find the symbol in one of those, if possible.
              //
              // N.B. We don't walk the relocations in the relocatable case yet.
              std::vector<const SectionSymbolsTy *> TargetSectionSymbols;
              if (!Obj->isRelocatableObject()) {
                auto It = llvm::partition_point(
                    SectionAddresses,
                    [=](const std::pair<uint64_t, SectionRef> &O) {
                      return O.first <= Target;
                    });
                uint64_t TargetSecAddr = 0;
                while (It != SectionAddresses.begin()) {
                  --It;
                  if (TargetSecAddr == 0)
                    TargetSecAddr = It->first;
                  if (It->first != TargetSecAddr)
                    break;
                  TargetSectionSymbols.push_back(&AllSymbols[It->second]);
                }
              } else {
                TargetSectionSymbols.push_back(&Symbols);
              }
              TargetSectionSymbols.push_back(&AbsoluteSymbols);

              // Find the last symbol in the first candidate section whose
              // offset is less than or equal to the target. If there are no
              // such symbols, try in the next section and so on, before finally
              // using the nearest preceding absolute symbol (if any), if there
              // are no other valid symbols.
              const SymbolInfoTy *TargetSym = nullptr;
              for (const SectionSymbolsTy *TargetSymbols :
                   TargetSectionSymbols) {
                auto It = llvm::partition_point(
                    *TargetSymbols,
                    [=](const SymbolInfoTy &O) { return O.Addr <= Target; });
                if (It != TargetSymbols->begin()) {
                  TargetSym = &*(It - 1);
                  break;
                }
              }

              // Print the labels corresponding to the target if there's any.
              bool LabelAvailable = AllLabels.count(Target);
              if (TargetSym != nullptr) {
                uint64_t TargetAddress = TargetSym->Addr;
                uint64_t Disp = Target - TargetAddress;
                std::string TargetName = TargetSym->Name.str();
                if (Demangle)
                  TargetName = demangle(TargetName);

                FOS << " <";
                if (!Disp) {
                  // Always Print the binary symbol precisely corresponding to
                  // the target address.
                  FOS << TargetName;
                } else if (!LabelAvailable) {
                  // Always Print the binary symbol plus an offset if there's no
                  // local label corresponding to the target address.
                  FOS << TargetName << "+0x" << Twine::utohexstr(Disp);
                } else {
                  FOS << AllLabels[Target];
                }
                FOS << ">";
              } else if (LabelAvailable) {
                FOS << " <" << AllLabels[Target] << ">";
              }
            }
          }
        }

        LVP.printAfterInst(FOS);
        FOS << "\n";

        // Hexagon does this in pretty printer
        if (Obj->getArch() != Triple::hexagon) {
          // Print relocation for instruction and data.
          while (RelCur != RelEnd) {
            uint64_t Offset = RelCur->getOffset();
            // If this relocation is hidden, skip it.
            if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
              ++RelCur;
              continue;
            }

            // Stop when RelCur's offset is past the disassembled
            // instruction/data. Note that it's possible the disassembled data
            // is not the complete data: we might see the relocation printed in
            // the middle of the data, but this matches the binutils objdump
            // output.
            if (Offset >= Index + Size)
              break;

            // When --adjust-vma is used, update the address printed.
            if (RelCur->getSymbol() != Obj->symbol_end()) {
              Expected<section_iterator> SymSI =
                  RelCur->getSymbol()->getSection();
              if (SymSI && *SymSI != Obj->section_end() &&
                  shouldAdjustVA(**SymSI))
                Offset += AdjustVMA;
            }

            printRelocation(FOS, Obj->getFileName(), *RelCur,
                            SectionAddr + Offset, Is64Bits);
            LVP.printAfterOtherLine(FOS, true);
            ++RelCur;
          }
        }

        Index += Size;
      }
    }
  }
  StringSet<> MissingDisasmSymbolSet =
      set_difference(DisasmSymbolSet, FoundDisasmSymbolSet);
  for (StringRef Sym : MissingDisasmSymbolSet.keys())
    reportWarning("failed to disassemble missing symbol " + Sym, FileName);
}

static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
  const Target *TheTarget = getTarget(Obj);

  // Package up features to be passed to target/subtarget
  SubtargetFeatures Features = Obj->getFeatures();
  if (!MAttrs.empty())
    for (unsigned I = 0; I != MAttrs.size(); ++I)
      Features.AddFeature(MAttrs[I]);

  std::unique_ptr<const MCRegisterInfo> MRI(
      TheTarget->createMCRegInfo(TripleName));
  if (!MRI)
    reportError(Obj->getFileName(),
                "no register info for target " + TripleName);

  // Set up disassembler.
  MCTargetOptions MCOptions;
  std::unique_ptr<const MCAsmInfo> AsmInfo(
      TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
  if (!AsmInfo)
    reportError(Obj->getFileName(),
                "no assembly info for target " + TripleName);

  if (MCPU.empty())
    MCPU = Obj->tryGetCPUName().getValueOr("").str();

  std::unique_ptr<const MCSubtargetInfo> STI(
      TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
  if (!STI)
    reportError(Obj->getFileName(),
                "no subtarget info for target " + TripleName);
  std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
  if (!MII)
    reportError(Obj->getFileName(),
                "no instruction info for target " + TripleName);
  MCObjectFileInfo MOFI;
  MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
  // FIXME: for now initialize MCObjectFileInfo with default values
  MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);

  std::unique_ptr<MCDisassembler> DisAsm(
      TheTarget->createMCDisassembler(*STI, Ctx));
  if (!DisAsm)
    reportError(Obj->getFileName(), "no disassembler for target " + TripleName);

  // If we have an ARM object file, we need a second disassembler, because
  // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
  // We use mapping symbols to switch between the two assemblers, where
  // appropriate.
  std::unique_ptr<MCDisassembler> SecondaryDisAsm;
  std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
  if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
    if (STI->checkFeatures("+thumb-mode"))
      Features.AddFeature("-thumb-mode");
    else
      Features.AddFeature("+thumb-mode");
    SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
                                                        Features.getString()));
    SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
  }

  std::unique_ptr<const MCInstrAnalysis> MIA(
      TheTarget->createMCInstrAnalysis(MII.get()));

  int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
  std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
      Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
  if (!IP)
    reportError(Obj->getFileName(),
                "no instruction printer for target " + TripleName);
  IP->setPrintImmHex(PrintImmHex);
  IP->setPrintBranchImmAsAddress(true);
  IP->setSymbolizeOperands(SymbolizeOperands);
  IP->setMCInstrAnalysis(MIA.get());

  PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
  SourcePrinter SP(Obj, TheTarget->getName());

  for (StringRef Opt : DisassemblerOptions)
    if (!IP->applyTargetSpecificCLOption(Opt))
      reportError(Obj->getFileName(),
                  "Unrecognized disassembler option: " + Opt);

  disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
                    MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
                    SP, InlineRelocs);
}

void objdump::printRelocations(const ObjectFile *Obj) {
  StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
                                                 "%08" PRIx64;
  // Regular objdump doesn't print relocations in non-relocatable object
  // files.
  if (!Obj->isRelocatableObject())
    return;

  // Build a mapping from relocation target to a vector of relocation
  // sections. Usually, there is an only one relocation section for
  // each relocated section.
  MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
  uint64_t Ndx;
  for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) {
    if (Section.relocation_begin() == Section.relocation_end())
      continue;
    Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
    if (!SecOrErr)
      reportError(Obj->getFileName(),
                  "section (" + Twine(Ndx) +
                      "): unable to get a relocation target: " +
                      toString(SecOrErr.takeError()));
    SecToRelSec[**SecOrErr].push_back(Section);
  }

  for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
    StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName());
    outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
    uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8);
    uint32_t TypePadding = 24;
    outs() << left_justify("OFFSET", OffsetPadding) << " "
           << left_justify("TYPE", TypePadding) << " "
           << "VALUE\n";

    for (SectionRef Section : P.second) {
      for (const RelocationRef &Reloc : Section.relocations()) {
        uint64_t Address = Reloc.getOffset();
        SmallString<32> RelocName;
        SmallString<32> ValueStr;
        if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
          continue;
        Reloc.getTypeName(RelocName);
        if (Error E = getRelocationValueString(Reloc, ValueStr))
          reportError(std::move(E), Obj->getFileName());

        outs() << format(Fmt.data(), Address) << " "
               << left_justify(RelocName, TypePadding) << " " << ValueStr
               << "\n";
      }
    }
    outs() << "\n";
  }
}

void objdump::printDynamicRelocations(const ObjectFile *Obj) {
  // For the moment, this option is for ELF only
  if (!Obj->isELF())
    return;

  const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
  if (!Elf || Elf->getEType() != ELF::ET_DYN) {
    reportError(Obj->getFileName(), "not a dynamic object");
    return;
  }

  std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
  if (DynRelSec.empty())
    return;

  outs() << "DYNAMIC RELOCATION RECORDS\n";
  StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
  for (const SectionRef &Section : DynRelSec)
    for (const RelocationRef &Reloc : Section.relocations()) {
      uint64_t Address = Reloc.getOffset();
      SmallString<32> RelocName;
      SmallString<32> ValueStr;
      Reloc.getTypeName(RelocName);
      if (Error E = getRelocationValueString(Reloc, ValueStr))
        reportError(std::move(E), Obj->getFileName());
      outs() << format(Fmt.data(), Address) << " " << RelocName << " "
             << ValueStr << "\n";
    }
}

// Returns true if we need to show LMA column when dumping section headers. We
// show it only when the platform is ELF and either we have at least one section
// whose VMA and LMA are different and/or when --show-lma flag is used.
static bool shouldDisplayLMA(const ObjectFile *Obj) {
  if (!Obj->isELF())
    return false;
  for (const SectionRef &S : ToolSectionFilter(*Obj))
    if (S.getAddress() != getELFSectionLMA(S))
      return true;
  return ShowLMA;
}

static size_t getMaxSectionNameWidth(const ObjectFile *Obj) {
  // Default column width for names is 13 even if no names are that long.
  size_t MaxWidth = 13;
  for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
    StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
    MaxWidth = std::max(MaxWidth, Name.size());
  }
  return MaxWidth;
}

void objdump::printSectionHeaders(const ObjectFile *Obj) {
  size_t NameWidth = getMaxSectionNameWidth(Obj);
  size_t AddressWidth = 2 * Obj->getBytesInAddress();
  bool HasLMAColumn = shouldDisplayLMA(Obj);
  if (HasLMAColumn)
    outs() << "Sections:\n"
              "Idx "
           << left_justify("Name", NameWidth) << " Size     "
           << left_justify("VMA", AddressWidth) << " "
           << left_justify("LMA", AddressWidth) << " Type\n";
  else
    outs() << "Sections:\n"
              "Idx "
           << left_justify("Name", NameWidth) << " Size     "
           << left_justify("VMA", AddressWidth) << " Type\n";

  uint64_t Idx;
  for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) {
    StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
    uint64_t VMA = Section.getAddress();
    if (shouldAdjustVA(Section))
      VMA += AdjustVMA;

    uint64_t Size = Section.getSize();

    std::string Type = Section.isText() ? "TEXT" : "";
    if (Section.isData())
      Type += Type.empty() ? "DATA" : " DATA";
    if (Section.isBSS())
      Type += Type.empty() ? "BSS" : " BSS";

    if (HasLMAColumn)
      outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
                       Name.str().c_str(), Size)
             << format_hex_no_prefix(VMA, AddressWidth) << " "
             << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth)
             << " " << Type << "\n";
    else
      outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth,
                       Name.str().c_str(), Size)
             << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n";
  }
  outs() << "\n";
}

void objdump::printSectionContents(const ObjectFile *Obj) {
  const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj);

  for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
    StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName());
    uint64_t BaseAddr = Section.getAddress();
    uint64_t Size = Section.getSize();
    if (!Size)
      continue;

    outs() << "Contents of section ";
    StringRef SegmentName = getSegmentName(MachO, Section);
    if (!SegmentName.empty())
      outs() << SegmentName << ",";
    outs() << Name << ":\n";
    if (Section.isBSS()) {
      outs() << format("<skipping contents of bss section at [%04" PRIx64
                       ", %04" PRIx64 ")>\n",
                       BaseAddr, BaseAddr + Size);
      continue;
    }

    StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());

    // Dump out the content as hex and printable ascii characters.
    for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
      outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
      // Dump line of hex.
      for (std::size_t I = 0; I < 16; ++I) {
        if (I != 0 && I % 4 == 0)
          outs() << ' ';
        if (Addr + I < End)
          outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
                 << hexdigit(Contents[Addr + I] & 0xF, true);
        else
          outs() << "  ";
      }
      // Print ascii.
      outs() << "  ";
      for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
        if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
          outs() << Contents[Addr + I];
        else
          outs() << ".";
      }
      outs() << "\n";
    }
  }
}

void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
                               StringRef ArchitectureName, bool DumpDynamic) {
  if (O->isCOFF() && !DumpDynamic) {
    outs() << "SYMBOL TABLE:\n";
    printCOFFSymbolTable(cast<const COFFObjectFile>(O));
    return;
  }

  const StringRef FileName = O->getFileName();

  if (!DumpDynamic) {
    outs() << "SYMBOL TABLE:\n";
    for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I)
      printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
    return;
  }

  outs() << "DYNAMIC SYMBOL TABLE:\n";
  if (!O->isELF()) {
    reportWarning(
        "this operation is not currently supported for this file format",
        FileName);
    return;
  }

  const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O);
  for (auto I = ELF->getDynamicSymbolIterators().begin();
       I != ELF->getDynamicSymbolIterators().end(); ++I)
    printSymbol(O, *I, FileName, ArchiveName, ArchitectureName, DumpDynamic);
}

void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol,
                          StringRef FileName, StringRef ArchiveName,
                          StringRef ArchitectureName, bool DumpDynamic) {
  const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O);
  uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName,
                                   ArchitectureName);
  if ((Address < StartAddress) || (Address > StopAddress))
    return;
  SymbolRef::Type Type =
      unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName);
  uint32_t Flags =
      unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName);

  // Don't ask a Mach-O STAB symbol for its section unless you know that
  // STAB symbol's section field refers to a valid section index. Otherwise
  // the symbol may error trying to load a section that does not exist.
  bool IsSTAB = false;
  if (MachO) {
    DataRefImpl SymDRI = Symbol.getRawDataRefImpl();
    uint8_t NType =
        (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type
                          : MachO->getSymbolTableEntry(SymDRI).n_type);
    if (NType & MachO::N_STAB)
      IsSTAB = true;
  }
  section_iterator Section = IsSTAB
                                 ? O->section_end()
                                 : unwrapOrError(Symbol.getSection(), FileName,
                                                 ArchiveName, ArchitectureName);

  StringRef Name;
  if (Type == SymbolRef::ST_Debug && Section != O->section_end()) {
    if (Expected<StringRef> NameOrErr = Section->getName())
      Name = *NameOrErr;
    else
      consumeError(NameOrErr.takeError());

  } else {
    Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName,
                         ArchitectureName);
  }

  bool Global = Flags & SymbolRef::SF_Global;
  bool Weak = Flags & SymbolRef::SF_Weak;
  bool Absolute = Flags & SymbolRef::SF_Absolute;
  bool Common = Flags & SymbolRef::SF_Common;
  bool Hidden = Flags & SymbolRef::SF_Hidden;

  char GlobLoc = ' ';
  if ((Section != O->section_end() || Absolute) && !Weak)
    GlobLoc = Global ? 'g' : 'l';
  char IFunc = ' ';
  if (O->isELF()) {
    if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC)
      IFunc = 'i';
    if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE)
      GlobLoc = 'u';
  }

  char Debug = ' ';
  if (DumpDynamic)
    Debug = 'D';
  else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
    Debug = 'd';

  char FileFunc = ' ';
  if (Type == SymbolRef::ST_File)
    FileFunc = 'f';
  else if (Type == SymbolRef::ST_Function)
    FileFunc = 'F';
  else if (Type == SymbolRef::ST_Data)
    FileFunc = 'O';

  const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;

  outs() << format(Fmt, Address) << " "
         << GlobLoc            // Local -> 'l', Global -> 'g', Neither -> ' '
         << (Weak ? 'w' : ' ') // Weak?
         << ' '                // Constructor. Not supported yet.
         << ' '                // Warning. Not supported yet.
         << IFunc              // Indirect reference to another symbol.
         << Debug              // Debugging (d) or dynamic (D) symbol.
         << FileFunc           // Name of function (F), file (f) or object (O).
         << ' ';
  if (Absolute) {
    outs() << "*ABS*";
  } else if (Common) {
    outs() << "*COM*";
  } else if (Section == O->section_end()) {
    outs() << "*UND*";
  } else {
    StringRef SegmentName = getSegmentName(MachO, *Section);
    if (!SegmentName.empty())
      outs() << SegmentName << ",";
    StringRef SectionName = unwrapOrError(Section->getName(), FileName);
    outs() << SectionName;
  }

  if (Common || O->isELF()) {
    uint64_t Val =
        Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
    outs() << '\t' << format(Fmt, Val);
  }

  if (O->isELF()) {
    uint8_t Other = ELFSymbolRef(Symbol).getOther();
    switch (Other) {
    case ELF::STV_DEFAULT:
      break;
    case ELF::STV_INTERNAL:
      outs() << " .internal";
      break;
    case ELF::STV_HIDDEN:
      outs() << " .hidden";
      break;
    case ELF::STV_PROTECTED:
      outs() << " .protected";
      break;
    default:
      outs() << format(" 0x%02x", Other);
      break;
    }
  } else if (Hidden) {
    outs() << " .hidden";
  }

  if (Demangle)
    outs() << ' ' << demangle(std::string(Name)) << '\n';
  else
    outs() << ' ' << Name << '\n';
}

static void printUnwindInfo(const ObjectFile *O) {
  outs() << "Unwind info:\n\n";

  if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
    printCOFFUnwindInfo(Coff);
  else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
    printMachOUnwindInfo(MachO);
  else
    // TODO: Extract DWARF dump tool to objdump.
    WithColor::error(errs(), ToolName)
        << "This operation is only currently supported "
           "for COFF and MachO object files.\n";
}

/// Dump the raw contents of the __clangast section so the output can be piped
/// into llvm-bcanalyzer.
static void printRawClangAST(const ObjectFile *Obj) {
  if (outs().is_displayed()) {
    WithColor::error(errs(), ToolName)
        << "The -raw-clang-ast option will dump the raw binary contents of "
           "the clang ast section.\n"
           "Please redirect the output to a file or another program such as "
           "llvm-bcanalyzer.\n";
    return;
  }

  StringRef ClangASTSectionName("__clangast");
  if (Obj->isCOFF()) {
    ClangASTSectionName = "clangast";
  }

  Optional<object::SectionRef> ClangASTSection;
  for (auto Sec : ToolSectionFilter(*Obj)) {
    StringRef Name;
    if (Expected<StringRef> NameOrErr = Sec.getName())
      Name = *NameOrErr;
    else
      consumeError(NameOrErr.takeError());

    if (Name == ClangASTSectionName) {
      ClangASTSection = Sec;
      break;
    }
  }
  if (!ClangASTSection)
    return;

  StringRef ClangASTContents = unwrapOrError(
      ClangASTSection.getValue().getContents(), Obj->getFileName());
  outs().write(ClangASTContents.data(), ClangASTContents.size());
}

static void printFaultMaps(const ObjectFile *Obj) {
  StringRef FaultMapSectionName;

  if (Obj->isELF()) {
    FaultMapSectionName = ".llvm_faultmaps";
  } else if (Obj->isMachO()) {
    FaultMapSectionName = "__llvm_faultmaps";
  } else {
    WithColor::error(errs(), ToolName)
        << "This operation is only currently supported "
           "for ELF and Mach-O executable files.\n";
    return;
  }

  Optional<object::SectionRef> FaultMapSection;

  for (auto Sec : ToolSectionFilter(*Obj)) {
    StringRef Name;
    if (Expected<StringRef> NameOrErr = Sec.getName())
      Name = *NameOrErr;
    else
      consumeError(NameOrErr.takeError());

    if (Name == FaultMapSectionName) {
      FaultMapSection = Sec;
      break;
    }
  }

  outs() << "FaultMap table:\n";

  if (!FaultMapSection.hasValue()) {
    outs() << "<not found>\n";
    return;
  }

  StringRef FaultMapContents =
      unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
  FaultMapParser FMP(FaultMapContents.bytes_begin(),
                     FaultMapContents.bytes_end());

  outs() << FMP;
}

static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
  if (O->isELF()) {
    printELFFileHeader(O);
    printELFDynamicSection(O);
    printELFSymbolVersionInfo(O);
    return;
  }
  if (O->isCOFF())
    return printCOFFFileHeader(O);
  if (O->isWasm())
    return printWasmFileHeader(O);
  if (O->isMachO()) {
    printMachOFileHeader(O);
    if (!OnlyFirst)
      printMachOLoadCommands(O);
    return;
  }
  reportError(O->getFileName(), "Invalid/Unsupported object file format");
}

static void printFileHeaders(const ObjectFile *O) {
  if (!O->isELF() && !O->isCOFF())
    reportError(O->getFileName(), "Invalid/Unsupported object file format");

  Triple::ArchType AT = O->getArch();
  outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
  uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());

  StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
  outs() << "start address: "
         << "0x" << format(Fmt.data(), Address) << "\n\n";
}

static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
  Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
  if (!ModeOrErr) {
    WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
    consumeError(ModeOrErr.takeError());
    return;
  }
  sys::fs::perms Mode = ModeOrErr.get();
  outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
  outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
  outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
  outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
  outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
  outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
  outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
  outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
  outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");

  outs() << " ";

  outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
                   unwrapOrError(C.getGID(), Filename),
                   unwrapOrError(C.getRawSize(), Filename));

  StringRef RawLastModified = C.getRawLastModified();
  unsigned Seconds;
  if (RawLastModified.getAsInteger(10, Seconds))
    outs() << "(date: \"" << RawLastModified
           << "\" contains non-decimal chars) ";
  else {
    // Since ctime(3) returns a 26 character string of the form:
    // "Sun Sep 16 01:03:52 1973\n\0"
    // just print 24 characters.
    time_t t = Seconds;
    outs() << format("%.24s ", ctime(&t));
  }

  StringRef Name = "";
  Expected<StringRef> NameOrErr = C.getName();
  if (!NameOrErr) {
    consumeError(NameOrErr.takeError());
    Name = unwrapOrError(C.getRawName(), Filename);
  } else {
    Name = NameOrErr.get();
  }
  outs() << Name << "\n";
}

// For ELF only now.
static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) {
  if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) {
    if (Elf->getEType() != ELF::ET_REL)
      return true;
  }
  return false;
}

static void checkForInvalidStartStopAddress(ObjectFile *Obj,
                                            uint64_t Start, uint64_t Stop) {
  if (!shouldWarnForInvalidStartStopAddress(Obj))
    return;

  for (const SectionRef &Section : Obj->sections())
    if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) {
      uint64_t BaseAddr = Section.getAddress();
      uint64_t Size = Section.getSize();
      if ((Start < BaseAddr + Size) && Stop > BaseAddr)
        return;
    }

  if (StartAddress.getNumOccurrences() == 0)
    reportWarning("no section has address less than 0x" +
                      Twine::utohexstr(Stop) + " specified by --stop-address",
                  Obj->getFileName());
  else if (StopAddress.getNumOccurrences() == 0)
    reportWarning("no section has address greater than or equal to 0x" +
                      Twine::utohexstr(Start) + " specified by --start-address",
                  Obj->getFileName());
  else
    reportWarning("no section overlaps the range [0x" +
                      Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) +
                      ") specified by --start-address/--stop-address",
                  Obj->getFileName());
}

static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
                       const Archive::Child *C = nullptr) {
  // Avoid other output when using a raw option.
  if (!RawClangAST) {
    outs() << '\n';
    if (A)
      outs() << A->getFileName() << "(" << O->getFileName() << ")";
    else
      outs() << O->getFileName();
    outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n\n";
  }

  if (StartAddress.getNumOccurrences() || StopAddress.getNumOccurrences())
    checkForInvalidStartStopAddress(O, StartAddress, StopAddress);

  // Note: the order here matches GNU objdump for compatability.
  StringRef ArchiveName = A ? A->getFileName() : "";
  if (ArchiveHeaders && !MachOOpt && C)
    printArchiveChild(ArchiveName, *C);
  if (FileHeaders)
    printFileHeaders(O);
  if (PrivateHeaders || FirstPrivateHeader)
    printPrivateFileHeaders(O, FirstPrivateHeader);
  if (SectionHeaders)
    printSectionHeaders(O);
  if (SymbolTable)
    printSymbolTable(O, ArchiveName);
  if (DynamicSymbolTable)
    printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"",
                     /*DumpDynamic=*/true);
  if (DwarfDumpType != DIDT_Null) {
    std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
    // Dump the complete DWARF structure.
    DIDumpOptions DumpOpts;
    DumpOpts.DumpType = DwarfDumpType;
    DICtx->dump(outs(), DumpOpts);
  }
  if (Relocations && !Disassemble)
    printRelocations(O);
  if (DynamicRelocations)
    printDynamicRelocations(O);
  if (SectionContents)
    printSectionContents(O);
  if (Disassemble)
    disassembleObject(O, Relocations);
  if (UnwindInfo)
    printUnwindInfo(O);

  // Mach-O specific options:
  if (ExportsTrie)
    printExportsTrie(O);
  if (Rebase)
    printRebaseTable(O);
  if (Bind)
    printBindTable(O);
  if (LazyBind)
    printLazyBindTable(O);
  if (WeakBind)
    printWeakBindTable(O);

  // Other special sections:
  if (RawClangAST)
    printRawClangAST(O);
  if (FaultMapSection)
    printFaultMaps(O);
}

static void dumpObject(const COFFImportFile *I, const Archive *A,
                       const Archive::Child *C = nullptr) {
  StringRef ArchiveName = A ? A->getFileName() : "";

  // Avoid other output when using a raw option.
  if (!RawClangAST)
    outs() << '\n'
           << ArchiveName << "(" << I->getFileName() << ")"
           << ":\tfile format COFF-import-file"
           << "\n\n";

  if (ArchiveHeaders && !MachOOpt && C)
    printArchiveChild(ArchiveName, *C);
  if (SymbolTable)
    printCOFFSymbolTable(I);
}

/// Dump each object file in \a a;
static void dumpArchive(const Archive *A) {
  Error Err = Error::success();
  unsigned I = -1;
  for (auto &C : A->children(Err)) {
    ++I;
    Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
    if (!ChildOrErr) {
      if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
        reportError(std::move(E), getFileNameForError(C, I), A->getFileName());
      continue;
    }
    if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
      dumpObject(O, A, &C);
    else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
      dumpObject(I, A, &C);
    else
      reportError(errorCodeToError(object_error::invalid_file_type),
                  A->getFileName());
  }
  if (Err)
    reportError(std::move(Err), A->getFileName());
}

/// Open file and figure out how to dump it.
static void dumpInput(StringRef file) {
  // If we are using the Mach-O specific object file parser, then let it parse
  // the file and process the command line options.  So the -arch flags can
  // be used to select specific slices, etc.
  if (MachOOpt) {
    parseInputMachO(file);
    return;
  }

  // Attempt to open the binary.
  OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
  Binary &Binary = *OBinary.getBinary();

  if (Archive *A = dyn_cast<Archive>(&Binary))
    dumpArchive(A);
  else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
    dumpObject(O);
  else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
    parseInputMachO(UB);
  else
    reportError(errorCodeToError(object_error::invalid_file_type), file);
}

int main(int argc, char **argv) {
  using namespace llvm;
  InitLLVM X(argc, argv);
  const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
  cl::HideUnrelatedOptions(OptionFilters);

  // Initialize targets and assembly printers/parsers.
  InitializeAllTargetInfos();
  InitializeAllTargetMCs();
  InitializeAllDisassemblers();

  // Register the target printer for --version.
  cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);

  cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n", nullptr,
                              /*EnvVar=*/nullptr,
                              /*LongOptionsUseDoubleDash=*/true);

  if (StartAddress >= StopAddress)
    reportCmdLineError("start address should be less than stop address");

  ToolName = argv[0];

  // Defaults to a.out if no filenames specified.
  if (InputFilenames.empty())
    InputFilenames.push_back("a.out");

  if (AllHeaders)
    ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
        SectionHeaders = SymbolTable = true;

  if (DisassembleAll || PrintSource || PrintLines ||
      !DisassembleSymbols.empty())
    Disassemble = true;

  if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
      !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
      !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
      !DynamicSymbolTable && !UnwindInfo && !FaultMapSection &&
      !(MachOOpt &&
        (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
         FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind ||
         LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders ||
         WeakBind || !FilterSections.empty()))) {
    cl::PrintHelpMessage();
    return 2;
  }

  DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end());

  llvm::for_each(InputFilenames, dumpInput);

  warnOnNoMatchForSections();

  return EXIT_SUCCESS;
}