invariant-store-vectorization.ll 26.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
; RUN: opt < %s -licm -loop-vectorize -force-vector-width=4 -dce -instcombine -licm -S | FileCheck %s

; First licm pass is to hoist/sink invariant stores if possible. Today LICM does
; not hoist/sink the invariant stores. Even if that changes, we should still
; vectorize this loop in case licm is not run.

; The next licm pass after vectorization is to hoist/sink loop invariant
; instructions.
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"

; all tests check that it is legal to vectorize the stores to invariant
; address.


; CHECK-LABEL: inv_val_store_to_inv_address_with_reduction(
; memory check is found.conflict = b[max(n-1,1)] > a && (i8* a)+1 > (i8* b)
; CHECK: vector.memcheck:
; CHECK:    found.conflict

; CHECK-LABEL: vector.body:
; CHECK:         %vec.phi = phi <4 x i32>  [ zeroinitializer, %vector.ph ], [ [[ADD:%[a-zA-Z0-9.]+]], %vector.body ]
; CHECK:         %wide.load = load <4 x i32>
; CHECK:         [[ADD]] = add <4 x i32> %vec.phi, %wide.load
; CHECK-NEXT:    store i32 %ntrunc, i32* %a
; CHECK-NEXT:    %index.next = add i64 %index, 4
; CHECK-NEXT:    icmp eq i64 %index.next, %n.vec
; CHECK-NEXT:    br i1

; CHECK-LABEL: middle.block:
; CHECK:         %rdx.shuf = shufflevector <4 x i32>
define i32 @inv_val_store_to_inv_address_with_reduction(i32* %a, i64 %n, i32* %b) {
entry:
  %ntrunc = trunc i64 %n to i32
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
  %tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
  %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
  %tmp2 = load i32, i32* %tmp1, align 8
  %tmp3 = add i32 %tmp0, %tmp2
  store i32 %ntrunc, i32* %a
  %i.next = add nuw nsw i64 %i, 1
  %cond = icmp slt i64 %i.next, %n
  br i1 %cond, label %for.body, label %for.end

for.end:                                          ; preds = %for.body
  %tmp4 = phi i32 [ %tmp3, %for.body ]
  ret i32 %tmp4
}

; CHECK-LABEL: inv_val_store_to_inv_address(
; CHECK-LABEL: vector.body:
; CHECK:         store i32 %ntrunc, i32* %a
; CHECK:         store <4 x i32>
; CHECK-NEXT:    %index.next = add i64 %index, 4
; CHECK-NEXT:    icmp eq i64 %index.next, %n.vec
; CHECK-NEXT:    br i1
define void @inv_val_store_to_inv_address(i32* %a, i64 %n, i32* %b) {
entry:
  %ntrunc = trunc i64 %n to i32
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
  %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
  %tmp2 = load i32, i32* %tmp1, align 8
  store i32 %ntrunc, i32* %a
  store i32 %ntrunc, i32* %tmp1
  %i.next = add nuw nsw i64 %i, 1
  %cond = icmp slt i64 %i.next, %n
  br i1 %cond, label %for.body, label %for.end

for.end:                                          ; preds = %for.body
  ret void
}


; Both of these tests below are handled as predicated stores.

; Conditional store
; if (b[i] == k) a = ntrunc
; TODO: We can be better with the code gen for the first test and we can have
; just one scalar store if vector.or.reduce(vector_cmp(b[i] == k)) is 1.

; CHECK-LABEL:inv_val_store_to_inv_address_conditional(
; CHECK-LABEL: vector.body:
; CHECK:           %wide.load = load <4 x i32>, <4 x i32>*
; CHECK:           [[CMP:%[a-zA-Z0-9.]+]] = icmp eq <4 x i32> %wide.load, %{{.*}}
; CHECK:           store <4 x i32>
; CHECK-NEXT:      [[EE:%[a-zA-Z0-9.]+]] =  extractelement <4 x i1> [[CMP]], i32 0
; CHECK-NEXT:      br i1 [[EE]], label %pred.store.if, label %pred.store.continue

; CHECK-LABEL: pred.store.if:
; CHECK-NEXT:      store i32 %ntrunc, i32* %a
; CHECK-NEXT:      br label %pred.store.continue

; CHECK-LABEL: pred.store.continue:
; CHECK-NEXT:      [[EE1:%[a-zA-Z0-9.]+]] =  extractelement <4 x i1> [[CMP]], i32 1
define void @inv_val_store_to_inv_address_conditional(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
  %ntrunc = trunc i64 %n to i32
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
  %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
  %tmp2 = load i32, i32* %tmp1, align 8
  %cmp = icmp eq i32 %tmp2, %k
  store i32 %ntrunc, i32* %tmp1
  br i1 %cmp, label %cond_store, label %latch

cond_store:
  store i32 %ntrunc, i32* %a
  br label %latch

latch:
  %i.next = add nuw nsw i64 %i, 1
  %cond = icmp slt i64 %i.next, %n
  br i1 %cond, label %for.body, label %for.end

for.end:                                          ; preds = %for.body
  ret void
}

; if (b[i] == k)
;    a = ntrunc
; else a = k;
; TODO: We could vectorize this once we support multiple uniform stores to the
; same address.
; CHECK-LABEL:inv_val_store_to_inv_address_conditional_diff_values(
; CHECK-NOT:           load <4 x i32>
define void @inv_val_store_to_inv_address_conditional_diff_values(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
  %ntrunc = trunc i64 %n to i32
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
  %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
  %tmp2 = load i32, i32* %tmp1, align 8
  %cmp = icmp eq i32 %tmp2, %k
  store i32 %ntrunc, i32* %tmp1
  br i1 %cmp, label %cond_store, label %cond_store_k

cond_store:
  store i32 %ntrunc, i32* %a
  br label %latch

cond_store_k:
  store i32 %k, i32 * %a
  br label %latch

latch:
  %i.next = add nuw nsw i64 %i, 1
  %cond = icmp slt i64 %i.next, %n
  br i1 %cond, label %for.body, label %for.end

for.end:                                          ; preds = %for.body
  ret void
}

; Instcombine'd version of above test. Now the store is no longer of invariant
; value.
; scalar store the value extracted from the last element of the vector value.
; CHECK-LABEL: inv_val_store_to_inv_address_conditional_diff_values_ic
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[NTRUNC:%.*]] = trunc i64 [[N:%.*]] to i32
; CHECK-NEXT:    [[TMP0:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT:    [[SMAX:%.*]] = select i1 [[TMP0]], i64 [[N]], i64 1
; CHECK-NEXT:    [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4
; CHECK-NEXT:    br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK:       vector.memcheck:
; CHECK-NEXT:    [[A4:%.*]] = bitcast i32* [[A:%.*]] to i8*
; CHECK-NEXT:    [[B1:%.*]] = bitcast i32* [[B:%.*]] to i8*
; CHECK-NEXT:    [[TMP1:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT:    [[SMAX2:%.*]] = select i1 [[TMP1]], i64 [[N]], i64 1
; CHECK-NEXT:    [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX2]]
; CHECK-NEXT:    [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A4]], i64 1
; CHECK-NEXT:    [[BOUND0:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B1]]
; CHECK-NEXT:    [[BOUND1:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]]
; CHECK-NEXT:    [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; CHECK-NEXT:    br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK:       vector.ph:
; CHECK-NEXT:    [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804
; CHECK-NEXT:    [[BROADCAST_SPLATINSERT5:%.*]] = insertelement <4 x i32> undef, i32 [[K:%.*]], i32 0
; CHECK-NEXT:    [[BROADCAST_SPLAT6:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT5]], <4 x i32> undef, <4 x i32> zeroinitializer
; CHECK-NEXT:    [[BROADCAST_SPLATINSERT7:%.*]] = insertelement <4 x i32> undef, i32 [[NTRUNC]], i32 0
; CHECK-NEXT:    [[BROADCAST_SPLAT8:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT7]], <4 x i32> undef, <4 x i32> zeroinitializer
; CHECK-NEXT:    br label [[VECTOR_BODY:%.*]]
; CHECK:       vector.body:
; CHECK-NEXT:    [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT:    [[TMP2:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]]
; CHECK-NEXT:    [[TMP3:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>*
; CHECK-NEXT:    [[WIDE_LOAD:%.*]] = load <4 x i32>, <4 x i32>* [[TMP3]], align 8
; CHECK-NEXT:    [[TMP4:%.*]] = icmp eq <4 x i32> [[WIDE_LOAD]], [[BROADCAST_SPLAT6]]
; CHECK-NEXT:    [[TMP5:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>*
; CHECK-NEXT:    store <4 x i32> [[BROADCAST_SPLAT8]], <4 x i32>* [[TMP5]], align 4
; CHECK-NEXT:    [[PREDPHI:%.*]] = select <4 x i1> [[TMP4]], <4 x i32> [[BROADCAST_SPLAT8]], <4 x i32> [[BROADCAST_SPLAT6]]
; CHECK-NEXT:    [[TMP6:%.*]] = extractelement <4 x i32> [[PREDPHI]], i32 3
; CHECK-NEXT:    store i32 [[TMP6]], i32* [[A]], align 4
; CHECK-NEXT:    [[INDEX_NEXT]] = add i64 [[INDEX]], 4
; CHECK-NEXT:    [[TMP7:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT:    br i1 [[TMP7]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]]
; CHECK:       middle.block:
; CHECK-NEXT:    [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]]
; CHECK-NEXT:    br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]]
; CHECK:       scalar.ph:
; CHECK-NEXT:    [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT:    br label [[FOR_BODY:%.*]]
; CHECK:       for.body:
; CHECK-NEXT:    [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[LATCH:%.*]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ]
; CHECK-NEXT:    [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]]
; CHECK-NEXT:    [[TMP2:%.*]] = load i32, i32* [[TMP1]], align 8
; CHECK-NEXT:    [[CMP:%.*]] = icmp eq i32 [[TMP2]], [[K]]
; CHECK-NEXT:    store i32 [[NTRUNC]], i32* [[TMP1]], align 4
; CHECK-NEXT:    br i1 [[CMP]], label [[COND_STORE:%.*]], label [[COND_STORE_K:%.*]]
; CHECK:       cond_store:
; CHECK-NEXT:    br label [[LATCH]]
; CHECK:       cond_store_k:
; CHECK-NEXT:    br label [[LATCH]]
; CHECK:       latch:
; CHECK-NEXT:    [[STOREVAL:%.*]] = phi i32 [ [[NTRUNC]], [[COND_STORE]] ], [ [[K]], [[COND_STORE_K]] ]
; CHECK-NEXT:    store i32 [[STOREVAL]], i32* [[A]], align 4
; CHECK-NEXT:    [[I_NEXT]] = add nuw nsw i64 [[I]], 1
; CHECK-NEXT:    [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]]
; CHECK-NEXT:    br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]]
; CHECK:       for.end.loopexit:
; CHECK-NEXT:    br label [[FOR_END]]
; CHECK:       for.end:
; CHECK-NEXT:    ret void
;
define void @inv_val_store_to_inv_address_conditional_diff_values_ic(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
  %ntrunc = trunc i64 %n to i32
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
  %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
  %tmp2 = load i32, i32* %tmp1, align 8
  %cmp = icmp eq i32 %tmp2, %k
  store i32 %ntrunc, i32* %tmp1
  br i1 %cmp, label %cond_store, label %cond_store_k

cond_store:
  br label %latch

cond_store_k:
  br label %latch

latch:
  %storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ]
  store i32 %storeval, i32* %a
  %i.next = add nuw nsw i64 %i, 1
  %cond = icmp slt i64 %i.next, %n
  br i1 %cond, label %for.body, label %for.end

for.end:                                          ; preds = %for.body
  ret void
}

; invariant val stored to invariant address predicated on invariant condition
; This is not treated as a predicated store since the block the store belongs to
; is the latch block (which doesn't need to be predicated).
; variant/invariant values being stored to invariant address.
; test checks that the last element of the phi is extracted and scalar stored
; into the uniform address within the loop.
; Since the condition and the phi is loop invariant, they are LICM'ed after
; vectorization.
; CHECK-LABEL: inv_val_store_to_inv_address_conditional_inv
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[NTRUNC:%.*]] = trunc i64 [[N:%.*]] to i32
; CHECK-NEXT:    [[CMP:%.*]] = icmp eq i32 [[NTRUNC]], [[K:%.*]]
; CHECK-NEXT:    [[TMP0:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT:    [[SMAX:%.*]] = select i1 [[TMP0]], i64 [[N]], i64 1
; CHECK-NEXT:    [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4
; CHECK-NEXT:    br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK:       vector.memcheck:
; CHECK-NEXT:    [[A4:%.*]] = bitcast i32* [[A:%.*]] to i8*
; CHECK-NEXT:    [[B1:%.*]] = bitcast i32* [[B:%.*]] to i8*
; CHECK-NEXT:    [[TMP1:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT:    [[SMAX2:%.*]] = select i1 [[TMP1]], i64 [[N]], i64 1
; CHECK-NEXT:    [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX2]]
; CHECK-NEXT:    [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A4]], i64 1
; CHECK-NEXT:    [[BOUND0:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B1]]
; CHECK-NEXT:    [[BOUND1:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]]
; CHECK-NEXT:    [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; CHECK-NEXT:    br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK:       vector.ph:
; CHECK-NEXT:    [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804
; CHECK-NEXT:    [[BROADCAST_SPLATINSERT5:%.*]] = insertelement <4 x i32> undef, i32 [[NTRUNC]], i32 0
; CHECK-NEXT:    [[BROADCAST_SPLAT6:%.*]] = shufflevector <4 x i32> [[BROADCAST_SPLATINSERT5]], <4 x i32> undef, <4 x i32> zeroinitializer
; CHECK-NEXT:    [[TMP2:%.*]] = insertelement <4 x i1> undef, i1 [[CMP]], i32 3
; CHECK-NEXT:    [[TMP3:%.*]] = insertelement <4 x i32> undef, i32 [[K]], i32 3
; CHECK-NEXT:    [[PREDPHI:%.*]] = select <4 x i1> [[TMP2]], <4 x i32> [[BROADCAST_SPLAT6]], <4 x i32> [[TMP3]]
; CHECK-NEXT:    [[TMP5:%.*]] = extractelement <4 x i32> [[PREDPHI]], i32 3
; CHECK-NEXT:    br label [[VECTOR_BODY:%.*]]
; CHECK:       vector.body:
; CHECK-NEXT:    [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT:    [[TMP6:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]]
; CHECK-NEXT:    [[TMP7:%.*]] = bitcast i32* [[TMP6]] to <4 x i32>*
; CHECK-NEXT:    store <4 x i32> [[BROADCAST_SPLAT6]], <4 x i32>* [[TMP7]], align 4
; CHECK-NEXT:    store i32 [[TMP5]], i32* [[A]], align 4
; CHECK-NEXT:    [[INDEX_NEXT]] = add i64 [[INDEX]], 4
; CHECK-NEXT:    [[TMP8:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT:    br i1 [[TMP8]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]]
; CHECK:       middle.block:
; CHECK-NEXT:    [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]]
; CHECK-NEXT:    br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]]
; CHECK:       scalar.ph:
; CHECK-NEXT:    [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT:    br label [[FOR_BODY:%.*]]
; CHECK:       for.body:
; CHECK-NEXT:    [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[LATCH:%.*]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ]
; CHECK-NEXT:    [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]]
; CHECK-NEXT:    store i32 [[NTRUNC]], i32* [[TMP1]], align 4
; CHECK-NEXT:    br i1 [[CMP]], label [[COND_STORE:%.*]], label [[COND_STORE_K:%.*]]
; CHECK:       cond_store:
; CHECK-NEXT:    br label [[LATCH]]
; CHECK:       cond_store_k:
; CHECK-NEXT:    br label [[LATCH]]
; CHECK:       latch:
; CHECK-NEXT:    [[STOREVAL:%.*]] = phi i32 [ [[NTRUNC]], [[COND_STORE]] ], [ [[K]], [[COND_STORE_K]] ]
; CHECK-NEXT:    store i32 [[STOREVAL]], i32* [[A]], align 4
; CHECK-NEXT:    [[I_NEXT]] = add nuw nsw i64 [[I]], 1
; CHECK-NEXT:    [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]]
; CHECK-NEXT:    br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]]
; CHECK:       for.end.loopexit:
; CHECK-NEXT:    br label [[FOR_END]]
; CHECK:       for.end:
; CHECK-NEXT:    ret void
;
define void @inv_val_store_to_inv_address_conditional_inv(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
  %ntrunc = trunc i64 %n to i32
  %cmp = icmp eq i32 %ntrunc, %k
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %i = phi i64 [ %i.next, %latch ], [ 0, %entry ]
  %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
  %tmp2 = load i32, i32* %tmp1, align 8
  store i32 %ntrunc, i32* %tmp1
  br i1 %cmp, label %cond_store, label %cond_store_k

cond_store:
  br label %latch

cond_store_k:
  br label %latch

latch:
  %storeval = phi i32 [ %ntrunc, %cond_store ], [ %k, %cond_store_k ]
  store i32 %storeval, i32* %a
  %i.next = add nuw nsw i64 %i, 1
  %cond = icmp slt i64 %i.next, %n
  br i1 %cond, label %for.body, label %for.end

for.end:                                          ; preds = %for.body
  ret void
}

; variant value stored to uniform address tests that the code gen extracts the
; last element from the variant vector and scalar stores it into the uniform
; address.
; CHECK-LABEL: variant_val_store_to_inv_address
; CHECK-NEXT:  entry:
; CHECK-NEXT:    [[TMP0:%.*]] = icmp sgt i64 [[N:%.*]], 1
; CHECK-NEXT:    [[SMAX:%.*]] = select i1 [[TMP0]], i64 [[N]], i64 1
; CHECK-NEXT:    [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[SMAX]], 4
; CHECK-NEXT:    br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK:       vector.memcheck:
; CHECK-NEXT:    [[B2:%.*]] = bitcast i32* [[B:%.*]] to i8*
; CHECK-NEXT:    [[A1:%.*]] = bitcast i32* [[A:%.*]] to i8*
; CHECK-NEXT:    [[UGLYGEP:%.*]] = getelementptr i8, i8* [[A1]], i64 1
; CHECK-NEXT:    [[TMP1:%.*]] = icmp sgt i64 [[N]], 1
; CHECK-NEXT:    [[SMAX3:%.*]] = select i1 [[TMP1]], i64 [[N]], i64 1
; CHECK-NEXT:    [[SCEVGEP:%.*]] = getelementptr i32, i32* [[B]], i64 [[SMAX3]]
; CHECK-NEXT:    [[BOUND0:%.*]] = icmp ugt i32* [[SCEVGEP]], [[A]]
; CHECK-NEXT:    [[BOUND1:%.*]] = icmp ugt i8* [[UGLYGEP]], [[B2]]
; CHECK-NEXT:    [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; CHECK-NEXT:    br i1 [[FOUND_CONFLICT]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK:       vector.ph:
; CHECK-NEXT:    [[N_VEC:%.*]] = and i64 [[SMAX]], 9223372036854775804
; CHECK-NEXT:    br label [[VECTOR_BODY:%.*]]
; CHECK:       vector.body:
; CHECK-NEXT:    [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT:    [[VEC_PHI:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP5:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT:    [[TMP2:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[INDEX]]
; CHECK-NEXT:    [[TMP3:%.*]] = bitcast i32* [[TMP2]] to <4 x i32>*
; CHECK-NEXT:    [[WIDE_LOAD:%.*]] = load <4 x i32>, <4 x i32>* [[TMP3]], align 8
; CHECK-NEXT:    [[TMP4:%.*]] = extractelement <4 x i32> [[WIDE_LOAD]], i32 3
; CHECK-NEXT:    store i32 [[TMP4]], i32* [[A]], align 4
; CHECK-NEXT:    [[TMP5]] = add <4 x i32> [[VEC_PHI]], [[WIDE_LOAD]]
; CHECK-NEXT:    [[INDEX_NEXT]] = add i64 [[INDEX]], 4
; CHECK-NEXT:    [[TMP6:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT:    br i1 [[TMP6]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]]
; CHECK:       middle.block:
; CHECK-NEXT:    [[DOTLCSSA:%.*]] = phi <4 x i32> [ [[TMP5]], [[VECTOR_BODY]] ]
; CHECK-NEXT:    [[RDX_SHUF:%.*]] = shufflevector <4 x i32> [[DOTLCSSA]], <4 x i32> undef, <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
; CHECK-NEXT:    [[BIN_RDX:%.*]] = add <4 x i32> [[DOTLCSSA]], [[RDX_SHUF]]
; CHECK-NEXT:    [[RDX_SHUF5:%.*]] = shufflevector <4 x i32> [[BIN_RDX]], <4 x i32> undef, <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
; CHECK-NEXT:    [[BIN_RDX6:%.*]] = add <4 x i32> [[BIN_RDX]], [[RDX_SHUF5]]
; CHECK-NEXT:    [[TMP7:%.*]] = extractelement <4 x i32> [[BIN_RDX6]], i32 0
; CHECK-NEXT:    [[CMP_N:%.*]] = icmp eq i64 [[SMAX]], [[N_VEC]]
; CHECK-NEXT:    br i1 [[CMP_N]], label [[FOR_END:%.*]], label [[SCALAR_PH]]
; CHECK:       scalar.ph:
; CHECK-NEXT:    [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT:    [[BC_MERGE_RDX:%.*]] = phi i32 [ [[TMP7]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT:    br label [[FOR_BODY:%.*]]
; CHECK:       for.body:
; CHECK-NEXT:    [[I:%.*]] = phi i64 [ [[I_NEXT:%.*]], [[FOR_BODY]] ], [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ]
; CHECK-NEXT:    [[TMP0:%.*]] = phi i32 [ [[TMP3:%.*]], [[FOR_BODY]] ], [ [[BC_MERGE_RDX]], [[SCALAR_PH]] ]
; CHECK-NEXT:    [[TMP1:%.*]] = getelementptr inbounds i32, i32* [[B]], i64 [[I]]
; CHECK-NEXT:    [[TMP2:%.*]] = load i32, i32* [[TMP1]], align 8
; CHECK-NEXT:    store i32 [[TMP2]], i32* [[A]], align 4
; CHECK-NEXT:    [[TMP3]] = add i32 [[TMP0]], [[TMP2]]
; CHECK-NEXT:    [[I_NEXT]] = add nuw nsw i64 [[I]], 1
; CHECK-NEXT:    [[COND:%.*]] = icmp slt i64 [[I_NEXT]], [[N]]
; CHECK-NEXT:    br i1 [[COND]], label [[FOR_BODY]], label [[FOR_END_LOOPEXIT:%.*]]
; CHECK:       for.end.loopexit:
; CHECK-NEXT:    [[TMP3_LCSSA:%.*]] = phi i32 [ [[TMP3]], [[FOR_BODY]] ]
; CHECK-NEXT:    br label [[FOR_END]]
define i32 @variant_val_store_to_inv_address(i32* %a, i64 %n, i32* %b, i32 %k) {
entry:
  %ntrunc = trunc i64 %n to i32
  %cmp = icmp eq i32 %ntrunc, %k
  br label %for.body

for.body:                                         ; preds = %for.body, %entry
  %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ]
  %tmp0 = phi i32 [ %tmp3, %for.body ], [ 0, %entry ]
  %tmp1 = getelementptr inbounds i32, i32* %b, i64 %i
  %tmp2 = load i32, i32* %tmp1, align 8
  store i32 %tmp2, i32* %a
  %tmp3 = add i32 %tmp0, %tmp2
  %i.next = add nuw nsw i64 %i, 1
  %cond = icmp slt i64 %i.next, %n
  br i1 %cond, label %for.body, label %for.end

for.end:                                          ; preds = %for.body
  %rdx.lcssa = phi i32 [ %tmp3, %for.body ]
  ret i32 %rdx.lcssa
}

; Multiple variant stores to the same uniform address
; We do not vectorize such loops currently.
;  for(; i < itr; i++) {
;    for(; j < itr; j++) {
;      var1[i] = var2[j] + var1[i];
;      var1[i]++;
;    }
;  }

; CHECK-LABEL: multiple_uniform_stores
; CHECK-NOT:     <4 x i32>
define i32 @multiple_uniform_stores(i32* nocapture %var1, i32* nocapture readonly %var2, i32 %itr) #0 {
entry:
  %cmp20 = icmp eq i32 %itr, 0
  br i1 %cmp20, label %for.end10, label %for.cond1.preheader

for.cond1.preheader:                              ; preds = %entry, %for.inc8
  %indvars.iv23 = phi i64 [ %indvars.iv.next24, %for.inc8 ], [ 0, %entry ]
  %j.022 = phi i32 [ %j.1.lcssa, %for.inc8 ], [ 0, %entry ]
  %cmp218 = icmp ult i32 %j.022, %itr
  br i1 %cmp218, label %for.body3.lr.ph, label %for.inc8

for.body3.lr.ph:                                  ; preds = %for.cond1.preheader
  %arrayidx5 = getelementptr inbounds i32, i32* %var1, i64 %indvars.iv23
  %0 = zext i32 %j.022 to i64
  br label %for.body3

for.body3:                                        ; preds = %for.body3, %for.body3.lr.ph
  %indvars.iv = phi i64 [ %0, %for.body3.lr.ph ], [ %indvars.iv.next, %for.body3 ]
  %arrayidx = getelementptr inbounds i32, i32* %var2, i64 %indvars.iv
  %1 = load i32, i32* %arrayidx, align 4
  %2 = load i32, i32* %arrayidx5, align 4
  %add = add nsw i32 %2, %1
  store i32 %add, i32* %arrayidx5, align 4
  %3 = load i32, i32* %arrayidx5, align 4
  %4 = add nsw i32 %3, 1
  store i32 %4, i32* %arrayidx5, align 4
  %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
  %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  %exitcond = icmp eq i32 %lftr.wideiv, %itr
  br i1 %exitcond, label %for.inc8, label %for.body3

for.inc8:                                         ; preds = %for.body3, %for.cond1.preheader
  %j.1.lcssa = phi i32 [ %j.022, %for.cond1.preheader ], [ %itr, %for.body3 ]
  %indvars.iv.next24 = add nuw nsw i64 %indvars.iv23, 1
  %lftr.wideiv25 = trunc i64 %indvars.iv.next24 to i32
  %exitcond26 = icmp eq i32 %lftr.wideiv25, %itr
  br i1 %exitcond26, label %for.end10, label %for.cond1.preheader

for.end10:                                        ; preds = %for.inc8, %entry
  ret i32 undef
}

; second uniform store to the same address is conditional.
; we do not vectorize this.
; CHECK-LABEL: multiple_uniform_stores_conditional
; CHECK-NOT:    <4 x i32>
define i32 @multiple_uniform_stores_conditional(i32* nocapture %var1, i32* nocapture readonly %var2, i32 %itr) #0 {
entry:
  %cmp20 = icmp eq i32 %itr, 0
  br i1 %cmp20, label %for.end10, label %for.cond1.preheader

for.cond1.preheader:                              ; preds = %entry, %for.inc8
  %indvars.iv23 = phi i64 [ %indvars.iv.next24, %for.inc8 ], [ 0, %entry ]
  %j.022 = phi i32 [ %j.1.lcssa, %for.inc8 ], [ 0, %entry ]
  %cmp218 = icmp ult i32 %j.022, %itr
  br i1 %cmp218, label %for.body3.lr.ph, label %for.inc8

for.body3.lr.ph:                                  ; preds = %for.cond1.preheader
  %arrayidx5 = getelementptr inbounds i32, i32* %var1, i64 %indvars.iv23
  %0 = zext i32 %j.022 to i64
  br label %for.body3

for.body3:                                        ; preds = %for.body3, %for.body3.lr.ph
  %indvars.iv = phi i64 [ %0, %for.body3.lr.ph ], [ %indvars.iv.next, %latch ]
  %arrayidx = getelementptr inbounds i32, i32* %var2, i64 %indvars.iv
  %1 = load i32, i32* %arrayidx, align 4
  %2 = load i32, i32* %arrayidx5, align 4
  %add = add nsw i32 %2, %1
  store i32 %add, i32* %arrayidx5, align 4
  %3 = load i32, i32* %arrayidx5, align 4
  %4 = add nsw i32 %3, 1
  %5 = icmp ugt i32 %3, 42
  br i1 %5, label %cond_store, label %latch

cond_store:
  store i32 %4, i32* %arrayidx5, align 4
  br label %latch

latch:
  %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
  %lftr.wideiv = trunc i64 %indvars.iv.next to i32
  %exitcond = icmp eq i32 %lftr.wideiv, %itr
  br i1 %exitcond, label %for.inc8, label %for.body3

for.inc8:                                         ; preds = %for.body3, %for.cond1.preheader
  %j.1.lcssa = phi i32 [ %j.022, %for.cond1.preheader ], [ %itr, %latch ]
  %indvars.iv.next24 = add nuw nsw i64 %indvars.iv23, 1
  %lftr.wideiv25 = trunc i64 %indvars.iv.next24 to i32
  %exitcond26 = icmp eq i32 %lftr.wideiv25, %itr
  br i1 %exitcond26, label %for.end10, label %for.cond1.preheader

for.end10:                                        ; preds = %for.inc8, %entry
  ret i32 undef
}

; cannot vectorize loop with unsafe dependency between uniform load (%tmp10) and store
; (%tmp12) to the same address
; PR39653
; Note: %tmp10 could be replaced by phi(%arg4, %tmp12), a potentially vectorizable
; 1st-order-recurrence
define void @unsafe_dep_uniform_load_store(i32 %arg, i32 %arg1, i64 %arg2, i16* %arg3, i32 %arg4, i64 %arg5) {
; CHECK-LABEL: unsafe_dep_uniform_load_store
; CHECK-NOT: <4 x i32>
bb:
  %tmp = alloca i32
  store i32 %arg4, i32* %tmp
  %tmp6 = getelementptr inbounds i16, i16* %arg3, i64 %arg5
  br label %bb7

bb7:
  %tmp8 = phi i64 [ 0, %bb ], [ %tmp24, %bb7 ]
  %tmp9 = phi i32 [ %arg1, %bb ], [ %tmp23, %bb7 ]
  %tmp10 = load i32, i32* %tmp
  %tmp11 = mul nsw i32 %tmp9, %tmp10
  %tmp12 = srem i32 %tmp11, 65536
  %tmp13 = add nsw i32 %tmp12, %tmp9
  %tmp14 = trunc i32 %tmp13 to i16
  %tmp15 = trunc i64 %tmp8 to i32
  %tmp16 = add i32 %arg, %tmp15
  %tmp17 = zext i32 %tmp16 to i64
  %tmp18 = getelementptr inbounds i16, i16* %tmp6, i64 %tmp17
  store i16 %tmp14, i16* %tmp18, align 2
  %tmp19 = add i32 %tmp13, %tmp9
  %tmp20 = trunc i32 %tmp19 to i16
  %tmp21 = and i16 %tmp20, 255
  %tmp22 = getelementptr inbounds i16, i16* %arg3, i64 %tmp17
  store i16 %tmp21, i16* %tmp22, align 2
  %tmp23 = add nsw i32 %tmp9, 1
  %tmp24 = add nuw nsw i64 %tmp8, 1
  %tmp25 = icmp eq i64 %tmp24, %arg2
  store i32 %tmp12, i32* %tmp
  br i1 %tmp25, label %bb26, label %bb7

bb26:
  ret void
}