and.ll 24 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instcombine -S | FileCheck %s

declare void @use8(i8)
declare void @use32(i32)

; There should be no 'and' instructions left in any test.

define i32 @test1(i32 %A) {
; CHECK-LABEL: @test1(
; CHECK-NEXT:    ret i32 0
;
  %B = and i32 %A, 0
  ret i32 %B
}

define i32 @test2(i32 %A) {
; CHECK-LABEL: @test2(
; CHECK-NEXT:    ret i32 [[A:%.*]]
;
  %B = and i32 %A, -1
  ret i32 %B
}

define i1 @test3(i1 %A) {
; CHECK-LABEL: @test3(
; CHECK-NEXT:    ret i1 false
;
  %B = and i1 %A, false
  ret i1 %B
}

define i1 @test4(i1 %A) {
; CHECK-LABEL: @test4(
; CHECK-NEXT:    ret i1 [[A:%.*]]
;
  %B = and i1 %A, true
  ret i1 %B
}

define i32 @test5(i32 %A) {
; CHECK-LABEL: @test5(
; CHECK-NEXT:    ret i32 [[A:%.*]]
;
  %B = and i32 %A, %A
  ret i32 %B
}

define i1 @test6(i1 %A) {
; CHECK-LABEL: @test6(
; CHECK-NEXT:    ret i1 [[A:%.*]]
;
  %B = and i1 %A, %A
  ret i1 %B
}

; A & ~A == 0
define i32 @test7(i32 %A) {
; CHECK-LABEL: @test7(
; CHECK-NEXT:    ret i32 0
;
  %NotA = xor i32 %A, -1
  %B = and i32 %A, %NotA
  ret i32 %B
}

; AND associates
define i8 @test8(i8 %A) {
; CHECK-LABEL: @test8(
; CHECK-NEXT:    ret i8 0
;
  %B = and i8 %A, 3
  %C = and i8 %B, 4
  ret i8 %C
}

; Test of sign bit, convert to setle %A, 0
define i1 @test9(i32 %A) {
; CHECK-LABEL: @test9(
; CHECK-NEXT:    [[C:%.*]] = icmp slt i32 [[A:%.*]], 0
; CHECK-NEXT:    ret i1 [[C]]
;
  %B = and i32 %A, -2147483648
  %C = icmp ne i32 %B, 0
  ret i1 %C
}

; Test of sign bit, convert to setle %A, 0
define i1 @test9a(i32 %A) {
; CHECK-LABEL: @test9a(
; CHECK-NEXT:    [[C:%.*]] = icmp slt i32 [[A:%.*]], 0
; CHECK-NEXT:    ret i1 [[C]]
;
  %B = and i32 %A, -2147483648
  %C = icmp ne i32 %B, 0
  ret i1 %C
}

define i32 @test10(i32 %A) {
; CHECK-LABEL: @test10(
; CHECK-NEXT:    ret i32 1
;
  %B = and i32 %A, 12
  %C = xor i32 %B, 15
  ; (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
  %D = and i32 %C, 1
  ret i32 %D
}

define i32 @test11(i32 %A, i32* %P) {
; CHECK-LABEL: @test11(
; CHECK-NEXT:    [[B:%.*]] = or i32 [[A:%.*]], 3
; CHECK-NEXT:    [[C:%.*]] = xor i32 [[B]], 12
; CHECK-NEXT:    store i32 [[C]], i32* [[P:%.*]], align 4
; CHECK-NEXT:    ret i32 3
;
  %B = or i32 %A, 3
  %C = xor i32 %B, 12
  ; additional use of C
  store i32 %C, i32* %P
  ; %C = and uint %B, 3 --> 3
  %D = and i32 %C, 3
  ret i32 %D
}

define i1 @test12(i32 %A, i32 %B) {
; CHECK-LABEL: @test12(
; CHECK-NEXT:    [[C1:%.*]] = icmp ult i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT:    ret i1 [[C1]]
;
  %C1 = icmp ult i32 %A, %B
  %C2 = icmp ule i32 %A, %B
  ; (A < B) & (A <= B) === (A < B)
  %D = and i1 %C1, %C2
  ret i1 %D
}

define i1 @test13(i32 %A, i32 %B) {
; CHECK-LABEL: @test13(
; CHECK-NEXT:    ret i1 false
;
  %C1 = icmp ult i32 %A, %B
  %C2 = icmp ugt i32 %A, %B
  ; (A < B) & (A > B) === false
  %D = and i1 %C1, %C2
  ret i1 %D
}

define i1 @test14(i8 %A) {
; CHECK-LABEL: @test14(
; CHECK-NEXT:    [[C:%.*]] = icmp slt i8 [[A:%.*]], 0
; CHECK-NEXT:    ret i1 [[C]]
;
  %B = and i8 %A, -128
  %C = icmp ne i8 %B, 0
  ret i1 %C
}

define i8 @test15(i8 %A) {
; CHECK-LABEL: @test15(
; CHECK-NEXT:    ret i8 0
;
  %B = lshr i8 %A, 7
  ; Always equals zero
  %C = and i8 %B, 2
  ret i8 %C
}

define i8 @test16(i8 %A) {
; CHECK-LABEL: @test16(
; CHECK-NEXT:    ret i8 0
;
  %B = shl i8 %A, 2
  %C = and i8 %B, 3
  ret i8 %C
}

define i1 @test18(i32 %A) {
; CHECK-LABEL: @test18(
; CHECK-NEXT:    [[C:%.*]] = icmp ugt i32 [[A:%.*]], 127
; CHECK-NEXT:    ret i1 [[C]]
;
  %B = and i32 %A, -128
  ;; C >= 128
  %C = icmp ne i32 %B, 0
  ret i1 %C
}

define <2 x i1> @test18_vec(<2 x i32> %A) {
; CHECK-LABEL: @test18_vec(
; CHECK-NEXT:    [[C:%.*]] = icmp ugt <2 x i32> [[A:%.*]], <i32 127, i32 127>
; CHECK-NEXT:    ret <2 x i1> [[C]]
;
  %B = and <2 x i32> %A, <i32 -128, i32 -128>
  %C = icmp ne <2 x i32> %B, zeroinitializer
  ret <2 x i1> %C
}

define i1 @test18a(i8 %A) {
; CHECK-LABEL: @test18a(
; CHECK-NEXT:    [[C:%.*]] = icmp ult i8 [[A:%.*]], 2
; CHECK-NEXT:    ret i1 [[C]]
;
  %B = and i8 %A, -2
  %C = icmp eq i8 %B, 0
  ret i1 %C
}

define <2 x i1> @test18a_vec(<2 x i8> %A) {
; CHECK-LABEL: @test18a_vec(
; CHECK-NEXT:    [[C:%.*]] = icmp ult <2 x i8> [[A:%.*]], <i8 2, i8 2>
; CHECK-NEXT:    ret <2 x i1> [[C]]
;
  %B = and <2 x i8> %A, <i8 -2, i8 -2>
  %C = icmp eq <2 x i8> %B, zeroinitializer
  ret <2 x i1> %C
}

define i32 @test19(i32 %A) {
; CHECK-LABEL: @test19(
; CHECK-NEXT:    [[B:%.*]] = shl i32 [[A:%.*]], 3
; CHECK-NEXT:    ret i32 [[B]]
;
  %B = shl i32 %A, 3
  ;; Clearing a zero bit
  %C = and i32 %B, -2
  ret i32 %C
}

define i8 @test20(i8 %A) {
; CHECK-LABEL: @test20(
; CHECK-NEXT:    [[C:%.*]] = lshr i8 [[A:%.*]], 7
; CHECK-NEXT:    ret i8 [[C]]
;
  %C = lshr i8 %A, 7
  ;; Unneeded
  %D = and i8 %C, 1
  ret i8 %D
}

define i1 @test23(i32 %A) {
; CHECK-LABEL: @test23(
; CHECK-NEXT:    [[TMP1:%.*]] = icmp eq i32 [[A:%.*]], 2
; CHECK-NEXT:    ret i1 [[TMP1]]
;
  %B = icmp sgt i32 %A, 1
  %C = icmp sle i32 %A, 2
  %D = and i1 %B, %C
  ret i1 %D
}

; FIXME: Vectors should fold too.
define <2 x i1> @test23vec(<2 x i32> %A) {
; CHECK-LABEL: @test23vec(
; CHECK-NEXT:    [[B:%.*]] = icmp sgt <2 x i32> [[A:%.*]], <i32 1, i32 1>
; CHECK-NEXT:    [[C:%.*]] = icmp slt <2 x i32> [[A]], <i32 3, i32 3>
; CHECK-NEXT:    [[D:%.*]] = and <2 x i1> [[B]], [[C]]
; CHECK-NEXT:    ret <2 x i1> [[D]]
;
  %B = icmp sgt <2 x i32> %A, <i32 1, i32 1>
  %C = icmp sle <2 x i32> %A, <i32 2, i32 2>
  %D = and <2 x i1> %B, %C
  ret <2 x i1> %D
}

define i1 @test24(i32 %A) {
; CHECK-LABEL: @test24(
; CHECK-NEXT:    [[TMP1:%.*]] = icmp sgt i32 [[A:%.*]], 2
; CHECK-NEXT:    ret i1 [[TMP1]]
;
  %B = icmp sgt i32 %A, 1
  %C = icmp ne i32 %A, 2
  ;; A > 2
  %D = and i1 %B, %C
  ret i1 %D
}

define i1 @test25(i32 %A) {
; CHECK-LABEL: @test25(
; CHECK-NEXT:    [[A_OFF:%.*]] = add i32 [[A:%.*]], -50
; CHECK-NEXT:    [[TMP1:%.*]] = icmp ult i32 [[A_OFF]], 50
; CHECK-NEXT:    ret i1 [[TMP1]]
;
  %B = icmp sge i32 %A, 50
  %C = icmp slt i32 %A, 100
  %D = and i1 %B, %C
  ret i1 %D
}

; FIXME: Vectors should fold too.
define <2 x i1> @test25vec(<2 x i32> %A) {
; CHECK-LABEL: @test25vec(
; CHECK-NEXT:    [[B:%.*]] = icmp sgt <2 x i32> [[A:%.*]], <i32 49, i32 49>
; CHECK-NEXT:    [[C:%.*]] = icmp slt <2 x i32> [[A]], <i32 100, i32 100>
; CHECK-NEXT:    [[D:%.*]] = and <2 x i1> [[B]], [[C]]
; CHECK-NEXT:    ret <2 x i1> [[D]]
;
  %B = icmp sge <2 x i32> %A, <i32 50, i32 50>
  %C = icmp slt <2 x i32> %A, <i32 100, i32 100>
  %D = and <2 x i1> %B, %C
  ret <2 x i1> %D
}

define i8 @test27(i8 %A) {
; CHECK-LABEL: @test27(
; CHECK-NEXT:    ret i8 0
;
  %B = and i8 %A, 4
  %C = sub i8 %B, 16
  ;; 0xF0
  %D = and i8 %C, -16
  %E = add i8 %D, 16
  ret i8 %E
}

;; This is just a zero-extending shr.
define i32 @test28(i32 %X) {
; CHECK-LABEL: @test28(
; CHECK-NEXT:    [[TMP1:%.*]] = lshr i32 [[X:%.*]], 24
; CHECK-NEXT:    ret i32 [[TMP1]]
;
  ;; Sign extend
  %Y = ashr i32 %X, 24
  ;; Mask out sign bits
  %Z = and i32 %Y, 255
  ret i32 %Z
}

define i32 @test29(i8 %X) {
; CHECK-LABEL: @test29(
; CHECK-NEXT:    [[Y:%.*]] = zext i8 [[X:%.*]] to i32
; CHECK-NEXT:    ret i32 [[Y]]
;
  %Y = zext i8 %X to i32
  ;; Zero extend makes this unneeded.
  %Z = and i32 %Y, 255
  ret i32 %Z
}

define i32 @test30(i1 %X) {
; CHECK-LABEL: @test30(
; CHECK-NEXT:    [[Y:%.*]] = zext i1 [[X:%.*]] to i32
; CHECK-NEXT:    ret i32 [[Y]]
;
  %Y = zext i1 %X to i32
  %Z = and i32 %Y, 1
  ret i32 %Z
}

define i32 @test31(i1 %X) {
; CHECK-LABEL: @test31(
; CHECK-NEXT:    [[Z:%.*]] = select i1 [[X:%.*]], i32 16, i32 0
; CHECK-NEXT:    ret i32 [[Z]]
;
  %Y = zext i1 %X to i32
  %Z = shl i32 %Y, 4
  %A = and i32 %Z, 16
  ret i32 %A
}

; Demanded bit analysis allows us to eliminate the add.

define <2 x i32> @and_demanded_bits_splat_vec(<2 x i32> %x) {
; CHECK-LABEL: @and_demanded_bits_splat_vec(
; CHECK-NEXT:    [[Z:%.*]] = and <2 x i32> [[X:%.*]], <i32 7, i32 7>
; CHECK-NEXT:    ret <2 x i32> [[Z]]
;
  %y = add <2 x i32> %x, <i32 8, i32 8>
  %z = and <2 x i32> %y, <i32 7, i32 7>
  ret <2 x i32> %z
}

; zext (x >> 8) has all zeros in the high 24-bits:  0x000000xx
; (y | 255) has all ones in the low 8-bits: 0xyyyyyyff
; 'and' of those is all known bits - it's just 'z'.

define i32 @and_zext_demanded(i16 %x, i32 %y) {
; CHECK-LABEL: @and_zext_demanded(
; CHECK-NEXT:    [[S:%.*]] = lshr i16 [[X:%.*]], 8
; CHECK-NEXT:    [[Z:%.*]] = zext i16 [[S]] to i32
; CHECK-NEXT:    ret i32 [[Z]]
;
  %s = lshr i16 %x, 8
  %z = zext i16 %s to i32
  %o = or i32 %y, 255
  %a = and i32 %o, %z
  ret i32 %a
}

define i32 @test32(i32 %In) {
; CHECK-LABEL: @test32(
; CHECK-NEXT:    ret i32 0
;
  %Y = and i32 %In, 16
  %Z = lshr i32 %Y, 2
  %A = and i32 %Z, 1
  ret i32 %A
}

;; Code corresponding to one-bit bitfield ^1.
define i32 @test33(i32 %b) {
; CHECK-LABEL: @test33(
; CHECK-NEXT:    [[T13:%.*]] = xor i32 [[B:%.*]], 1
; CHECK-NEXT:    ret i32 [[T13]]
;
  %t4.mask = and i32 %b, 1
  %t10 = xor i32 %t4.mask, 1
  %t12 = and i32 %b, -2
  %t13 = or i32 %t12, %t10
  ret i32 %t13
}

define i32 @test33b(i32 %b) {
; CHECK-LABEL: @test33b(
; CHECK-NEXT:    [[T13:%.*]] = xor i32 [[B:%.*]], 1
; CHECK-NEXT:    ret i32 [[T13]]
;
  %t4.mask = and i32 %b, 1
  %t10 = xor i32 %t4.mask, 1
  %t12 = and i32 %b, -2
  %t13 = or i32 %t10, %t12
  ret i32 %t13
}

define <2 x i32> @test33vec(<2 x i32> %b) {
; CHECK-LABEL: @test33vec(
; CHECK-NEXT:    [[T13:%.*]] = xor <2 x i32> [[B:%.*]], <i32 1, i32 1>
; CHECK-NEXT:    ret <2 x i32> [[T13]]
;
  %t4.mask = and <2 x i32> %b, <i32 1, i32 1>
  %t10 = xor <2 x i32> %t4.mask, <i32 1, i32 1>
  %t12 = and <2 x i32> %b, <i32 -2, i32 -2>
  %t13 = or <2 x i32> %t12, %t10
  ret <2 x i32> %t13
}

define <2 x i32> @test33vecb(<2 x i32> %b) {
; CHECK-LABEL: @test33vecb(
; CHECK-NEXT:    [[T13:%.*]] = xor <2 x i32> [[B:%.*]], <i32 1, i32 1>
; CHECK-NEXT:    ret <2 x i32> [[T13]]
;
  %t4.mask = and <2 x i32> %b, <i32 1, i32 1>
  %t10 = xor <2 x i32> %t4.mask, <i32 1, i32 1>
  %t12 = and <2 x i32> %b, <i32 -2, i32 -2>
  %t13 = or <2 x i32> %t10, %t12
  ret <2 x i32> %t13
}

define i32 @test34(i32 %A, i32 %B) {
; CHECK-LABEL: @test34(
; CHECK-NEXT:    ret i32 [[B:%.*]]
;
  %t2 = or i32 %B, %A
  %t4 = and i32 %t2, %B
  ret i32 %t4
}

; FIXME: This test should only need -instsimplify (ValueTracking / computeKnownBits), not -instcombine.

define <2 x i32> @PR24942(<2 x i32> %x) {
; CHECK-LABEL: @PR24942(
; CHECK-NEXT:    ret <2 x i32> zeroinitializer
;
  %lshr = lshr <2 x i32> %x, <i32 31, i32 31>
  %and = and <2 x i32> %lshr, <i32 2, i32 2>
  ret <2 x i32> %and
}

define i64 @test35(i32 %X) {
; CHECK-LABEL: @test35(
; CHECK-NEXT:    [[TMP1:%.*]] = sub i32 0, [[X:%.*]]
; CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], 240
; CHECK-NEXT:    [[RES:%.*]] = zext i32 [[TMP2]] to i64
; CHECK-NEXT:    ret i64 [[RES]]
;
  %zext = zext i32 %X to i64
  %zsub = sub i64 0, %zext
  %res = and i64 %zsub, 240
  ret i64 %res
}

define i64 @test36(i32 %X) {
; CHECK-LABEL: @test36(
; CHECK-NEXT:    [[TMP1:%.*]] = add i32 [[X:%.*]], 7
; CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], 240
; CHECK-NEXT:    [[RES:%.*]] = zext i32 [[TMP2]] to i64
; CHECK-NEXT:    ret i64 [[RES]]
;
  %zext = zext i32 %X to i64
  %zsub = add i64 %zext, 7
  %res = and i64 %zsub, 240
  ret i64 %res
}

define i64 @test37(i32 %X) {
; CHECK-LABEL: @test37(
; CHECK-NEXT:    [[TMP1:%.*]] = mul i32 [[X:%.*]], 7
; CHECK-NEXT:    [[TMP2:%.*]] = and i32 [[TMP1]], 240
; CHECK-NEXT:    [[RES:%.*]] = zext i32 [[TMP2]] to i64
; CHECK-NEXT:    ret i64 [[RES]]
;
  %zext = zext i32 %X to i64
  %zsub = mul i64 %zext, 7
  %res = and i64 %zsub, 240
  ret i64 %res
}

define i64 @test38(i32 %X) {
; CHECK-LABEL: @test38(
; CHECK-NEXT:    [[TMP1:%.*]] = and i32 [[X:%.*]], 240
; CHECK-NEXT:    [[RES:%.*]] = zext i32 [[TMP1]] to i64
; CHECK-NEXT:    ret i64 [[RES]]
;
  %zext = zext i32 %X to i64
  %zsub = xor i64 %zext, 7
  %res = and i64 %zsub, 240
  ret i64 %res
}

define i64 @test39(i32 %X) {
; CHECK-LABEL: @test39(
; CHECK-NEXT:    [[TMP1:%.*]] = and i32 [[X:%.*]], 240
; CHECK-NEXT:    [[RES:%.*]] = zext i32 [[TMP1]] to i64
; CHECK-NEXT:    ret i64 [[RES]]
;
  %zext = zext i32 %X to i64
  %zsub = or i64 %zext, 7
  %res = and i64 %zsub, 240
  ret i64 %res
}

define i32 @test40(i1 %C) {
; CHECK-LABEL: @test40(
; CHECK-NEXT:    [[A:%.*]] = select i1 [[C:%.*]], i32 104, i32 10
; CHECK-NEXT:    ret i32 [[A]]
;
  %A = select i1 %C, i32 1000, i32 10
  %V = and i32 %A, 123
  ret i32 %V
}

define <2 x i32> @test40vec(i1 %C) {
; CHECK-LABEL: @test40vec(
; CHECK-NEXT:    [[A:%.*]] = select i1 [[C:%.*]], <2 x i32> <i32 104, i32 104>, <2 x i32> <i32 10, i32 10>
; CHECK-NEXT:    ret <2 x i32> [[A]]
;
  %A = select i1 %C, <2 x i32> <i32 1000, i32 1000>, <2 x i32> <i32 10, i32 10>
  %V = and <2 x i32> %A, <i32 123, i32 123>
  ret <2 x i32> %V
}

define <2 x i32> @test40vec2(i1 %C) {
; CHECK-LABEL: @test40vec2(
; CHECK-NEXT:    [[V:%.*]] = select i1 [[C:%.*]], <2 x i32> <i32 104, i32 324>, <2 x i32> <i32 10, i32 12>
; CHECK-NEXT:    ret <2 x i32> [[V]]
;
  %A = select i1 %C, <2 x i32> <i32 1000, i32 2500>, <2 x i32> <i32 10, i32 30>
  %V = and <2 x i32> %A, <i32 123, i32 333>
  ret <2 x i32> %V
}

define i32 @test41(i1 %which) {
; CHECK-LABEL: @test41(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]]
; CHECK:       delay:
; CHECK-NEXT:    br label [[FINAL]]
; CHECK:       final:
; CHECK-NEXT:    [[A:%.*]] = phi i32 [ 104, [[ENTRY:%.*]] ], [ 10, [[DELAY]] ]
; CHECK-NEXT:    ret i32 [[A]]
;
entry:
  br i1 %which, label %final, label %delay

delay:
  br label %final

final:
  %A = phi i32 [ 1000, %entry ], [ 10, %delay ]
  %value = and i32 %A, 123
  ret i32 %value
}

define <2 x i32> @test41vec(i1 %which) {
; CHECK-LABEL: @test41vec(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]]
; CHECK:       delay:
; CHECK-NEXT:    br label [[FINAL]]
; CHECK:       final:
; CHECK-NEXT:    [[A:%.*]] = phi <2 x i32> [ <i32 104, i32 104>, [[ENTRY:%.*]] ], [ <i32 10, i32 10>, [[DELAY]] ]
; CHECK-NEXT:    ret <2 x i32> [[A]]
;
entry:
  br i1 %which, label %final, label %delay

delay:
  br label %final

final:
  %A = phi <2 x i32> [ <i32 1000, i32 1000>, %entry ], [ <i32 10, i32 10>, %delay ]
  %value = and <2 x i32> %A, <i32 123, i32 123>
  ret <2 x i32> %value
}

define <2 x i32> @test41vec2(i1 %which) {
; CHECK-LABEL: @test41vec2(
; CHECK-NEXT:  entry:
; CHECK-NEXT:    br i1 [[WHICH:%.*]], label [[FINAL:%.*]], label [[DELAY:%.*]]
; CHECK:       delay:
; CHECK-NEXT:    br label [[FINAL]]
; CHECK:       final:
; CHECK-NEXT:    [[A:%.*]] = phi <2 x i32> [ <i32 104, i32 324>, [[ENTRY:%.*]] ], [ <i32 10, i32 12>, [[DELAY]] ]
; CHECK-NEXT:    ret <2 x i32> [[A]]
;
entry:
  br i1 %which, label %final, label %delay

delay:
  br label %final

final:
  %A = phi <2 x i32> [ <i32 1000, i32 2500>, %entry ], [ <i32 10, i32 30>, %delay ]
  %value = and <2 x i32> %A, <i32 123, i32 333>
  ret <2 x i32> %value
}

define i32 @test42(i32 %a, i32 %c, i32 %d) {
; CHECK-LABEL: @test42(
; CHECK-NEXT:    [[FORCE:%.*]] = mul i32 [[C:%.*]], [[D:%.*]]
; CHECK-NEXT:    [[AND:%.*]] = and i32 [[FORCE]], [[A:%.*]]
; CHECK-NEXT:    ret i32 [[AND]]
;
  %force = mul i32 %c, %d ; forces the complexity sorting
  %or = or i32 %a, %force
  %nota = xor i32 %a, -1
  %xor = xor i32 %nota, %force
  %and = and i32 %xor, %or
  ret i32 %and
}

define i32 @test43(i32 %a, i32 %c, i32 %d) {
; CHECK-LABEL: @test43(
; CHECK-NEXT:    [[FORCE:%.*]] = mul i32 [[C:%.*]], [[D:%.*]]
; CHECK-NEXT:    [[AND:%.*]] = and i32 [[FORCE]], [[A:%.*]]
; CHECK-NEXT:    ret i32 [[AND]]
;
  %force = mul i32 %c, %d ; forces the complexity sorting
  %or = or i32 %a, %force
  %nota = xor i32 %a, -1
  %xor = xor i32 %nota, %force
  %and = and i32 %or, %xor
  ret i32 %and
}

; (~y | x) & y -> x & y
define i32 @test44(i32 %x, i32 %y) nounwind {
; CHECK-LABEL: @test44(
; CHECK-NEXT:    [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT:    ret i32 [[A]]
;
  %n = xor i32 %y, -1
  %o = or i32 %n, %x
  %a = and i32 %o, %y
  ret i32 %a
}

; (x | ~y) & y -> x & y
define i32 @test45(i32 %x, i32 %y) nounwind {
; CHECK-LABEL: @test45(
; CHECK-NEXT:    [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT:    ret i32 [[A]]
;
  %n = xor i32 %y, -1
  %o = or i32 %x, %n
  %a = and i32 %o, %y
  ret i32 %a
}

; y & (~y | x) -> y | x
define i32 @test46(i32 %x, i32 %y) nounwind {
; CHECK-LABEL: @test46(
; CHECK-NEXT:    [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT:    ret i32 [[A]]
;
  %n = xor i32 %y, -1
  %o = or i32 %n, %x
  %a = and i32 %y, %o
  ret i32 %a
}

; y & (x | ~y) -> y | x
define i32 @test47(i32 %x, i32 %y) nounwind {
; CHECK-LABEL: @test47(
; CHECK-NEXT:    [[A:%.*]] = and i32 [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT:    ret i32 [[A]]
;
  %n = xor i32 %y, -1
  %o = or i32 %x, %n
  %a = and i32 %y, %o
  ret i32 %a
}

; In the next 4 tests, vary the types and predicates for extra coverage.
; (X & (Y | ~X)) -> (X & Y), where 'not' is an inverted cmp

define i1 @and_orn_cmp_1(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @and_orn_cmp_1(
; CHECK-NEXT:    [[X:%.*]] = icmp sgt i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT:    [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42
; CHECK-NEXT:    [[AND:%.*]] = and i1 [[X]], [[Y]]
; CHECK-NEXT:    ret i1 [[AND]]
;
  %x = icmp sgt i32 %a, %b
  %x_inv = icmp sle i32 %a, %b
  %y = icmp ugt i32 %c, 42      ; thwart complexity-based ordering
  %or = or i1 %y, %x_inv
  %and = and i1 %x, %or
  ret i1 %and
}

; Commute the 'and':
; ((Y | ~X) & X) -> (X & Y), where 'not' is an inverted cmp

define <2 x i1> @and_orn_cmp_2(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c) {
; CHECK-LABEL: @and_orn_cmp_2(
; CHECK-NEXT:    [[X:%.*]] = icmp sge <2 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT:    [[Y:%.*]] = icmp ugt <2 x i32> [[C:%.*]], <i32 42, i32 47>
; CHECK-NEXT:    [[AND:%.*]] = and <2 x i1> [[Y]], [[X]]
; CHECK-NEXT:    ret <2 x i1> [[AND]]
;
  %x = icmp sge <2 x i32> %a, %b
  %x_inv = icmp slt <2 x i32> %a, %b
  %y = icmp ugt <2 x i32> %c, <i32 42, i32 47>      ; thwart complexity-based ordering
  %or = or <2 x i1> %y, %x_inv
  %and = and <2 x i1> %or, %x
  ret <2 x i1> %and
}

; Commute the 'or':
; (X & (~X | Y)) -> (X & Y), where 'not' is an inverted cmp

define i1 @and_orn_cmp_3(i72 %a, i72 %b, i72 %c) {
; CHECK-LABEL: @and_orn_cmp_3(
; CHECK-NEXT:    [[X:%.*]] = icmp ugt i72 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT:    [[Y:%.*]] = icmp ugt i72 [[C:%.*]], 42
; CHECK-NEXT:    [[AND:%.*]] = and i1 [[X]], [[Y]]
; CHECK-NEXT:    ret i1 [[AND]]
;
  %x = icmp ugt i72 %a, %b
  %x_inv = icmp ule i72 %a, %b
  %y = icmp ugt i72 %c, 42      ; thwart complexity-based ordering
  %or = or i1 %x_inv, %y
  %and = and i1 %x, %or
  ret i1 %and
}

; Commute the 'and':
; ((~X | Y) & X) -> (X & Y), where 'not' is an inverted cmp

define <3 x i1> @or_andn_cmp_4(<3 x i32> %a, <3 x i32> %b, <3 x i32> %c) {
; CHECK-LABEL: @or_andn_cmp_4(
; CHECK-NEXT:    [[X:%.*]] = icmp eq <3 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT:    [[Y:%.*]] = icmp ugt <3 x i32> [[C:%.*]], <i32 42, i32 43, i32 -1>
; CHECK-NEXT:    [[AND:%.*]] = and <3 x i1> [[Y]], [[X]]
; CHECK-NEXT:    ret <3 x i1> [[AND]]
;
  %x = icmp eq <3 x i32> %a, %b
  %x_inv = icmp ne <3 x i32> %a, %b
  %y = icmp ugt <3 x i32> %c, <i32 42, i32 43, i32 -1>      ; thwart complexity-based ordering
  %or = or <3 x i1> %x_inv, %y
  %and = and <3 x i1> %or, %x
  ret <3 x i1> %and
}

; In the next 4 tests, vary the types and predicates for extra coverage.
; (~X & (Y | X)) -> (~X & Y), where 'not' is an inverted cmp

define i1 @andn_or_cmp_1(i37 %a, i37 %b, i37 %c) {
; CHECK-LABEL: @andn_or_cmp_1(
; CHECK-NEXT:    [[X_INV:%.*]] = icmp sle i37 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT:    [[Y:%.*]] = icmp ugt i37 [[C:%.*]], 42
; CHECK-NEXT:    [[AND:%.*]] = and i1 [[X_INV]], [[Y]]
; CHECK-NEXT:    ret i1 [[AND]]
;
  %x = icmp sgt i37 %a, %b
  %x_inv = icmp sle i37 %a, %b
  %y = icmp ugt i37 %c, 42      ; thwart complexity-based ordering
  %or = or i1 %y, %x
  %and = and i1 %x_inv, %or
  ret i1 %and
}

; Commute the 'and':
; ((Y | X) & ~X) -> (~X & Y), where 'not' is an inverted cmp

define i1 @andn_or_cmp_2(i16 %a, i16 %b, i16 %c) {
; CHECK-LABEL: @andn_or_cmp_2(
; CHECK-NEXT:    [[X_INV:%.*]] = icmp slt i16 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT:    [[Y:%.*]] = icmp ugt i16 [[C:%.*]], 42
; CHECK-NEXT:    [[AND:%.*]] = and i1 [[Y]], [[X_INV]]
; CHECK-NEXT:    ret i1 [[AND]]
;
  %x = icmp sge i16 %a, %b
  %x_inv = icmp slt i16 %a, %b
  %y = icmp ugt i16 %c, 42      ; thwart complexity-based ordering
  %or = or i1 %y, %x
  %and = and i1 %or, %x_inv
  ret i1 %and
}

; Commute the 'or':
; (~X & (X | Y)) -> (~X & Y), where 'not' is an inverted cmp

define <4 x i1> @andn_or_cmp_3(<4 x i32> %a, <4 x i32> %b, <4 x i32> %c) {
; CHECK-LABEL: @andn_or_cmp_3(
; CHECK-NEXT:    [[X_INV:%.*]] = icmp ule <4 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT:    [[Y:%.*]] = icmp ugt <4 x i32> [[C:%.*]], <i32 42, i32 0, i32 1, i32 -1>
; CHECK-NEXT:    [[AND:%.*]] = and <4 x i1> [[X_INV]], [[Y]]
; CHECK-NEXT:    ret <4 x i1> [[AND]]
;
  %x = icmp ugt <4 x i32> %a, %b
  %x_inv = icmp ule <4 x i32> %a, %b
  %y = icmp ugt <4 x i32> %c, <i32 42, i32 0, i32 1, i32 -1>      ; thwart complexity-based ordering
  %or = or <4 x i1> %x, %y
  %and = and <4 x i1> %x_inv, %or
  ret <4 x i1> %and
}

; Commute the 'and':
; ((X | Y) & ~X) -> (~X & Y), where 'not' is an inverted cmp

define i1 @andn_or_cmp_4(i32 %a, i32 %b, i32 %c) {
; CHECK-LABEL: @andn_or_cmp_4(
; CHECK-NEXT:    [[X_INV:%.*]] = icmp ne i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT:    [[Y:%.*]] = icmp ugt i32 [[C:%.*]], 42
; CHECK-NEXT:    [[AND:%.*]] = and i1 [[Y]], [[X_INV]]
; CHECK-NEXT:    ret i1 [[AND]]
;
  %x = icmp eq i32 %a, %b
  %x_inv = icmp ne i32 %a, %b
  %y = icmp ugt i32 %c, 42      ; thwart complexity-based ordering
  %or = or i1 %x, %y
  %and = and i1 %or, %x_inv
  ret i1 %and
}

define i32 @lowbitmask_casted_shift(i8 %x) {
; CHECK-LABEL: @lowbitmask_casted_shift(
; CHECK-NEXT:    [[TMP1:%.*]] = sext i8 [[X:%.*]] to i32
; CHECK-NEXT:    [[R:%.*]] = lshr i32 [[TMP1]], 1
; CHECK-NEXT:    ret i32 [[R]]
;
  %a = ashr i8 %x, 1
  %s = sext i8 %a to i32
  %r = and i32 %s, 2147483647
  ret i32 %r
}

; Negative test - mask constant is too big.

define i32 @lowbitmask_casted_shift_wrong_mask1(i8 %x) {
; CHECK-LABEL: @lowbitmask_casted_shift_wrong_mask1(
; CHECK-NEXT:    [[A:%.*]] = ashr i8 [[X:%.*]], 2
; CHECK-NEXT:    [[S:%.*]] = sext i8 [[A]] to i32
; CHECK-NEXT:    [[R:%.*]] = and i32 [[S]], 2147483647
; CHECK-NEXT:    ret i32 [[R]]
;
  %a = ashr i8 %x, 2
  %s = sext i8 %a to i32
  %r = and i32 %s, 2147483647 ; 0x7fffffff
  ret i32 %r
}

; Negative test - mask constant is too small.

define i32 @lowbitmask_casted_shift_wrong_mask2(i8 %x) {
; CHECK-LABEL: @lowbitmask_casted_shift_wrong_mask2(
; CHECK-NEXT:    [[A:%.*]] = ashr i8 [[X:%.*]], 2
; CHECK-NEXT:    [[S:%.*]] = sext i8 [[A]] to i32
; CHECK-NEXT:    [[R:%.*]] = and i32 [[S]], 536870911
; CHECK-NEXT:    ret i32 [[R]]
;
  %a = ashr i8 %x, 2
  %s = sext i8 %a to i32
  %r = and i32 %s, 536870911  ; 0x1fffffff
  ret i32 %r
}

; Extra use of shift is ok.

define i32 @lowbitmask_casted_shift_use1(i8 %x) {
; CHECK-LABEL: @lowbitmask_casted_shift_use1(
; CHECK-NEXT:    [[A:%.*]] = ashr i8 [[X:%.*]], 3
; CHECK-NEXT:    call void @use8(i8 [[A]])
; CHECK-NEXT:    [[TMP1:%.*]] = sext i8 [[X]] to i32
; CHECK-NEXT:    [[R:%.*]] = lshr i32 [[TMP1]], 3
; CHECK-NEXT:    ret i32 [[R]]
;
  %a = ashr i8 %x, 3
  call void @use8(i8 %a)
  %s = sext i8 %a to i32
  %r = and i32 %s, 536870911
  ret i32 %r
}

; Negative test - extra use of sext requires more instructions.

define i32 @lowbitmask_casted_shift_use2(i8 %x) {
; CHECK-LABEL: @lowbitmask_casted_shift_use2(
; CHECK-NEXT:    [[A:%.*]] = ashr i8 [[X:%.*]], 3
; CHECK-NEXT:    [[S:%.*]] = sext i8 [[A]] to i32
; CHECK-NEXT:    call void @use32(i32 [[S]])
; CHECK-NEXT:    [[R:%.*]] = and i32 [[S]], 536870911
; CHECK-NEXT:    ret i32 [[R]]
;
  %a = ashr i8 %x, 3
  %s = sext i8 %a to i32
  call void @use32(i32 %s)
  %r = and i32 %s, 536870911
  ret i32 %r
}

; Vectors/weird types are ok.

define <2 x i59> @lowbitmask_casted_shift_vec_splat(<2 x i47> %x) {
; CHECK-LABEL: @lowbitmask_casted_shift_vec_splat(
; CHECK-NEXT:    [[TMP1:%.*]] = sext <2 x i47> [[X:%.*]] to <2 x i59>
; CHECK-NEXT:    [[R:%.*]] = lshr <2 x i59> [[TMP1]], <i59 5, i59 5>
; CHECK-NEXT:    ret <2 x i59> [[R]]
;
  %a = ashr <2 x i47> %x, <i47 5, i47 5>
  %s = sext <2 x i47> %a to <2 x i59>
  %r = and <2 x i59> %s, <i59 18014398509481983, i59 18014398509481983>  ;  -1 u>> 5 == 0x3f_ffff_ffff_ffff
  ret <2 x i59> %r
}