VectorCombine.cpp 31.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
//===------- VectorCombine.cpp - Optimize partial vector operations -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass optimizes scalar/vector interactions using target cost models. The
// transforms implemented here may not fit in traditional loop-based or SLP
// vectorization passes.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Vectorize/VectorCombine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Vectorize.h"

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "vector-combine"
STATISTIC(NumVecLoad, "Number of vector loads formed");
STATISTIC(NumVecCmp, "Number of vector compares formed");
STATISTIC(NumVecBO, "Number of vector binops formed");
STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
STATISTIC(NumScalarBO, "Number of scalar binops formed");
STATISTIC(NumScalarCmp, "Number of scalar compares formed");

static cl::opt<bool> DisableVectorCombine(
    "disable-vector-combine", cl::init(false), cl::Hidden,
    cl::desc("Disable all vector combine transforms"));

static cl::opt<bool> DisableBinopExtractShuffle(
    "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
    cl::desc("Disable binop extract to shuffle transforms"));

static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();

namespace {
class VectorCombine {
public:
  VectorCombine(Function &F, const TargetTransformInfo &TTI,
                const DominatorTree &DT)
      : F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {}

  bool run();

private:
  Function &F;
  IRBuilder<> Builder;
  const TargetTransformInfo &TTI;
  const DominatorTree &DT;

  bool vectorizeLoadInsert(Instruction &I);
  ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
                                        ExtractElementInst *Ext1,
                                        unsigned PreferredExtractIndex) const;
  bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
                             unsigned Opcode,
                             ExtractElementInst *&ConvertToShuffle,
                             unsigned PreferredExtractIndex);
  void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
                     Instruction &I);
  void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
                       Instruction &I);
  bool foldExtractExtract(Instruction &I);
  bool foldBitcastShuf(Instruction &I);
  bool scalarizeBinopOrCmp(Instruction &I);
  bool foldExtractedCmps(Instruction &I);
};
} // namespace

static void replaceValue(Value &Old, Value &New) {
  Old.replaceAllUsesWith(&New);
  New.takeName(&Old);
}

bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
  // Match insert into fixed vector of scalar load.
  auto *Ty = dyn_cast<FixedVectorType>(I.getType());
  Value *Scalar;
  if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
      !Scalar->hasOneUse())
    return false;

  // Do not vectorize scalar load (widening) if atomic/volatile or under
  // asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
  // or create data races non-existent in the source.
  auto *Load = dyn_cast<LoadInst>(Scalar);
  if (!Load || !Load->isSimple() ||
      Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
      mustSuppressSpeculation(*Load))
    return false;

  // TODO: Extend this to match GEP with constant offsets.
  Value *PtrOp = Load->getPointerOperand()->stripPointerCasts();
  assert(isa<PointerType>(PtrOp->getType()) && "Expected a pointer type");

  Type *ScalarTy = Scalar->getType();
  uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
  unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
  if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0)
    return false;

  // Check safety of replacing the scalar load with a larger vector load.
  unsigned MinVecNumElts = MinVectorSize / ScalarSize;
  auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
  Align Alignment = Load->getAlign();
  const DataLayout &DL = I.getModule()->getDataLayout();
  if (!isSafeToLoadUnconditionally(PtrOp, MinVecTy, Alignment, DL, Load, &DT))
    return false;

  unsigned AS = Load->getPointerAddressSpace();

  // Original pattern: insertelt undef, load [free casts of] ScalarPtr, 0
  int OldCost = TTI.getMemoryOpCost(Instruction::Load, ScalarTy, Alignment, AS);
  APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
  OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, true, false);

  // New pattern: load VecPtr
  int NewCost = TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);

  // We can aggressively convert to the vector form because the backend can
  // invert this transform if it does not result in a performance win.
  if (OldCost < NewCost)
    return false;

  // It is safe and potentially profitable to load a vector directly:
  // inselt undef, load Scalar, 0 --> load VecPtr
  IRBuilder<> Builder(Load);
  Value *CastedPtr = Builder.CreateBitCast(PtrOp, MinVecTy->getPointerTo(AS));
  Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);

  // If the insert type does not match the target's minimum vector type,
  // use an identity shuffle to shrink/grow the vector.
  if (Ty != MinVecTy) {
    unsigned OutputNumElts = Ty->getNumElements();
    SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
    for (unsigned i = 0; i < OutputNumElts && i < MinVecNumElts; ++i)
      Mask[i] = i;
    VecLd = Builder.CreateShuffleVector(VecLd, Mask);
  }
  replaceValue(I, *VecLd);
  ++NumVecLoad;
  return true;
}

/// Determine which, if any, of the inputs should be replaced by a shuffle
/// followed by extract from a different index.
ExtractElementInst *VectorCombine::getShuffleExtract(
    ExtractElementInst *Ext0, ExtractElementInst *Ext1,
    unsigned PreferredExtractIndex = InvalidIndex) const {
  assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
         isa<ConstantInt>(Ext1->getIndexOperand()) &&
         "Expected constant extract indexes");

  unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
  unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();

  // If the extract indexes are identical, no shuffle is needed.
  if (Index0 == Index1)
    return nullptr;

  Type *VecTy = Ext0->getVectorOperand()->getType();
  assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
  int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
  int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);

  // We are extracting from 2 different indexes, so one operand must be shuffled
  // before performing a vector operation and/or extract. The more expensive
  // extract will be replaced by a shuffle.
  if (Cost0 > Cost1)
    return Ext0;
  if (Cost1 > Cost0)
    return Ext1;

  // If the costs are equal and there is a preferred extract index, shuffle the
  // opposite operand.
  if (PreferredExtractIndex == Index0)
    return Ext1;
  if (PreferredExtractIndex == Index1)
    return Ext0;

  // Otherwise, replace the extract with the higher index.
  return Index0 > Index1 ? Ext0 : Ext1;
}

/// Compare the relative costs of 2 extracts followed by scalar operation vs.
/// vector operation(s) followed by extract. Return true if the existing
/// instructions are cheaper than a vector alternative. Otherwise, return false
/// and if one of the extracts should be transformed to a shufflevector, set
/// \p ConvertToShuffle to that extract instruction.
bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
                                          ExtractElementInst *Ext1,
                                          unsigned Opcode,
                                          ExtractElementInst *&ConvertToShuffle,
                                          unsigned PreferredExtractIndex) {
  assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
         isa<ConstantInt>(Ext1->getOperand(1)) &&
         "Expected constant extract indexes");
  Type *ScalarTy = Ext0->getType();
  auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
  int ScalarOpCost, VectorOpCost;

  // Get cost estimates for scalar and vector versions of the operation.
  bool IsBinOp = Instruction::isBinaryOp(Opcode);
  if (IsBinOp) {
    ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
    VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
  } else {
    assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
           "Expected a compare");
    ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
                                          CmpInst::makeCmpResultType(ScalarTy));
    VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
                                          CmpInst::makeCmpResultType(VecTy));
  }

  // Get cost estimates for the extract elements. These costs will factor into
  // both sequences.
  unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
  unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();

  int Extract0Cost =
      TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
  int Extract1Cost =
      TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);

  // A more expensive extract will always be replaced by a splat shuffle.
  // For example, if Ext0 is more expensive:
  // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
  // extelt (opcode (splat V0, Ext0), V1), Ext1
  // TODO: Evaluate whether that always results in lowest cost. Alternatively,
  //       check the cost of creating a broadcast shuffle and shuffling both
  //       operands to element 0.
  int CheapExtractCost = std::min(Extract0Cost, Extract1Cost);

  // Extra uses of the extracts mean that we include those costs in the
  // vector total because those instructions will not be eliminated.
  int OldCost, NewCost;
  if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
    // Handle a special case. If the 2 extracts are identical, adjust the
    // formulas to account for that. The extra use charge allows for either the
    // CSE'd pattern or an unoptimized form with identical values:
    // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
    bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
                                  : !Ext0->hasOneUse() || !Ext1->hasOneUse();
    OldCost = CheapExtractCost + ScalarOpCost;
    NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
  } else {
    // Handle the general case. Each extract is actually a different value:
    // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
    OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
    NewCost = VectorOpCost + CheapExtractCost +
              !Ext0->hasOneUse() * Extract0Cost +
              !Ext1->hasOneUse() * Extract1Cost;
  }

  ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
  if (ConvertToShuffle) {
    if (IsBinOp && DisableBinopExtractShuffle)
      return true;

    // If we are extracting from 2 different indexes, then one operand must be
    // shuffled before performing the vector operation. The shuffle mask is
    // undefined except for 1 lane that is being translated to the remaining
    // extraction lane. Therefore, it is a splat shuffle. Ex:
    // ShufMask = { undef, undef, 0, undef }
    // TODO: The cost model has an option for a "broadcast" shuffle
    //       (splat-from-element-0), but no option for a more general splat.
    NewCost +=
        TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
  }

  // Aggressively form a vector op if the cost is equal because the transform
  // may enable further optimization.
  // Codegen can reverse this transform (scalarize) if it was not profitable.
  return OldCost < NewCost;
}

/// Create a shuffle that translates (shifts) 1 element from the input vector
/// to a new element location.
static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
                                 unsigned NewIndex, IRBuilder<> &Builder) {
  // The shuffle mask is undefined except for 1 lane that is being translated
  // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
  // ShufMask = { 2, undef, undef, undef }
  auto *VecTy = cast<FixedVectorType>(Vec->getType());
  SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
  ShufMask[NewIndex] = OldIndex;
  return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
}

/// Given an extract element instruction with constant index operand, shuffle
/// the source vector (shift the scalar element) to a NewIndex for extraction.
/// Return null if the input can be constant folded, so that we are not creating
/// unnecessary instructions.
static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
                                            unsigned NewIndex,
                                            IRBuilder<> &Builder) {
  // If the extract can be constant-folded, this code is unsimplified. Defer
  // to other passes to handle that.
  Value *X = ExtElt->getVectorOperand();
  Value *C = ExtElt->getIndexOperand();
  assert(isa<ConstantInt>(C) && "Expected a constant index operand");
  if (isa<Constant>(X))
    return nullptr;

  Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
                                   NewIndex, Builder);
  return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
}

/// Try to reduce extract element costs by converting scalar compares to vector
/// compares followed by extract.
/// cmp (ext0 V0, C), (ext1 V1, C)
void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
                                  ExtractElementInst *Ext1, Instruction &I) {
  assert(isa<CmpInst>(&I) && "Expected a compare");
  assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
             cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
         "Expected matching constant extract indexes");

  // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
  ++NumVecCmp;
  CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
  Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
  Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
  Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
  replaceValue(I, *NewExt);
}

/// Try to reduce extract element costs by converting scalar binops to vector
/// binops followed by extract.
/// bo (ext0 V0, C), (ext1 V1, C)
void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
                                    ExtractElementInst *Ext1, Instruction &I) {
  assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
  assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
             cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
         "Expected matching constant extract indexes");

  // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
  ++NumVecBO;
  Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
  Value *VecBO =
      Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);

  // All IR flags are safe to back-propagate because any potential poison
  // created in unused vector elements is discarded by the extract.
  if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
    VecBOInst->copyIRFlags(&I);

  Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
  replaceValue(I, *NewExt);
}

/// Match an instruction with extracted vector operands.
bool VectorCombine::foldExtractExtract(Instruction &I) {
  // It is not safe to transform things like div, urem, etc. because we may
  // create undefined behavior when executing those on unknown vector elements.
  if (!isSafeToSpeculativelyExecute(&I))
    return false;

  Instruction *I0, *I1;
  CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
  if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
      !match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
    return false;

  Value *V0, *V1;
  uint64_t C0, C1;
  if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
      !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
      V0->getType() != V1->getType())
    return false;

  // If the scalar value 'I' is going to be re-inserted into a vector, then try
  // to create an extract to that same element. The extract/insert can be
  // reduced to a "select shuffle".
  // TODO: If we add a larger pattern match that starts from an insert, this
  //       probably becomes unnecessary.
  auto *Ext0 = cast<ExtractElementInst>(I0);
  auto *Ext1 = cast<ExtractElementInst>(I1);
  uint64_t InsertIndex = InvalidIndex;
  if (I.hasOneUse())
    match(I.user_back(),
          m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));

  ExtractElementInst *ExtractToChange;
  if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange,
                            InsertIndex))
    return false;

  if (ExtractToChange) {
    unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
    ExtractElementInst *NewExtract =
        translateExtract(ExtractToChange, CheapExtractIdx, Builder);
    if (!NewExtract)
      return false;
    if (ExtractToChange == Ext0)
      Ext0 = NewExtract;
    else
      Ext1 = NewExtract;
  }

  if (Pred != CmpInst::BAD_ICMP_PREDICATE)
    foldExtExtCmp(Ext0, Ext1, I);
  else
    foldExtExtBinop(Ext0, Ext1, I);

  return true;
}

/// If this is a bitcast of a shuffle, try to bitcast the source vector to the
/// destination type followed by shuffle. This can enable further transforms by
/// moving bitcasts or shuffles together.
bool VectorCombine::foldBitcastShuf(Instruction &I) {
  Value *V;
  ArrayRef<int> Mask;
  if (!match(&I, m_BitCast(
                     m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
    return false;

  // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
  // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
  // mask for scalable type is a splat or not.
  // 2) Disallow non-vector casts and length-changing shuffles.
  // TODO: We could allow any shuffle.
  auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
  auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
  if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
    return false;

  // The new shuffle must not cost more than the old shuffle. The bitcast is
  // moved ahead of the shuffle, so assume that it has the same cost as before.
  if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) >
      TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy))
    return false;

  unsigned DestNumElts = DestTy->getNumElements();
  unsigned SrcNumElts = SrcTy->getNumElements();
  SmallVector<int, 16> NewMask;
  if (SrcNumElts <= DestNumElts) {
    // The bitcast is from wide to narrow/equal elements. The shuffle mask can
    // always be expanded to the equivalent form choosing narrower elements.
    assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
    unsigned ScaleFactor = DestNumElts / SrcNumElts;
    narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
  } else {
    // The bitcast is from narrow elements to wide elements. The shuffle mask
    // must choose consecutive elements to allow casting first.
    assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
    unsigned ScaleFactor = SrcNumElts / DestNumElts;
    if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
      return false;
  }
  // bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
  ++NumShufOfBitcast;
  Value *CastV = Builder.CreateBitCast(V, DestTy);
  Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
  replaceValue(I, *Shuf);
  return true;
}

/// Match a vector binop or compare instruction with at least one inserted
/// scalar operand and convert to scalar binop/cmp followed by insertelement.
bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
  CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
  Value *Ins0, *Ins1;
  if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
      !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
    return false;

  // Do not convert the vector condition of a vector select into a scalar
  // condition. That may cause problems for codegen because of differences in
  // boolean formats and register-file transfers.
  // TODO: Can we account for that in the cost model?
  bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
  if (IsCmp)
    for (User *U : I.users())
      if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
        return false;

  // Match against one or both scalar values being inserted into constant
  // vectors:
  // vec_op VecC0, (inselt VecC1, V1, Index)
  // vec_op (inselt VecC0, V0, Index), VecC1
  // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
  // TODO: Deal with mismatched index constants and variable indexes?
  Constant *VecC0 = nullptr, *VecC1 = nullptr;
  Value *V0 = nullptr, *V1 = nullptr;
  uint64_t Index0 = 0, Index1 = 0;
  if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
                               m_ConstantInt(Index0))) &&
      !match(Ins0, m_Constant(VecC0)))
    return false;
  if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
                               m_ConstantInt(Index1))) &&
      !match(Ins1, m_Constant(VecC1)))
    return false;

  bool IsConst0 = !V0;
  bool IsConst1 = !V1;
  if (IsConst0 && IsConst1)
    return false;
  if (!IsConst0 && !IsConst1 && Index0 != Index1)
    return false;

  // Bail for single insertion if it is a load.
  // TODO: Handle this once getVectorInstrCost can cost for load/stores.
  auto *I0 = dyn_cast_or_null<Instruction>(V0);
  auto *I1 = dyn_cast_or_null<Instruction>(V1);
  if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
      (IsConst1 && I0 && I0->mayReadFromMemory()))
    return false;

  uint64_t Index = IsConst0 ? Index1 : Index0;
  Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
  Type *VecTy = I.getType();
  assert(VecTy->isVectorTy() &&
         (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
         (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
          ScalarTy->isPointerTy()) &&
         "Unexpected types for insert element into binop or cmp");

  unsigned Opcode = I.getOpcode();
  int ScalarOpCost, VectorOpCost;
  if (IsCmp) {
    ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy);
    VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy);
  } else {
    ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
    VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
  }

  // Get cost estimate for the insert element. This cost will factor into
  // both sequences.
  int InsertCost =
      TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
  int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) +
                VectorOpCost;
  int NewCost = ScalarOpCost + InsertCost +
                (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
                (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);

  // We want to scalarize unless the vector variant actually has lower cost.
  if (OldCost < NewCost)
    return false;

  // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
  // inselt NewVecC, (scalar_op V0, V1), Index
  if (IsCmp)
    ++NumScalarCmp;
  else
    ++NumScalarBO;

  // For constant cases, extract the scalar element, this should constant fold.
  if (IsConst0)
    V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
  if (IsConst1)
    V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));

  Value *Scalar =
      IsCmp ? Builder.CreateCmp(Pred, V0, V1)
            : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);

  Scalar->setName(I.getName() + ".scalar");

  // All IR flags are safe to back-propagate. There is no potential for extra
  // poison to be created by the scalar instruction.
  if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
    ScalarInst->copyIRFlags(&I);

  // Fold the vector constants in the original vectors into a new base vector.
  Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
                            : ConstantExpr::get(Opcode, VecC0, VecC1);
  Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
  replaceValue(I, *Insert);
  return true;
}

/// Try to combine a scalar binop + 2 scalar compares of extracted elements of
/// a vector into vector operations followed by extract. Note: The SLP pass
/// may miss this pattern because of implementation problems.
bool VectorCombine::foldExtractedCmps(Instruction &I) {
  // We are looking for a scalar binop of booleans.
  // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
  if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
    return false;

  // The compare predicates should match, and each compare should have a
  // constant operand.
  // TODO: Relax the one-use constraints.
  Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
  Instruction *I0, *I1;
  Constant *C0, *C1;
  CmpInst::Predicate P0, P1;
  if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
      !match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
      P0 != P1)
    return false;

  // The compare operands must be extracts of the same vector with constant
  // extract indexes.
  // TODO: Relax the one-use constraints.
  Value *X;
  uint64_t Index0, Index1;
  if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
      !match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
    return false;

  auto *Ext0 = cast<ExtractElementInst>(I0);
  auto *Ext1 = cast<ExtractElementInst>(I1);
  ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
  if (!ConvertToShuf)
    return false;

  // The original scalar pattern is:
  // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
  CmpInst::Predicate Pred = P0;
  unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
                                                    : Instruction::ICmp;
  auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
  if (!VecTy)
    return false;

  int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
  OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
  OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2;
  OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());

  // The proposed vector pattern is:
  // vcmp = cmp Pred X, VecC
  // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
  int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
  int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
  auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
  int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType());
  NewCost +=
      TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy);
  NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
  NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);

  // Aggressively form vector ops if the cost is equal because the transform
  // may enable further optimization.
  // Codegen can reverse this transform (scalarize) if it was not profitable.
  if (OldCost < NewCost)
    return false;

  // Create a vector constant from the 2 scalar constants.
  SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
                                   UndefValue::get(VecTy->getElementType()));
  CmpC[Index0] = C0;
  CmpC[Index1] = C1;
  Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));

  Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
  Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
                                        VCmp, Shuf);
  Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
  replaceValue(I, *NewExt);
  ++NumVecCmpBO;
  return true;
}

/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
bool VectorCombine::run() {
  if (DisableVectorCombine)
    return false;

  // Don't attempt vectorization if the target does not support vectors.
  if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
    return false;

  bool MadeChange = false;
  for (BasicBlock &BB : F) {
    // Ignore unreachable basic blocks.
    if (!DT.isReachableFromEntry(&BB))
      continue;
    // Do not delete instructions under here and invalidate the iterator.
    // Walk the block forwards to enable simple iterative chains of transforms.
    // TODO: It could be more efficient to remove dead instructions
    //       iteratively in this loop rather than waiting until the end.
    for (Instruction &I : BB) {
      if (isa<DbgInfoIntrinsic>(I))
        continue;
      Builder.SetInsertPoint(&I);
      MadeChange |= vectorizeLoadInsert(I);
      MadeChange |= foldExtractExtract(I);
      MadeChange |= foldBitcastShuf(I);
      MadeChange |= scalarizeBinopOrCmp(I);
      MadeChange |= foldExtractedCmps(I);
    }
  }

  // We're done with transforms, so remove dead instructions.
  if (MadeChange)
    for (BasicBlock &BB : F)
      SimplifyInstructionsInBlock(&BB);

  return MadeChange;
}

// Pass manager boilerplate below here.

namespace {
class VectorCombineLegacyPass : public FunctionPass {
public:
  static char ID;
  VectorCombineLegacyPass() : FunctionPass(ID) {
    initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.setPreservesCFG();
    AU.addPreserved<DominatorTreeWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<AAResultsWrapperPass>();
    AU.addPreserved<BasicAAWrapperPass>();
    FunctionPass::getAnalysisUsage(AU);
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    VectorCombine Combiner(F, TTI, DT);
    return Combiner.run();
  }
};
} // namespace

char VectorCombineLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
                      "Optimize scalar/vector ops", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
                    "Optimize scalar/vector ops", false, false)
Pass *llvm::createVectorCombinePass() {
  return new VectorCombineLegacyPass();
}

PreservedAnalyses VectorCombinePass::run(Function &F,
                                         FunctionAnalysisManager &FAM) {
  TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
  DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
  VectorCombine Combiner(F, TTI, DT);
  if (!Combiner.run())
    return PreservedAnalyses::all();
  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<GlobalsAA>();
  PA.preserve<AAManager>();
  PA.preserve<BasicAA>();
  return PA;
}