FixIrreducible.cpp
12.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
//===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
// with control-flow edges incident from outside the SCC. This pass converts a
// irreducible SCC into a natural loop by applying the following transformation:
//
// 1. Collect the set of headers H of the SCC.
// 2. Collect the set of predecessors P of these headers. These may be inside as
// well as outside the SCC.
// 3. Create block N and redirect every edge from set P to set H through N.
//
// This converts the SCC into a natural loop with N as the header: N is the only
// block with edges incident from outside the SCC, and all backedges in the SCC
// are incident on N, i.e., for every backedge, the head now dominates the tail.
//
// INPUT CFG: The blocks A and B form an irreducible loop with two headers.
//
// Entry
// / \
// v v
// A ----> B
// ^ /|
// `----' |
// v
// Exit
//
// OUTPUT CFG: Edges incident on A and B are now redirected through a
// new block N, forming a natural loop consisting of N, A and B.
//
// Entry
// |
// v
// .---> N <---.
// / / \ \
// | / \ |
// \ v v /
// `-- A B --'
// |
// v
// Exit
//
// The transformation is applied to every maximal SCC that is not already
// recognized as a loop. The pass operates on all maximal SCCs found in the
// function body outside of any loop, as well as those found inside each loop,
// including inside any newly created loops. This ensures that any SCC hidden
// inside a maximal SCC is also transformed.
//
// The actual transformation is handled by function CreateControlFlowHub, which
// takes a set of incoming blocks (the predecessors) and outgoing blocks (the
// headers). The function also moves every PHINode in an outgoing block to the
// hub. Since the hub dominates all the outgoing blocks, each such PHINode
// continues to dominate its uses. Since every header in an SCC has at least two
// predecessors, every value used in the header (or later) but defined in a
// predecessor (or earlier) is represented by a PHINode in a header. Hence the
// above handling of PHINodes is sufficient and no further processing is
// required to restore SSA.
//
// Limitation: The pass cannot handle switch statements and indirect
// branches. Both must be lowered to plain branches first.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SCCIterator.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#define DEBUG_TYPE "fix-irreducible"
using namespace llvm;
namespace {
struct FixIrreducible : public FunctionPass {
static char ID;
FixIrreducible() : FunctionPass(ID) {
initializeFixIrreduciblePass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequiredID(LowerSwitchID);
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreservedID(LowerSwitchID);
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
}
bool runOnFunction(Function &F) override;
};
} // namespace
char FixIrreducible::ID = 0;
FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); }
INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible",
"Convert irreducible control-flow into natural loops",
false /* Only looks at CFG */, false /* Analysis Pass */)
INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible",
"Convert irreducible control-flow into natural loops",
false /* Only looks at CFG */, false /* Analysis Pass */)
// When a new loop is created, existing children of the parent loop may now be
// fully inside the new loop. Reconnect these as children of the new loop.
static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop,
SetVector<BasicBlock *> &Blocks,
SetVector<BasicBlock *> &Headers) {
auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector()
: LI.getTopLevelLoopsVector();
// The new loop cannot be its own child, and any candidate is a
// child iff its header is owned by the new loop. Move all the
// children to a new vector.
auto FirstChild = std::partition(
CandidateLoops.begin(), CandidateLoops.end(), [&](Loop *L) {
return L == NewLoop || Blocks.count(L->getHeader()) == 0;
});
SmallVector<Loop *, 8> ChildLoops(FirstChild, CandidateLoops.end());
CandidateLoops.erase(FirstChild, CandidateLoops.end());
for (auto II = ChildLoops.begin(), IE = ChildLoops.end(); II != IE; ++II) {
auto Child = *II;
LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName()
<< "\n");
// TODO: A child loop whose header is also a header in the current
// SCC gets destroyed since its backedges are removed. That may
// not be necessary if we can retain such backedges.
if (Headers.count(Child->getHeader())) {
for (auto BB : Child->blocks()) {
LI.changeLoopFor(BB, NewLoop);
LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName()
<< "\n");
}
LI.destroy(Child);
LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n");
continue;
}
Child->setParentLoop(nullptr);
NewLoop->addChildLoop(Child);
LLVM_DEBUG(dbgs() << "added child loop to new loop\n");
}
}
// Given a set of blocks and headers in an irreducible SCC, convert it into a
// natural loop. Also insert this new loop at its appropriate place in the
// hierarchy of loops.
static void createNaturalLoopInternal(LoopInfo &LI, DominatorTree &DT,
Loop *ParentLoop,
SetVector<BasicBlock *> &Blocks,
SetVector<BasicBlock *> &Headers) {
#ifndef NDEBUG
// All headers are part of the SCC
for (auto H : Headers) {
assert(Blocks.count(H));
}
#endif
SetVector<BasicBlock *> Predecessors;
for (auto H : Headers) {
for (auto P : predecessors(H)) {
Predecessors.insert(P);
}
}
LLVM_DEBUG(
dbgs() << "Found predecessors:";
for (auto P : Predecessors) {
dbgs() << " " << P->getName();
}
dbgs() << "\n");
// Redirect all the backedges through a "hub" consisting of a series
// of guard blocks that manage the flow of control from the
// predecessors to the headers.
SmallVector<BasicBlock *, 8> GuardBlocks;
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
CreateControlFlowHub(&DTU, GuardBlocks, Predecessors, Headers, "irr");
#if defined(EXPENSIVE_CHECKS)
assert(DT.verify(DominatorTree::VerificationLevel::Full));
#else
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
#endif
// Create a new loop from the now-transformed cycle
auto NewLoop = LI.AllocateLoop();
if (ParentLoop) {
ParentLoop->addChildLoop(NewLoop);
} else {
LI.addTopLevelLoop(NewLoop);
}
// Add the guard blocks to the new loop. The first guard block is
// the head of all the backedges, and it is the first to be inserted
// in the loop. This ensures that it is recognized as the
// header. Since the new loop is already in LoopInfo, the new blocks
// are also propagated up the chain of parent loops.
for (auto G : GuardBlocks) {
LLVM_DEBUG(dbgs() << "added guard block: " << G->getName() << "\n");
NewLoop->addBasicBlockToLoop(G, LI);
}
// Add the SCC blocks to the new loop.
for (auto BB : Blocks) {
NewLoop->addBlockEntry(BB);
if (LI.getLoopFor(BB) == ParentLoop) {
LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName()
<< "\n");
LI.changeLoopFor(BB, NewLoop);
} else {
LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n");
}
}
LLVM_DEBUG(dbgs() << "header for new loop: "
<< NewLoop->getHeader()->getName() << "\n");
reconnectChildLoops(LI, ParentLoop, NewLoop, Blocks, Headers);
NewLoop->verifyLoop();
if (ParentLoop) {
ParentLoop->verifyLoop();
}
#if defined(EXPENSIVE_CHECKS)
LI.verify(DT);
#endif // EXPENSIVE_CHECKS
}
namespace llvm {
// Enable the graph traits required for traversing a Loop body.
template <> struct GraphTraits<Loop> : LoopBodyTraits {};
} // namespace llvm
// Overloaded wrappers to go with the function template below.
static BasicBlock *unwrapBlock(BasicBlock *B) { return B; }
static BasicBlock *unwrapBlock(LoopBodyTraits::NodeRef &N) { return N.second; }
static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Function *F,
SetVector<BasicBlock *> &Blocks,
SetVector<BasicBlock *> &Headers) {
createNaturalLoopInternal(LI, DT, nullptr, Blocks, Headers);
}
static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Loop &L,
SetVector<BasicBlock *> &Blocks,
SetVector<BasicBlock *> &Headers) {
createNaturalLoopInternal(LI, DT, &L, Blocks, Headers);
}
// Convert irreducible SCCs; Graph G may be a Function* or a Loop&.
template <class Graph>
static bool makeReducible(LoopInfo &LI, DominatorTree &DT, Graph &&G) {
bool Changed = false;
for (auto Scc = scc_begin(G); !Scc.isAtEnd(); ++Scc) {
if (Scc->size() < 2)
continue;
SetVector<BasicBlock *> Blocks;
LLVM_DEBUG(dbgs() << "Found SCC:");
for (auto N : *Scc) {
auto BB = unwrapBlock(N);
LLVM_DEBUG(dbgs() << " " << BB->getName());
Blocks.insert(BB);
}
LLVM_DEBUG(dbgs() << "\n");
// Minor optimization: The SCC blocks are usually discovered in an order
// that is the opposite of the order in which these blocks appear as branch
// targets. This results in a lot of condition inversions in the control
// flow out of the new ControlFlowHub, which can be mitigated if the orders
// match. So we discover the headers using the reverse of the block order.
SetVector<BasicBlock *> Headers;
LLVM_DEBUG(dbgs() << "Found headers:");
for (auto BB : reverse(Blocks)) {
for (const auto P : predecessors(BB)) {
// Skip unreachable predecessors.
if (!DT.isReachableFromEntry(P))
continue;
if (!Blocks.count(P)) {
LLVM_DEBUG(dbgs() << " " << BB->getName());
Headers.insert(BB);
break;
}
}
}
LLVM_DEBUG(dbgs() << "\n");
if (Headers.size() == 1) {
assert(LI.isLoopHeader(Headers.front()));
LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n");
continue;
}
createNaturalLoop(LI, DT, G, Blocks, Headers);
Changed = true;
}
return Changed;
}
bool FixIrreducible::runOnFunction(Function &F) {
LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: "
<< F.getName() << "\n");
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
bool Changed = false;
SmallVector<Loop *, 8> WorkList;
LLVM_DEBUG(dbgs() << "visiting top-level\n");
Changed |= makeReducible(LI, DT, &F);
// Any SCCs reduced are now already in the list of top-level loops, so simply
// add them all to the worklist.
for (auto L : LI) {
WorkList.push_back(L);
}
while (!WorkList.empty()) {
auto L = WorkList.back();
WorkList.pop_back();
LLVM_DEBUG(dbgs() << "visiting loop with header "
<< L->getHeader()->getName() << "\n");
Changed |= makeReducible(LI, DT, *L);
// Any SCCs reduced are now already in the list of child loops, so simply
// add them all to the worklist.
WorkList.append(L->begin(), L->end());
}
return Changed;
}